Web Information Retrieval

Lecture 15
Clustering



Today’s Topic: Clustering
—
= Document clustering
= Motivations
= Document representations
= Success criteria
= Clustering algorithms
= Partitional
= Hierarchical



What is clustering?

= Clustering: the process of grouping a set of objects into
classes of similar objects

» Documents within a cluster should be similar
= Documents from different clusters should be dissimilar

= The commonest form of unsupervised learning

= Unsupervised learning = learning from raw data, as
opposed to supervised data where a classification of
examples is given
= A common and important task that finds many
applications in IR and other places



A data set with clear cluster structure
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Applications of clustering in IR

= Whole corpus analysis/navigation
= Better user interface: search without typing
= For improving recall in search applications
= Better search results
= For better navigation of search results
= Effective “user recall” will be higher
= For speeding up vector space retrieval
= Cluster-based retrieval gives faster search



Yahoo! Hierarchy isn’t clustering but Is the
kind of output you want from clustering
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Google News: automatic clustering gives

an effective news presentation metaphor
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Pakistan protests over US missile strikes

Reuters - 2 hours ago
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For visualizing a document collection and
Its themes

= Wise et al, “Visualizing the non-visual” PNNL

= [hemeScapes, Cartia
= [Mountain height = cluster size]
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For better navigation of search results

= For grouping search results thematically
= clusty.com / Vivisimo
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Issues for clustering
- —

= Representation for clustering
= Document representation
= Vector space? Normalization?
= Need a notion of similarity/distance

= How many clusters?
= Fixed a priori?
= Completely data driven?

= Avoid “trivial” clusters - too large or small

= In an application, if a cluster's too large, then for
navigation purposes you've wasted an extra user
click without whittling down the set of documents
much.



What makes docs “related”?

= |deal: semantic similarity.

= Practical: statistical similarity
= We will use cosine similarity.
= Docs as vectors.

= For many algorithms, easier to think in terms of a
distance (rather than similarity) between docs.

= We will use Euclidean distance.



Clustering Algorithms

= Flat algorithms
= Usually start with a random (partial) partitioning

= Refine it iteratively
=« K means clustering
= (Model based clustering)

= Hierarchical algorithms
= Bottom-up, agglomerative
= (Top-down, divisive)



Hard vs. soft clustering

= Hard clustering: Each document belongs to exactly
one cluster

» More common and easier to do
= Soft clustering: A document can belong to more than
one cluster.

= Makes more sense for applications like creating
browsable hierarchies

= You may want to put a pair of sneakers in two clusters:
(i) sports apparel and (ii) shoes
= You can only do that with a soft clustering approach.
= We won't do soft clustering today. See IIR 16.5, 18



Partitioning Algorithms

= Partitioning method: Construct a partition of n
documents into a set of K clusters

= Given: a set of documents and the number K
= Find: a partition of K clusters that optimizes the
chosen partitioning criterion
= Globally optimal: exhaustively enumerate all partitions

an Effective heuristic methods: K-means and K-medoids
algorithms



K-Means

s Assumes documents are real-valued vectors.

= Clusters based on centroids (aka the center of gravity
or mean) of points in a cluster, c:

. ] _
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= Reassignment of instances to clusters is based on

distance to the current cluster centroids.

= (Or one can equivalently phrase it in terms of
similarities)



K-Means Algorithm

Select K random docs {s,, S,,... Sk} as seeds.
Until clustering converges or other stopping criterion:
For each doc d;:
Assign d; to the cluster ¢;such that dist(d;, s;) is
minimal.

Update the seeds to the centroid of each cluster:
For each cluster c;

S; = w(c)



K Means Example
(K=2)




K Means Example
(K=2)

Pick seeds




K Means Example
(K=2)

Pick seeds

Reassign clusters




K Means Example
(K=2)

Pick seeds
Reassign clusters

Compute centroids
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K Means Example
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Compute centroids

Reassign clusters
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K Means Example
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K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reassign clusters
Compute centroids

Reassign clusters

Converged!




Termination conditions

= Several possibilities, e.g.,
= A fixed number of iterations.
= Doc partition unchanged.
= Centroid positions don’t change.



Issues for clustering

= Why should the K-means algorithm ever reach a
fixed point?
= A state in which clusters don’t change.
= K-means is a special case of a general procedure

known as the Expectation Maximization (EM)
algorithm.

= EM is known to converge.

= Number of iterations could be large.
« But in practice usually isn’t



Time Complexity

= Computing distance between two docs is O(m) where
m is the dimensionality of the vectors.

= Reassigning clusters: O(Kn) distance computations,
or O(Knm).

= Computing centroids: Each doc gets added once to
some centroid: O(nm).

= Assume these two steps are each done once for |
iterations: O(IKnm).



Seed Choice

= Results can vary based on random Example showing
seed selection. sensitivity to seeds

= Some seeds can result in poor .
convergence rate, or convergence
to sub-optimal clusterings.

= Select good seeds using a heuristic
(e.g., doc least similar to any
existing mean) In the above, if you start

= Try out multiple starting points with B and E 2 EZ”;“(’;?S
RT . Ou converge 1o D,
» Initialize with the results of another an {D,E ,:iJ
method. If you start with D and F
you converge to

{A,B,D,E} {C,F}

rn(:_j. (:_‘JI:I:I
My (N



How Many Clusters?

= Number of clusters K is given

= Partition N docs into predetermined number of clusters
= Finding the “right” number of clusters is part of the
problem

= Given docs, partition into an “appropriate” number of
subsets.

= E.g., for query results - ideal value of K not known up
front — though Ul may impose limits.

= Can usually take an algorithm for one flavor and
convert to the other.



K not specified in advance

= Say, the results of a query.
= Solve an optimization problem: penalize having lots
of clusters

= application dependent, e.g., compressed summary of
search results list.

= Tradeoff between having more clusters (better focus
within each cluster) and having too many clusters



Hierarchical Clustering

= Build a tree-based hierarchical taxonomy
(dendrogram) from a set of documents.

animal

vertebrate invertebrate

fish reAdule amphib. mammal  worm insect crustacean

= One approach: recursive application of a partitional
clustering algorithm.



Dendogram: Hierarchical Clustering
- —

» Clustering obtained by
cutting the dendrogram
at a desired level: each
connected component
forms a cluster.




Hierarchical Agglomerative
Clustering (HAC)

= Starts with each doc in a separate cluster

= then repeatedly joins the closest pair of clusters, until
there is only one cluster.

= The history of merging forms a binary tree or
hierarchy.



Closest pair of clusters

= Many variants to defining closest pair of clusters
= Single-link
= Similarity of the most cosine-similar (single-link)
= Complete-link
= Similarity of the “furthest” points, the least cosine-
similar
= Centroid

= Clusters whose centroids (centers of gravity) are the
most cosine-similar

= Average-link
= Average cosine between pairs of elements



Single Link Agglomerative
Clustering

= Use maximum similarity of pairs:
sim(c;,C;) = max sim(X,Y)
XECi ,yECj
= Can result in “straggly” (long and thin) clusters due to
chaining effect.

= After merging c; and c;, the similarity of the resulting
cluster to another cluster, c,, is:

sim((c; V¢, ),C, ) = max(sim(c;,C, ),sim(C;,C, ))



Single Link Example
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Complete Link Agglomerative
Clustering

= Use minimum similarity of pairs:

sim(C;,C;) = min SIM(X,Y)
XECi,yECj
= Makes “tighter,” spherical clusters that are typically

preferable.

= After merging c; and c;, the similarity of the resulting
cluster to another cluster, c,, is:

sim((c; U ¢C;),C, ) =min(SIM(C;,C, ),sIM(C;,C, ))



Complete Link Example
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Computational Complexity

= In the first iteration, all HAC methods need to
compute similarity of all pairs of n individual instances
which is O(n?).

= In each of the subsequent n—2 merging iterations,
compute the distance between the most recently
created cluster and all other existing clusters.

= In order to maintain an overall O(n?) performance,

computing similarity to each other cluster must be
done in constant time.

« Often O(n3) if done naively or O(n? log n) if done more
cleverly



Group Average Agglomerative
Clustering

= Similarity of two clusters = average similarity of all
pairs within merged cluster.

SIm(c,,C,) = ! > Ysim,y)

‘Ci - Cj ‘(‘Ci - Cj ‘ o 1) Xe(C;uC;) Ye(C;uc;):y=X

= Compromise between single and complete link.

= [wo options:

= Averaged across all ordered pairs in the merged
cluster

= Averaged over all pairs between the two original
clusters

= No clear difference in efficacy



What Is A Good Clustering?

= Internal criterion: A good clustering will produce high
quality clusters in which:

= the intra-class (that is, intra-cluster) similarity is high
= the inter-class similarity is low

= The measured quality of a clustering depends on both
the document representation and the similarity
measure used



External criteria for clustering quality
- OO0

= Quality measured by its ability to discover some or all
of the hidden patterns or latent classes in gold
standard data

= Assesses a clustering with respect to ground truth
... requires labeled data

= Assume documents with C gold standard classes,
while our clustering algorithms produce K clusters, w,,
Wy, ..., W With n, members.



External Evaluation of Cluster Quality

= Simple measure: purity, the ratio between the
dominant class in the cluster 1, and the size of cluster
Wi : 1 :
Purity(w,) = Fmaxj (n;) JeC
|
= Biased because having n clusters maximizes purity

= Others are entropy of classes in clusters (or mutual
information between classes and clusters)



Purity example

Cluster I Cluster 11 Cluster II1

Cluster I: Purity = 1/6 (max(5, 1, 0)) =5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5



Final word and resources
- .

= |n clustering, clusters are inferred from the data
without human input (unsupervised learning)

= However, in practice, it's a bit less clear: there are
many ways of influencing the outcome of
clustering: number of clusters, similarity measure,
representation of documents, . . .



Resources

= |IR Chapters 16 — 16.4
= |IR Chapters 17 -17.2,17.6



