
Web Information Retrieval

Lecture 15
Clustering



Today’s Topic: Clustering

 Document clustering
 Motivations
 Document representations
 Success criteria

 Clustering algorithms
 Partitional
 Hierarchical



What is clustering?
 Clustering: the process of grouping a set of objects into 

classes of similar objects
 Documents within a cluster should be similar
 Documents from different clusters should be dissimilar

 The commonest form of unsupervised learning
 Unsupervised learning = learning from raw data, as 

opposed to supervised data where a classification of 
examples is given

 A common and important task that finds many 
applications in IR and other places

Ch. 16



A data set with clear cluster structure

 How would 
you design 
an algorithm 
for finding 
the three 
clusters in 
this case?



Applications of clustering in IR

 Whole corpus analysis/navigation
 Better user interface: search without typing

 For improving recall in search applications
 Better search results

 For better navigation of search results
 Effective “user recall” will be higher

 For speeding up vector space retrieval
 Cluster-based retrieval gives faster search



Yahoo! Hierarchy isn’t clustering but is the 
kind of output you want from clustering
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Google News: automatic clustering gives 
an effective news presentation metaphor



Scatter/Gather: Cutting, Karger, and Pedersen



For visualizing a document collection and 
its themes

 Wise et al, “Visualizing the non-visual” PNNL
 ThemeScapes, Cartia

 [Mountain height = cluster size]



For better navigation of search results

 For grouping search results thematically
 clusty.com / Vivisimo



Issues for clustering

 Representation for clustering
 Document representation

 Vector space?  Normalization?
 Need a notion of similarity/distance

 How many clusters?
 Fixed a priori?
 Completely data driven?

 Avoid “trivial” clusters - too large or small
 In an application, if a cluster's too large, then for 

navigation purposes you've wasted an extra user 
click without whittling down the set of documents 
much.



What makes docs “related”? 

 Ideal: semantic similarity.
 Practical: statistical similarity

 We will use cosine similarity.
 Docs as vectors.
 For many algorithms, easier to think in terms of a 

distance (rather than similarity) between docs.
 We will use Euclidean distance.



Clustering Algorithms

 Flat algorithms
 Usually start with a random (partial) partitioning
 Refine it iteratively

 K means clustering
 (Model based clustering)

 Hierarchical algorithms
 Bottom-up, agglomerative
 (Top-down, divisive)



Hard vs. soft clustering

 Hard clustering: Each document belongs to exactly 
one cluster
 More common and easier to do

 Soft clustering: A document can belong to more than 
one cluster.
 Makes more sense for applications like creating 

browsable hierarchies
 You may want to put a pair of sneakers in two clusters: 

(i) sports apparel and (ii) shoes
 You can only do that with a soft clustering approach.

 We won’t do soft clustering today. See IIR 16.5, 18



Partitioning Algorithms

 Partitioning method: Construct a partition of n
documents into a set of K clusters

 Given: a set of documents and the number K
 Find: a partition of K clusters that optimizes the 

chosen partitioning criterion
 Globally optimal: exhaustively enumerate all partitions
 Effective heuristic methods: K-means and K-medoids

algorithms



K-Means

 Assumes documents are real-valued vectors.
 Clusters based on centroids (aka the center of gravity

or mean) of points in a cluster, c:

 Reassignment of instances to clusters is based on 
distance to the current cluster centroids.

 (Or one can equivalently phrase it in terms of 
similarities)
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K-Means Algorithm
Select K random docs {s1, s2,… sK} as seeds.
Until clustering converges or other stopping criterion:

For each doc di:
Assign di to the cluster cj such that dist(di, sj) is 
minimal.

Update the seeds to the centroid of each cluster:
For each cluster cj

sj = (cj) 



K Means Example
(K=2)



K Means Example
(K=2)

Pick seeds



K Means Example
(K=2)

Pick seeds
Reassign clusters



K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
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K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
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Reassign clusters

Converged!



Termination conditions

 Several possibilities, e.g.,
 A fixed number of iterations.
 Doc partition unchanged.
 Centroid positions don’t change.



Issues for clustering

 Why should the K-means algorithm ever reach a 
fixed point?
 A state in which clusters don’t change.

 K-means is a special case of a general procedure 
known as the Expectation Maximization (EM) 
algorithm.
 EM is known to converge.
 Number of iterations could be large.

 But in practice usually isn’t



Time Complexity

 Computing distance between two docs is O(m) where 
m is the dimensionality of the vectors.

 Reassigning clusters: O(Kn) distance computations, 
or O(Knm).

 Computing centroids: Each doc gets added once to 
some centroid: O(nm).

 Assume these two steps are each done once for I
iterations:  O(IKnm).



Seed Choice

 Results can vary based on random 
seed selection.

 Some seeds can result in poor 
convergence rate, or convergence 
to sub-optimal clusterings.
 Select good seeds using a heuristic 

(e.g., doc least similar to any 
existing mean)

 Try out multiple starting points
 Initialize with the results of another 

method.

In the above, if you start
with B and E as centroids
you converge to {A,B,C}
and {D,E,F}
If you start with D and F
you converge to 
{A,B,D,E} {C,F}

Example showing
sensitivity to seeds



How Many Clusters?

 Number of clusters K is given
 Partition n docs into predetermined number of clusters

 Finding the “right” number of clusters is part of the 
problem
 Given docs, partition into an “appropriate” number of 

subsets.
 E.g., for query results - ideal value of K not known up 

front – though UI may impose limits.
 Can usually take an algorithm for one flavor and 

convert to the other.



K not specified in advance

 Say, the results of a query.
 Solve an optimization problem: penalize having lots 

of clusters
 application dependent, e.g., compressed summary of 

search results list.
 Tradeoff between having more clusters (better focus 

within each cluster) and having too many clusters



Hierarchical Clustering

 Build a tree-based hierarchical taxonomy 
(dendrogram) from a set of documents.

 One approach: recursive application of a partitional
clustering algorithm.

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate



• Clustering obtained by 
cutting the dendrogram
at a desired level: each 
connected component 
forms a cluster.

Dendogram: Hierarchical Clustering



Hierarchical Agglomerative 
Clustering (HAC)

 Starts with each doc in a separate cluster
 then repeatedly joins the closest pair of clusters, until 

there is only one cluster.
 The history of merging forms a binary tree or 

hierarchy.



Closest pair of clusters

 Many variants to defining closest pair of clusters
 Single-link

 Similarity of the most cosine-similar (single-link)
 Complete-link

 Similarity of the “furthest” points, the least cosine-
similar

 Centroid
 Clusters whose centroids (centers of gravity) are the 

most cosine-similar
 Average-link

 Average cosine between pairs of elements



Single Link Agglomerative 
Clustering

 Use maximum similarity of pairs:

 Can result in “straggly” (long and thin) clusters due to 
chaining effect.

 After merging ci and cj, the similarity of the resulting 
cluster to another cluster, ck, is:
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Single Link Example
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Single Link Example



Complete Link Agglomerative 
Clustering

 Use minimum similarity of pairs:

 Makes “tighter,” spherical clusters that are typically 
preferable.

 After merging ci and cj, the similarity of the resulting 
cluster to another cluster, ck, is:
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Complete Link Example
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Complete Link Example



Computational Complexity

 In the first iteration, all HAC methods need to 
compute similarity of all pairs of n individual instances 
which is O(n2).

 In each of the subsequent n2 merging iterations, 
compute the distance between the most recently 
created cluster and all other existing clusters.

 In order to maintain an overall O(n2) performance, 
computing similarity to each other cluster must be 
done in constant time.
 Often O(n3) if done naively or O(n2 log n) if done more 

cleverly 



Group Average Agglomerative 
Clustering

 Similarity of two clusters = average similarity of all 
pairs within merged cluster.

 Compromise between single and complete link.
 Two options:

 Averaged across all ordered pairs in the merged 
cluster 

 Averaged over all pairs between the two original 
clusters

 No clear difference in efficacy
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What Is A Good Clustering?

 Internal criterion: A good clustering will produce high 
quality clusters in which:
 the intra-class (that is, intra-cluster) similarity is high
 the inter-class similarity is low
 The measured quality of a clustering depends on both 

the document representation and the similarity 
measure used



External criteria for clustering quality

 Quality measured by its ability to discover some or all 
of the hidden patterns or latent classes in gold 
standard data

 Assesses a clustering with respect to ground truth
… requires labeled data

 Assume documents with C gold standard classes, 
while our clustering algorithms produce K clusters, ω1, 
ω2, …, ωK with ni members.



External Evaluation of Cluster Quality

 Simple measure: purity, the ratio between the 
dominant class in the cluster πi and the size of cluster 
ωi

 Biased because having n clusters maximizes purity
 Others are entropy of classes in clusters (or mutual 

information between classes and clusters)
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 
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

Cluster I Cluster II Cluster III

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

Purity example



Final word and resources

 In clustering, clusters are inferred from the data 
without human input (unsupervised learning)

 However, in practice, it’s a bit less clear: there are 
many ways of influencing the outcome of 
clustering: number of clusters, similarity measure, 
representation of documents, . . .



Resources

 IIR Chapters 16 – 16.4
 IIR Chapters 17 – 17.2, 17.6


