
Web Information Retrieval

Lecture 14
Text classification



Text Classification
 Naïve Bayes Classification

 Vector space methods for Text Classification
 K Nearest Neighbors
 Decision boundaries
 Linear Classifiers
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 For events A and B:
 Bayes’ Rule
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Probabilistic Methods
 Our focus this lecture
 Learning and classification methods based on probability 

theory.
 Bayes theorem plays a critical role in probabilistic 

learning and classification.
 Builds a generative model that approximates how data is 

produced
 Uses prior probability of each category given no 

information about an item.
 Categorization produces a posterior probability 

distribution over the possible categories given a 
description of an item.
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Bayes’ Rule for text classification
 For a document d and a class c

 P(c) = Probability that we see a document of class c
 P(d) = Probability that we see document d

P(c,d)  P(c | d)P(d)  P(d | c)P(c)

P(c | d)  P(d | c)P(c)
P(d)
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Naive Bayes Classifiers

Task: Classify a new instance d based on a tuple of attribute 
values                                  into one of the classes cj  Cnxxxd ,,, 21 
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MAP is “maximum a posteriori” = most likely class



Naive Bayes Classifier: 
Naive Bayes Assumption
 P(cj)

 Can be estimated from the frequency of classes in the 
training examples.

 P(x1,x2,…,xn|cj) 
 O(|X|n•|C|) parameters
 Could only be estimated if a very, very large number of 

training examples was available.

Naive Bayes Conditional Independence Assumption:
 Assume that the probability of observing the conjunction 

of attributes is equal to the product of the individual 
probabilities P(xi|cj).

Sec.13.2



Flu

X1 X2 X5X3 X4
feversinus coughrunnynose muscle-ache

The Naive Bayes Classifier

 Conditional Independence Assumption:
features detect term presence and are 
independent of each other given the class:

 This model is appropriate for binary variables
 Multivariate Bernoulli model

)|()|()|()|,,( 52151 CXPCXPCXPCXXP  
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Learning the Model

 First attempt: maximum likelihood estimates
 simply use the frequencies in the data
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Problem with Maximum Likelihood

 What if we have seen no training documents with the word muscle-
ache and classified in the topic Flu?

 Zero probabilities cannot be conditioned away, no matter the other 
evidence!

ˆ P (X5  t |C  Flu)  N(X5  t,C  Flu)
N(C  Flu)

 0


i ic cxPcP )|(ˆ)(ˆmaxarg

Flu

X1 X2 X5X3 X4
feversinus coughrunnynose muscle-ache
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Smoothing
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 More advanced smoothing is possible
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Stochastic Language Models

 Model probability of generating strings (each word 
in turn) in a language (commonly all strings over 
alphabet ∑). E.g., a unigram model

0.2 the

0.1 a

0.01 man

0.01 woman

0.03 said

0.02 likes

…

the man likes the woman

0.2 0.01 0.02 0.2 0.01

multiply

Model M

P(s | M) = 0.00000008 
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Stochastic Language Models

 Model probability of generating any string

0.2 the

0.01 class

0.0001 sayst

0.0001 pleaseth

0.0001 yon

0.0005 maiden

0.01 woman

Model M1 Model M2

maidenclass pleaseth yonthe

0.00050.01 0.0001 0.00010.2
0.010.0001 0.02 0.10.2

P(s|M2)  >  P(s|M1)

0.2 the

0.0001 class

0.03 sayst

0.02 pleaseth

0.1 yon

0.01 maiden

0.0001 woman
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Naive Bayes via a class conditional 
language model = multinomial NB

 Effectively, the probability of each class is done as a 
class-specific unigram language model

C

w1 w2 w3 w4 w5 w6
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Using Multinomial Naive Bayes Classifiers 
to Classify Text: Basic method

 Attributes are text positions, values are words.

 Still too many possibilities
 Assume that classification is independent of the positions 

of the words
 Use same parameters for each position
 Result is bag of words model
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 Textj  single document containing all docsj

 for each word xk in Vocabulary
 nk  number of occurrences of xk in Textj



Naive Bayes: Learning

 From training corpus, extract Vocabulary
 Calculate required P(cj) and P(xk | cj) terms

 For each cj in C do
 docsj  subset of documents for which the target class 

is cj


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Naive Bayes: Classifying

 positions  all word positions in current document      which 
contain tokens found in Vocabulary

 Return cNB, where
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Naive Bayes: Time Complexity

 Training Time:  O(|D|Lave + |C||V|))               where Lave is 
the average length of a document in D.
 Assumes all counts are pre-computed in O(|D|Lave) time during 

one pass through all of the data.
 Generally just O(|D|Lave) since usually |C||V| < |D|Lave

 Test Time: O(|C| Lt)                                                  
where Lt  is the average length of a test document.

 Very efficient overall, linearly proportional to the time needed to 
just read in all the data.

Why?

Sec.13.2



Underflow Prevention: using logs
 Multiplying lots of probabilities, which are between 0 and 1 by 

definition, can result in floating-point underflow.
 Since log(xy) = log(x) + log(y), it is better to perform all computations 

by summing logs of probabilities rather than multiplying probabilities.
 Class with highest final un-normalized log probability score is still 

the most probable.

 Note that model is now just max of sum of weights…

cNB  argmax
cjC

[log P(c j )  log P(xi | c j )
ipositions
 ]

Sec.13.2
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Naive Bayes Classifier

 Simple interpretation: Each conditional parameter log 
P(xi|cj) is a weight that indicates how good an indicator xi
is for cj.

 The prior log P(cj) is a weight that indicates the relative 
frequency of cj. 

 The sum is then a measure of how much evidence there 
is for the document being in the class.

 We select the class with the most evidence for it

21

cNB  argmax
cjC

[log P(c j )  log P(xi | c j )
ipositions
 ]



Feature Selection: Why?

 Text collections have a large number of features
 10,000 – 1,000,000 unique words … and more

 May make using a particular classifier feasible
 Some classifiers can’t deal with 100,000 of features

 Reduces training time
 Training time for some methods is quadratic or worse in 

the number of features 
 Can improve generalization (performance)

 Eliminates noise features
 Avoids overfitting

Sec.13.5
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Feature selection: how?
 Two ideas:

 Hypothesis testing statistics:
 Are we confident that the value of one categorical variable is 

associated with the value of another
 Chi-square test (2)

 Information theory:
 How much information does the value of one categorical 

variable give you about the value of another
 Mutual information

 They’re similar, but 2 measures confidence in association, (based on 
available statistics), while MI measures extent of association (assuming 
perfect knowledge of probabilities)

Sec.13.5
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Violation of NB Assumptions
 The independence assumptions do not really hold of 

documents written in natural language.
 Conditional independence
 Positional independence

 Examples?
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Naive Bayes is Not So Naive
 Naive Bayes won 1st and 2nd place in KDD-CUP 97 competition out of 16 systems

Goal: Financial services industry direct mail response prediction model: Predict 
if the recipient of mail will actually respond to the advertisement – 750,000 
records.

 More robust to irrelevant features than many learning methods
Irrelevant Features cancel each other without affecting results
Decision Trees can suffer heavily from this.

 More robust to concept drift (changing class definition over time)
 Very good in domains with many equally important features

Decision Trees suffer from fragmentation in such cases – especially if little data
 A good dependable baseline for text classification (but not the best)!
 Optimal if the Independence Assumptions hold: Bayes Optimal Classifier

Never true for text, but possible in some domains
 Very Fast Learning and Testing (basically just count the data)
 Low Storage requirements
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Summary: Naïve Bayes classifiers

 Classify based on prior weight of class and 
conditional parameter for what each word says:

 Training is done by counting and dividing:

 Don’t forget to smooth
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Recall: Vector Space Representation

 Each document is a vector, one component for each 
term (= word).

 Normally normalize vectors to unit length.
 High-dimensional vector space:

 Terms are axes
 10,000+ dimensions, or even 100,000+
 Docs are vectors in this space

 How can we do classification in this space?



Classification Using Vector Spaces

 As before, the training set is a set of documents, 
each labeled with its class (e.g., topic)

 In vector space classification, this set corresponds to 
a labeled set of points (or, equivalently, vectors) in 
the vector space

 Premise 1: Documents in the same class form a 
contiguous region of space

 Premise 2: Documents from different classes don’t 
overlap (much)

 We define surfaces to delineate classes in the space



Documents in a Vector Space

Government

Science

Arts



Test Document of what class?

Government

Science

Arts



Test Document = Government

Government

Science

Arts

Is this 
similarity
hypothesis
true in
general?

Our main topic today is how to find good separators



k Nearest Neighbor Classification

 kNN = k Nearest Neighbor

 To classify document d into class c:
 Define k-neighborhood N as k nearest neighbors of d
 Count number of documents i in N that belong to c
 Assign d to class c with most documents



Example: k=6 (6NN)

Government

Science

Arts

P(science|   )?



Nearest-Neighbor Learning Algorithm
 Learning is just storing the representations of the training 

examples in D.
 Testing instance x (under 1NN):

 Compute similarity between x and all examples in D.
 Assign x the category of the most similar example in D.

 Does not explicitly compute a generalization or category 
prototypes.

 Also called:
 Case-based learning
 Memory-based learning
 Lazy learning

 Rationale of kNN: contiguity hypothesis



kNN Is Close to Optimal

 Cover and Hart (1967)
 Asymptotically, the error rate of 1-nearest-neighbor 

classification is less than twice the Bayes rate [error rate 
of classifier knowing model that generated data]

 In particular, asymptotic error rate is 0 if Bayes rate is 
0.

 Assume: query point coincides with a training point.
 Both query point and training point contribute error →

2 times Bayes rate



k Nearest Neighbor

 Using only the closest example (1NN) to determine 
the class is subject to errors due to:
 A single atypical example. 
 Noise (i.e., an error) in the category label of a single 

training example.
 More robust alternative is to find the k most-similar 

examples and return the majority category of these k
examples.

 Value of k is typically odd to avoid ties; 3 and 5 are 
most common.



kNN decision boundaries

Government

Science

Arts

Boundaries 
are in 
principle 
arbitrary 
surfaces –
but usually 
polyhedra

kNN gives locally defined decision boundaries between
classes – far away points do not influence each classification
decision (unlike in Naïve Bayes, etc.)



Similarity Metrics

 Nearest neighbor method depends on a similarity (or 
distance) metric.

 Simplest for continuous m-dimensional instance 
space is Euclidean distance.

 Simplest for m-dimensional binary instance space is 
Hamming distance (number of feature values that 
differ).

 For text, cosine similarity of tf.idf weighted vectors is 
typically most effective.



Illustration of 3 Nearest Neighbor 
for Text Vector Space



Nearest Neighbor with Inverted 
Index

 Naively finding nearest neighbors requires a linear 
search through |D| documents in collection

 But determining k nearest neighbors is the same as 
determining the k best retrievals using the test 
document as a query to a database of training 
documents.

 Use standard vector space inverted index methods to 
find the k nearest neighbors.



kNN: Discussion

 No feature selection necessary
 Scales well with large number of classes

 Don’t need to train n classifiers for n classes
 Scores can be hard to convert to probabilities
 No training necessary
 May be more expensive at test time



Linear classifiers and binary and 
multiclass classification

 Consider 2 class problems
 Deciding between two classes, perhaps, government 

and non-government
 One-versus-rest classification

 How do we define (and find) the separating surface?
 How do we decide which region a test doc is in?



Separation by Hyperplanes
 A strong high-bias assumption is linear separability:

 in 2 dimensions, can separate classes by a line
 in higher dimensions, need hyperplanes

 Can find separating hyperplane by linear programming 
(or can iteratively fit solution via perceptron):
 separator can be expressed as ax + by = c
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Which Hyperplane?

In general, lots of possible
solutions for a,b,c.
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Which Hyperplane?
 Lots of possible solutions for a,b,c.
 Some methods find a separating hyperplane, 

but not the optimal one [according to some criterion 
of expected goodness]
 E.g., perceptron

 Most methods find an optimal separating 
hyperplane

 Which points should influence optimality?
 All points

 Linear regression
 Naïve Bayes

 Only “difficult points” close to decision 
boundary
 Support vector machines
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Naive Bayes is a linear classifier

 Two-class Naive Bayes. We compute:

 Decide class C if the odds is greater than 1, i.e., if the 
log odds is greater than 0.

 So decision boundary is hyperplane:
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A nonlinear problem

 A linear classifier 
like Naïve Bayes
does badly on 
this task

 kNN will do very 
well (assuming 
enough training 
data)
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Resources

 IIR Chapters 13 – 13.2, 13.5.0
 IIR Chapters 14 – 14.1, 14.3, 14.4


