
Web Information Retrieval

Lecture 12
Link analysis for ranking



Today’s lecture

 Link analysis for ranking
 Pagerank and variants
 HITS



Why Link Analysis?

 First generation search engines
 view documents as flat text files
 could not cope with size, spamming, user needs

 Second generation search engines
 Ranking becomes critical
 use of Web specific data: Link Analysis
 shift from relevance to authoritativeness
 a success story for the network analysis



Link Analysis for ranking: Intuition

 A link from page p to page q denotes endorsement
 page p considers page q an authority on a subject
 mine the web graph of recommendations
 assign an authority value to every page



Link Analysis Ranking Algorithms
 Start with a collection of web 

pages
 Extract the underlying 

hyperlink graph
 Run the LAR algorithm on 

the graph
 Output: an authority weight

for each node
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Algorithm input

 Query independent: rank the whole Web
 PageRank (Brin and Page 98) was proposed as query 

independent
 Query dependent: rank a small subset of pages 

related to a specific query
 HITS (Kleinberg 98) was proposed as query dependent



Query dependent analysis

 First retrieve all pages meeting the text query (say 
venture capital).

 Order these by their link popularity



Query dependent input

Root Set



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT

Base Set



Previous work
 The problem of identifying the most important nodes in a 

network has been studied before in social networks and 
bibliometrics

 The idea is similar
 A link from node p to node q denotes endorsement
 mine the network at hand
 assign an centrality/importance/standing value to every node



Citation Analysis
 Citation frequency
 Co-citation coupling frequency

 Cocitations with a given author measures “impact”
 Cocitation analysis [Mcca90]

 Convert frequencies to correlation coefficients, do multivariate
analysis/clustering, validate conclusions 

 E.g., cocitation in the “Geography and GIS” web shows 
communities [Lars96 ]

 Bibliographic coupling frequency
 Articles that co-cite the same articles are related 

 Citation indexing
 Who is a given author cited by? (Garfield [Garf72])

 E.g., Science Citation Index ( http://www.isinet.com/ )
 CiteSeer ( http://citeseer.ist.psu.edu ) [Lawr99a]

 Pagerank preview: Pinsker and Narin ‘60s



Undirected popularity

 Rank pages according to degree
 wi = | degree(i) |

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w5=3 w4=4

w3=3

w2=4
w1=4



Spamming undirected popularity

 Exercise: How do you spam the undirected popularity 
heurestic



Spamming undirected popularity

 Exercise: How do you spam the undirected popularity 
heurestic

 Add a lot of outlinks



Directed popularity

 Rank pages according to in-degree
 wi = | indegree(i) |

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w5=1 w4=1

w3=2

w2=3
w1=2



Spamming directed popularity

 Exercise: How do you spam the directed popularity 
heurestic



Spamming directed popularity

 Exercise: How do you spam the directed popularity 
heurestic

 Create a lot of web pages
 Add links to the page of interest



PageRank algorithm
High-level idea:

 A good page has a lot of endorsements 
by important (authoritative) pages

 Good authorities should be pointed by 
good authorities

 Count number of votes, but votes have 
different weights that depends on who 
votes for them, and so on

 Motivated also by the random-surfer 
model

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page



Pagerank scoring

 Imagine a browser doing a random walk on web 
pages:
 Start at a random page

 At each step, go out of the current page along one of 
the links on that page, equiprobably

 “In the steady state” each page has a long-term visit 
rate - use this as the page’s score.

1/3
1/3
1/3



Not quite enough

 The web is full of dead-ends.
 Random walk can get stuck in dead-ends.
 Makes no sense to talk about long-term visit rates.

??



Teleporting

 At a dead end, jump to a random web page.
 At any non-dead end, with probability α = 10%, jump 

to a random web page.
 With remaining probability (90%), go out on a random 

link.
 α = 10% – a  parameter



Result of teleporting

 Now cannot get stuck locally.
 There is a long-term rate at which any page is visited 

(not obvious, will show this).
 How do we compute this visit rate?



PageRank algorithm
 Good authorities should be pointed by 

good authorities
 Random walk on the web graph

 pick a page at random
 Repeat

 If dead end jump to a random page
 with probability α jump to a random 

page
 with probability 1-α follow a random 

outgoing link

 Pagerank weight of page p = Probability 
to be at page p

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page



Markov chains

 A Markov chain consists of n states, plus an nn
transition probability matrix P.

 At each step, we are in exactly one of the states.
 For 1  i,j  n, the matrix entry Pij tells us the 

probability of j being the next state, given we are 
currently in state i.

i jPij

Pii>0
is OK.



Markov chains

 A Markov chain describes a discrete time stochastic 
process over a set of states

according to a transition probability matrix

 Pij = probability of moving to state sj when at state si
 ∑jPij = 1 (stochastic matrix)

 Memorylessness property: The next state of the chain 
depends only at the current state and not on the past of 
the process

 Markov chains are abstractions and generalizations of 
random walks.

S = {s1, s2, … sn}

P = {Pij}
Pii>0 
is OK

si sjPij



Markov chain graph

 Often we represent a Markov chain as a graph
 Nodes = states
 Edge weights = transition probabilities

s1 s2 s3

2/3
1/3

0.9
0.1 0.8

0.2



Random walks

 Random walks on graphs are examples of Markov 
chains
 The set of states is the set of nodes of the graph G
 The transition probability matrix is the probability that 

we follow an edge from one node to another

 Pagerank is NOT a random walk (but similar)
 Why?



An example
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Markov chains

 Clearly, for all i,

 Markov chains are abstractions and generalizations 
of random walks.

 Exercise: represent the teleporting random walk from 
3 slides ago as a Markov chain, for this case: 



The PageRank Markov chain

 Previous graph:
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The PageRank Markov chain

 Let’s consider a different example (assume that page 
2 has no outlinks)
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The PageRank Markov chain

 What about sink nodes?
 what happens when the random walk moves to a node 

without any outgoing inks?



The PageRank Markov chain

 Replace these row vectors with a vector v
 typically, the uniform vector
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The PageRank Markov chain

 How do we guarantee irreducibility?
 add a random jump to vector v with prob α

 typically, to a uniform vector

PPR = (1-α)PRW + αU, where U is the uniform matrix with rows summing to 1



Transition matrix for pagerank

 Take the adjacency matrix A
 If a line i has no 1s set Pij = 1/N
 For the rest of the rows:

 Set:



Probability vectors

 A probability (row) vector q = (q1, … qn) tells us 
where the walk is at any point.

 E.g., (000…1…000) means we’re in state i.
i n1

More generally, the vector q = (q1, … qn) means the
walk is in state i with probability qi.
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Change in probability vector

 If the probability vector is  q = (q1, … qn) at this step, 
what is it at the next step?

 Recall that row i of the transition prob. Matrix P tells 
us where we go next from state i.

 So from q, our next state is distributed as qP.
 After t steps: qPt



An example
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Questions:

 What page should we start at?
 How does the probability depend on the starting 

page?
 How can we compute the probabilities?



Stationary distribution
 A stationary distribution or steady-state distribution for a 

MC with transition matrix P, is a probability distribution π, such 
that π = πP

 If we start or arrive at the stationary distribution then we remain 
there



Stationary distribution
 A MC has a unique stationary distribution if 

 it is irreducible
 From each state we can arrive to every other state
 the underlying graph is strongly connected

 it is aperiodic
 After a number of steps, you can be in any state at every 

time step, with non-zero probability.

 Such a MC is called ergodic
 Over a long time-period, we visit each state in proportion to this 

rate.
 It doesn’t matter where we start.
 The probability πi is the fraction of times that we visited state i as

t → ∞

Not ergodic
(even/odd).



Steady state example

 The steady state looks like a vector of probabilities 
π = (π1, … πn):
 πi is the probability that we are in state i.

1 2
3/4

1/4
3/41/4

For this example, π1=1/4 and π2=3/4.



How do we compute this vector?

 Let π = (π1, … πn) denote the row vector of steady-
state probabilities.

 If we our current position is described by π, then the 
next step is distributed as πP.

 But π is the steady state, so π = πP.
 Solving this matrix equation gives us π
 (So π is the (left) eigenvector for P)



One way of computing π

 Recall, regardless of where we start, we eventually 
reach the steady state π

 Start with any distribution (say q0=(10…0))
 After one step, we’re at q0P
 after two steps at q0P2 , then πTP3 and so on
 “Eventually” means for “large” t, πPt = π
 Algorithm: multiply q0 by increasing powers of P until 

the product looks stable



Pagerank summary

 Preprocessing:
 Given graph of links, build matrix P.
 From it compute π.
 The entry πi is a number between 0 and 1: the 

pagerank of page i.
 Query processing:

 Retrieve pages meeting query.
 Rank them by their pagerank.
 Order is query-independent.
 Combine pagerank with other scores (e.g., IR based)



Effects of random jump

 Guarantees irreducibility
 Motivated by the concept of random surfer
 Offers additional flexibility 

 personalization
 anti-spam

 Controls the rate of convergence
 the second eigenvalue of matrix P is α



Pagerank: Issues and Variants

 How realistic is the random surfer model?
 What if we modeled the back button? [Fagi00]
 Surfer behavior sharply skewed towards short paths
 Search engines, bookmarks & directories make jumps 

non-random.

 Biased Surfer Models
 Weight edge traversal probabilities based on match 

with topic/query (non-uniform edge selection)
 Bias jumps to pages on topic (e.g., based on personal 

bookmarks & categories of interest)



Research on PageRank

 Specialized PageRank
 personalization [BP98]

 instead of picking a node uniformly at random favor 
specific nodes that are related to the user

 topic sensitive PageRank [H02]
 compute many PageRank vectors, one for each topic
 estimate relevance of query with each topic
 produce final PageRank as a weighted combination

 Updating PageRank [Chien et al 2002]
 Fast computation of PageRank

 numerical analysis tricks
 node aggregation techniques
 dealing with the “Web frontier”



 Assume that I am interested in a topic:
 Sports, Art, etc.

 Can I bias Pagerank towards this topic?

Topic Specific Pagerank



Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Sports



 How do I know what pages are about Sports?
 Use classification (Machine learning) – later
 Use preclassified pages

 Open Directory Project (ODP)

 Let PR(p, “sports”) = Pagerank with teleport towards
sports pages

Finding pages



Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Sports



Non-uniform Teleportation

Health

10% Health teleportation



General framework
 We have a set of categories Cj

 C1 = Sports, C2 = health, C3 = art, C4 = politics, …
 A user is characterized by a distribution over 

categories
 E.g.: 90% sports, 10% health
 Profile:    u = (0.9, 0.1, 0, 0, 0, …)

 We want for each page p: PR(p, u)
 We can compute the Pagerank as before but with 

different probabilities



Interpretation

Sports

Health

If teleport probability α = 10%
We can have teleport:  9% to sport, 1% health



Problem
 We want:

PR(p, u) = Pagerank with respect to user profile u

 Problem: If every user has different profiles we need 
a pagerank for every user



Solution
 We can precompute offline for each category (sports, 

health, art, …)

 Then, because of linearity, we have:

 When a user u comes, we only sum the precomputed
pagerank scores

(Handwaving
notation)



Hyperlink-Induced Topic Search 
(HITS) – Kleinberg 98

 In response to a query, instead of an ordered list of 
pages each meeting the query, find two sets of inter-
related pages:
 Hub pages are good lists of links on a subject.

 e.g., “Bob’s list of cancer-related links.”
 Authority pages occur recurrently on good hubs for the 

subject.
 Best suited for “broad topic” queries rather than for 

page-finding queries (navigational queries).
 Gets at a broader slice of common opinion.



Hubs and Authorities

 Thus, a good hub page for a topic points to many 
authoritative pages for that topic.

 A good authority page for a topic is pointed to by 
many good hubs for that topic.

 Circular definition - will turn this into an iterative 
computation.



The hope
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High-level scheme

 Extract from the web a base set of pages that could
be good hubs or authorities

 From these, identify a small set of top hub and 
authority pages
 iterative algorithm



Base set

 Given text query (say browser), use a text index to 
get all pages containing browser.
 Call this the root set of pages. 

 Add in any page that either
 points to a page in the root set, or
 is pointed to by a page in the root set.

 Call this the base set.



Query dependent input

Root Set



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT



Query dependent input

Root Set
IN OUT

Base Set



Assembling the base set [Klei98]

 Root set typically 200-1000 nodes.
 Base set may have up to 5000 nodes.
 How do you find the base set nodes?

 Follow out-links by parsing root set pages.
 Get in-links (and out-links) from a connectivity server.
 (Actually, suffices to text-index strings of the form 

href=“URL” to get in-links to URL.)



Distilling hubs and authorities

 Compute, for each page x in the base set, a hub 
score h(x) and an authority score a(x)

 Initialize: for all x, h(x)1; a(x) 1;
 Iteratively update all h(x), a(x);
 After iterations

 output pages with highest h() scores as top hubs
 highest a() scores as top authorities.

Key



Iterative update

 Repeat the following updates, for all x:
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Scaling

 To prevent the h() and a() values from getting too big, 
can scale down after each iteration.
 E.g.:   h(x)  h(x) / maxx h(x)

a(y)  a(y) / maxy a(y)

 Scaling factor doesn’t really matter:
 we only care about the relative values of the scores.



How many iterations?

 Claim: relative values of scores will converge after a 
few iterations:
 suitably scaled, h() and a() scores settle into a steady 

state!
 proof of this comes later.

 We only require the relative orders of the h() and a()
scores - not their absolute values.

 In practice, ~5 iterations get you close to stability.



HITS Algorithms
 Input: Graph G = (V,E)
 Output: h(v), a(v) for each v  V

 For all (v  V) set h0(v)  1, a0(v)  1
 Repeat until convergence

 Authorities collect the weight of the hubs

 Hubs collect the weight of the authorities

 Normalize weights:



Japan Elementary Schools

 The American School in Japan 
 The Link Page 
 ‰ª�è�s—§ˆä“c�¬Šw�Zƒz�[ƒ�ƒy�[ƒW
 Kids' Space 
 ˆÀ�é�s—§ˆÀ�é�¼•”�¬Šw�Z 
 ‹{�é‹³ˆç‘åŠw•�‘®�¬Šw�Z 
 KEIMEI GAKUEN Home Page ( Japanese ) 
 Shiranuma Home Page 
 fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school 
 �_“Þ�ìŒ§�E‰¡•l�s—§’†�ì�¼�¬Šw�Z‚Ìƒy
 http://www...p/~m_maru/index.html
 fukui haruyama-es HomePage
 Torisu primary school 
 goo
 Yakumo Elementary,Hokkaido,Japan
 FUZOKU Home Page 
 Kamishibun Elementary School...

 schools 
 LINK Page-13 
 “ú–{‚ÌŠw�Z
 �a‰„�¬Šw�Zƒz�[ƒ�ƒy�[ƒW
 100 Schools Home Pages (English) 
 K-12 from Japan 10/...rnet and Education ) 
 http://www...iglobe.ne.jp/~IKESAN 
 ‚l‚f‚j�¬Šw�Z‚U”N‚P‘g•¨Œê
 �ÒŠ—’¬—§�ÒŠ—“Œ�¬Šw�Z
 Koulutus ja oppilaitokset
 TOYODA HOMEPAGE 
 Education 
 Cay's Homepage(Japanese) 
 –y“ì�¬Šw�Z‚Ìƒz�[ƒ�ƒy�[ƒW
 UNIVERSITY 
 ‰J—³�¬Šw�Z DRAGON97-TOP 
 �Â‰ª�¬Šw�Z‚T”N‚P‘gƒz�[ƒ�ƒy�[ƒW
 ¶µ°é¼ÂÁ© ¥á¥Ë¥å¡¼ ¥á¥Ë¥å¡¼

Hubs Authorities



Things to note

 Pulled together good pages regardless of language 
of page content.

 Use only link analysis after base set assembled
 iterative scoring is query-dependent.

 Iterative computation after text index retrieval -
significant overhead.



Proof of convergence

 nn adjacency matrix A:
 each of the n pages in the base set has a row and 

column in the matrix.
 Entry Aij = 1 if page i links to page j, else = 0.

1 2

3

1      2      3
1

2

3

0      1      0

1      1      1

1      0      0



Hub/authority vectors

 View the hub scores h() and the authority scores a()
as vectors with n components.

 Recall the iterative updates
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HITS and eigenvectors
 We can write the HITS algorithm in vector terms:

 at = ATht-1 / ca and ht = Aat / ch (where ca and ch are the 
normalization constants)

 So:
 at = ATht-1 / ca= AT(Aat-1) / cach= ATA at-1 / cach

 ht = Aat / ch= A(ATht-1) / cach= AAT ht-1 /cach

 After convergence to values a and h we have
 a = (1/λa) ATA a for a constant λa

 h = (1/λh) AAT h for a constant λh

 The authority weight vector a is the eigenvector of ATA and the 
hub weight vector h is the eigenvector of AAT

 The HITS algorithm is a power-method eigenvector computation

Guaranteed to converge.



Resources

 IIR Chapters 21.2, 21.3


