
Web Information Retrieval

Lecture 12
Link analysis for ranking

Today’s lecture

 Link analysis for ranking
 Pagerank and variants
 HITS

Why Link Analysis?

 First generation search engines
 view documents as flat text files
 could not cope with size, spamming, user needs

 Second generation search engines
 Ranking becomes critical
 use of Web specific data: Link Analysis
 shift from relevance to authoritativeness
 a success story for the network analysis

Link Analysis for ranking: Intuition

 A link from page p to page q denotes endorsement
 page p considers page q an authority on a subject
 mine the web graph of recommendations
 assign an authority value to every page

Link Analysis Ranking Algorithms
 Start with a collection of web

pages
 Extract the underlying

hyperlink graph
 Run the LAR algorithm on

the graph
 Output: an authority weight

for each node

w5 w4

w3

w2

w1

Algorithm input

 Query independent: rank the whole Web
 PageRank (Brin and Page 98) was proposed as query

independent
 Query dependent: rank a small subset of pages

related to a specific query
 HITS (Kleinberg 98) was proposed as query dependent

Query dependent analysis

 First retrieve all pages meeting the text query (say
venture capital).

 Order these by their link popularity

Query dependent input

Root Set

Query dependent input

Root Set
IN OUT

Query dependent input

Root Set
IN OUT

Query dependent input

Root Set
IN OUT

Base Set

Previous work
 The problem of identifying the most important nodes in a

network has been studied before in social networks and
bibliometrics

 The idea is similar
 A link from node p to node q denotes endorsement
 mine the network at hand
 assign an centrality/importance/standing value to every node

Citation Analysis
 Citation frequency
 Co-citation coupling frequency

 Cocitations with a given author measures “impact”
 Cocitation analysis [Mcca90]

 Convert frequencies to correlation coefficients, do multivariate
analysis/clustering, validate conclusions

 E.g., cocitation in the “Geography and GIS” web shows
communities [Lars96]

 Bibliographic coupling frequency
 Articles that co-cite the same articles are related

 Citation indexing
 Who is a given author cited by? (Garfield [Garf72])

 E.g., Science Citation Index (http://www.isinet.com/)
 CiteSeer (http://citeseer.ist.psu.edu) [Lawr99a]

 Pagerank preview: Pinsker and Narin ‘60s

Undirected popularity

 Rank pages according to degree
 wi = | degree(i) |

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w5=3 w4=4

w3=3

w2=4
w1=4

Spamming undirected popularity

 Exercise: How do you spam the undirected popularity
heurestic

Spamming undirected popularity

 Exercise: How do you spam the undirected popularity
heurestic

 Add a lot of outlinks

Directed popularity

 Rank pages according to in-degree
 wi = | indegree(i) |

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w5=1 w4=1

w3=2

w2=3
w1=2

Spamming directed popularity

 Exercise: How do you spam the directed popularity
heurestic

Spamming directed popularity

 Exercise: How do you spam the directed popularity
heurestic

 Create a lot of web pages
 Add links to the page of interest

PageRank algorithm
High-level idea:

 A good page has a lot of endorsements
by important (authoritative) pages

 Good authorities should be pointed by
good authorities

 Count number of votes, but votes have
different weights that depends on who
votes for them, and so on

 Motivated also by the random-surfer
model

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Pagerank scoring

 Imagine a browser doing a random walk on web
pages:
 Start at a random page

 At each step, go out of the current page along one of
the links on that page, equiprobably

 “In the steady state” each page has a long-term visit
rate - use this as the page’s score.

1/3
1/3
1/3

Not quite enough

 The web is full of dead-ends.
 Random walk can get stuck in dead-ends.
 Makes no sense to talk about long-term visit rates.

??

Teleporting

 At a dead end, jump to a random web page.
 At any non-dead end, with probability α = 10%, jump

to a random web page.
 With remaining probability (90%), go out on a random

link.
 α = 10% – a parameter

Result of teleporting

 Now cannot get stuck locally.
 There is a long-term rate at which any page is visited

(not obvious, will show this).
 How do we compute this visit rate?

PageRank algorithm
 Good authorities should be pointed by

good authorities
 Random walk on the web graph

 pick a page at random
 Repeat

 If dead end jump to a random page
 with probability α jump to a random

page
 with probability 1-α follow a random

outgoing link

 Pagerank weight of page p = Probability
to be at page p

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page

Markov chains

 A Markov chain consists of n states, plus an nn
transition probability matrix P.

 At each step, we are in exactly one of the states.
 For 1 i,j n, the matrix entry Pij tells us the

probability of j being the next state, given we are
currently in state i.

i jPij

Pii>0
is OK.

Markov chains

 A Markov chain describes a discrete time stochastic
process over a set of states

according to a transition probability matrix

 Pij = probability of moving to state sj when at state si
 ∑jPij = 1 (stochastic matrix)

 Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process

 Markov chains are abstractions and generalizations of
random walks.

S = {s1, s2, … sn}

P = {Pij}
Pii>0
is OK

si sjPij

Markov chain graph

 Often we represent a Markov chain as a graph
 Nodes = states
 Edge weights = transition probabilities

s1 s2 s3

2/3
1/3

0.9
0.1 0.8

0.2

Random walks

 Random walks on graphs are examples of Markov
chains
 The set of states is the set of nodes of the graph G
 The transition probability matrix is the probability that

we follow an edge from one node to another

 Pagerank is NOT a random walk (but similar)
 Why?

An example

v1
v2

v3

v4
v5

01/20021
00313131
00010
10000
0021210

PRW

10001
00111
00010
10000
00110

A

.1
1

ij

n

j
P

Markov chains

 Clearly, for all i,

 Markov chains are abstractions and generalizations
of random walks.

 Exercise: represent the teleporting random walk from
3 slides ago as a Markov chain, for this case:

The PageRank Markov chain

 Previous graph:

01001
00111
00010
10000
00110

A

v1

v2

v3

v4
v5

The PageRank Markov chain

 Let’s consider a different example (assume that page
2 has no outlinks)

01001
00111
00010
00000
00110

A

0210021
00313131
00010
00010
0021210

PRW

The PageRank Markov chain

 What about sink nodes?
 what happens when the random walk moves to a node

without any outgoing inks?

The PageRank Markov chain

 Replace these row vectors with a vector v
 typically, the uniform vector

0210021
00313131
00010
5151515151

0021210

PRW

5151515151
5151515151
5151515151
5151515151
5151515151

01/20021
00313131
00010
5151515151

0021210

)1(PPR

The PageRank Markov chain

 How do we guarantee irreducibility?
 add a random jump to vector v with prob α

 typically, to a uniform vector

PPR = (1-α)PRW + αU, where U is the uniform matrix with rows summing to 1

Transition matrix for pagerank

 Take the adjacency matrix A
 If a line i has no 1s set Pij = 1/N
 For the rest of the rows:

 Set:

Probability vectors

 A probability (row) vector q = (q1, … qn) tells us
where the walk is at any point.

 E.g., (000…1…000) means we’re in state i.
i n1

More generally, the vector q = (q1, … qn) means the
walk is in state i with probability qi.

.1
1

n

i
iq

Change in probability vector

 If the probability vector is q = (q1, … qn) at this step,
what is it at the next step?

 Recall that row i of the transition prob. Matrix P tells
us where we go next from state i.

 So from q, our next state is distributed as qP.
 After t steps: qPt

An example

0210021
00313131
00010
10000
0021210

P

v1
v2

v3

v4
v5

qt+1
1 = 1/3 qt

4 + 1/2 qt
5

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4

qt+1
3 = 1/2 qt

1 + 1/3 qt
4

qt+1
4 = 1/2 qt

5

qt+1
5 = qt

2

Questions:

 What page should we start at?
 How does the probability depend on the starting

page?
 How can we compute the probabilities?

Stationary distribution
 A stationary distribution or steady-state distribution for a

MC with transition matrix P, is a probability distribution π, such
that π = πP

 If we start or arrive at the stationary distribution then we remain
there

Stationary distribution
 A MC has a unique stationary distribution if

 it is irreducible
 From each state we can arrive to every other state
 the underlying graph is strongly connected

 it is aperiodic
 After a number of steps, you can be in any state at every

time step, with non-zero probability.

 Such a MC is called ergodic
 Over a long time-period, we visit each state in proportion to this

rate.
 It doesn’t matter where we start.
 The probability πi is the fraction of times that we visited state i as

t → ∞

Not ergodic
(even/odd).

Steady state example

 The steady state looks like a vector of probabilities
π = (π1, … πn):
 πi is the probability that we are in state i.

1 2
3/4

1/4
3/41/4

For this example, π1=1/4 and π2=3/4.

How do we compute this vector?

 Let π = (π1, … πn) denote the row vector of steady-
state probabilities.

 If we our current position is described by π, then the
next step is distributed as πP.

 But π is the steady state, so π = πP.
 Solving this matrix equation gives us π
 (So π is the (left) eigenvector for P)

One way of computing π

 Recall, regardless of where we start, we eventually
reach the steady state π

 Start with any distribution (say q0=(10…0))
 After one step, we’re at q0P
 after two steps at q0P2 , then πTP3 and so on
 “Eventually” means for “large” t, πPt = π
 Algorithm: multiply q0 by increasing powers of P until

the product looks stable

Pagerank summary

 Preprocessing:
 Given graph of links, build matrix P.
 From it compute π.
 The entry πi is a number between 0 and 1: the

pagerank of page i.
 Query processing:

 Retrieve pages meeting query.
 Rank them by their pagerank.
 Order is query-independent.
 Combine pagerank with other scores (e.g., IR based)

Effects of random jump

 Guarantees irreducibility
 Motivated by the concept of random surfer
 Offers additional flexibility

 personalization
 anti-spam

 Controls the rate of convergence
 the second eigenvalue of matrix P is α

Pagerank: Issues and Variants

 How realistic is the random surfer model?
 What if we modeled the back button? [Fagi00]
 Surfer behavior sharply skewed towards short paths
 Search engines, bookmarks & directories make jumps

non-random.

 Biased Surfer Models
 Weight edge traversal probabilities based on match

with topic/query (non-uniform edge selection)
 Bias jumps to pages on topic (e.g., based on personal

bookmarks & categories of interest)

Research on PageRank

 Specialized PageRank
 personalization [BP98]

 instead of picking a node uniformly at random favor
specific nodes that are related to the user

 topic sensitive PageRank [H02]
 compute many PageRank vectors, one for each topic
 estimate relevance of query with each topic
 produce final PageRank as a weighted combination

 Updating PageRank [Chien et al 2002]
 Fast computation of PageRank

 numerical analysis tricks
 node aggregation techniques
 dealing with the “Web frontier”

 Assume that I am interested in a topic:
 Sports, Art, etc.

 Can I bias Pagerank towards this topic?

Topic Specific Pagerank

Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Sports

 How do I know what pages are about Sports?
 Use classification (Machine learning) – later
 Use preclassified pages

 Open Directory Project (ODP)

 Let PR(p, “sports”) = Pagerank with teleport towards
sports pages

Finding pages

Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Sports

Non-uniform Teleportation

Health

10% Health teleportation

General framework
 We have a set of categories Cj

 C1 = Sports, C2 = health, C3 = art, C4 = politics, …
 A user is characterized by a distribution over

categories
 E.g.: 90% sports, 10% health
 Profile: u = (0.9, 0.1, 0, 0, 0, …)

 We want for each page p: PR(p, u)
 We can compute the Pagerank as before but with

different probabilities

Interpretation

Sports

Health

If teleport probability α = 10%
We can have teleport: 9% to sport, 1% health

Problem
 We want:

PR(p, u) = Pagerank with respect to user profile u

 Problem: If every user has different profiles we need
a pagerank for every user

Solution
 We can precompute offline for each category (sports,

health, art, …)

 Then, because of linearity, we have:

 When a user u comes, we only sum the precomputed
pagerank scores

(Handwaving
notation)

Hyperlink-Induced Topic Search
(HITS) – Kleinberg 98

 In response to a query, instead of an ordered list of
pages each meeting the query, find two sets of inter-
related pages:
 Hub pages are good lists of links on a subject.

 e.g., “Bob’s list of cancer-related links.”
 Authority pages occur recurrently on good hubs for the

subject.
 Best suited for “broad topic” queries rather than for

page-finding queries (navigational queries).
 Gets at a broader slice of common opinion.

Hubs and Authorities

 Thus, a good hub page for a topic points to many
authoritative pages for that topic.

 A good authority page for a topic is pointed to by
many good hubs for that topic.

 Circular definition - will turn this into an iterative
computation.

The hope

 TIM
 Alice

 WIND
Bob
 Vodafone

Cell phone providers

Hubs

Authorities

High-level scheme

 Extract from the web a base set of pages that could
be good hubs or authorities

 From these, identify a small set of top hub and
authority pages
 iterative algorithm

Base set

 Given text query (say browser), use a text index to
get all pages containing browser.
 Call this the root set of pages.

 Add in any page that either
 points to a page in the root set, or
 is pointed to by a page in the root set.

 Call this the base set.

Query dependent input

Root Set

Query dependent input

Root Set
IN OUT

Query dependent input

Root Set
IN OUT

Query dependent input

Root Set
IN OUT

Base Set

Assembling the base set [Klei98]

 Root set typically 200-1000 nodes.
 Base set may have up to 5000 nodes.
 How do you find the base set nodes?

 Follow out-links by parsing root set pages.
 Get in-links (and out-links) from a connectivity server.
 (Actually, suffices to text-index strings of the form

href=“URL” to get in-links to URL.)

Distilling hubs and authorities

 Compute, for each page x in the base set, a hub
score h(x) and an authority score a(x)

 Initialize: for all x, h(x)1; a(x) 1;
 Iteratively update all h(x), a(x);
 After iterations

 output pages with highest h() scores as top hubs
 highest a() scores as top authorities.

Key

Iterative update

 Repeat the following updates, for all x:

yx

yaxh

)()(

xy

yhxa

)()(

x

x

Scaling

 To prevent the h() and a() values from getting too big,
can scale down after each iteration.
 E.g.: h(x) h(x) / maxx h(x)

a(y) a(y) / maxy a(y)

 Scaling factor doesn’t really matter:
 we only care about the relative values of the scores.

How many iterations?

 Claim: relative values of scores will converge after a
few iterations:
 suitably scaled, h() and a() scores settle into a steady

state!
 proof of this comes later.

 We only require the relative orders of the h() and a()
scores - not their absolute values.

 In practice, ~5 iterations get you close to stability.

HITS Algorithms
 Input: Graph G = (V,E)
 Output: h(v), a(v) for each v V

 For all (v V) set h0(v) 1, a0(v) 1
 Repeat until convergence

 Authorities collect the weight of the hubs

 Hubs collect the weight of the authorities

 Normalize weights:

Japan Elementary Schools

 The American School in Japan
 The Link Page
 ‰ª�è�s—§ˆä“c�¬Šw�Zƒz�[ƒ�ƒy�[ƒW
 Kids' Space
 ˆÀ�é�s—§ˆÀ�é�¼•”�¬Šw�Z
 ‹{�é‹³ˆç‘åŠw•�‘®�¬Šw�Z
 KEIMEI GAKUEN Home Page (Japanese)
 Shiranuma Home Page
 fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school
 �_“Þ�ìŒ§�E‰¡•l�s—§’†�ì�¼�¬Šw�Z‚Ìƒy
 http://www...p/~m_maru/index.html
 fukui haruyama-es HomePage
 Torisu primary school
 goo
 Yakumo Elementary,Hokkaido,Japan
 FUZOKU Home Page
 Kamishibun Elementary School...

 schools
 LINK Page-13
 “ú–{‚ÌŠw�Z
 �a‰„�¬Šw�Zƒz�[ƒ�ƒy�[ƒW
 100 Schools Home Pages (English)
 K-12 from Japan 10/...rnet and Education)
 http://www...iglobe.ne.jp/~IKESAN
 ‚l‚f‚j�¬Šw�Z‚U”N‚P‘g•¨Œê
 �ÒŠ—’¬—§�ÒŠ—“Œ�¬Šw�Z
 Koulutus ja oppilaitokset
 TOYODA HOMEPAGE
 Education
 Cay's Homepage(Japanese)
 –y“ì�¬Šw�Z‚Ìƒz�[ƒ�ƒy�[ƒW
 UNIVERSITY
 ‰J—³�¬Šw�Z DRAGON97-TOP
 �Â‰ª�¬Šw�Z‚T”N‚P‘gƒz�[ƒ�ƒy�[ƒW
 ¶µ°é¼ÂÁ© ¥á¥Ë¥å¡¼ ¥á¥Ë¥å¡¼

Hubs Authorities

Things to note

 Pulled together good pages regardless of language
of page content.

 Use only link analysis after base set assembled
 iterative scoring is query-dependent.

 Iterative computation after text index retrieval -
significant overhead.

Proof of convergence

 nn adjacency matrix A:
 each of the n pages in the base set has a row and

column in the matrix.
 Entry Aij = 1 if page i links to page j, else = 0.

1 2

3

1 2 3
1

2

3

0 1 0

1 1 1

1 0 0

Hub/authority vectors

 View the hub scores h() and the authority scores a()
as vectors with n components.

 Recall the iterative updates

yx

yaxh

)()(

xy

yhxa

)()(

HITS and eigenvectors
 We can write the HITS algorithm in vector terms:

 at = ATht-1 / ca and ht = Aat / ch (where ca and ch are the
normalization constants)

 So:
 at = ATht-1 / ca= AT(Aat-1) / cach= ATA at-1 / cach

 ht = Aat / ch= A(ATht-1) / cach= AAT ht-1 /cach

 After convergence to values a and h we have
 a = (1/λa) ATA a for a constant λa

 h = (1/λh) AAT h for a constant λh

 The authority weight vector a is the eigenvector of ATA and the
hub weight vector h is the eigenvector of AAT

 The HITS algorithm is a power-method eigenvector computation

Guaranteed to converge.

Resources

 IIR Chapters 21.2, 21.3

