Web Information Retrieval

Lecture 12 Link analysis for ranking

Today's lecture

- Link analysis for ranking
 - Pagerank and variants
 - HITS

Why Link Analysis?

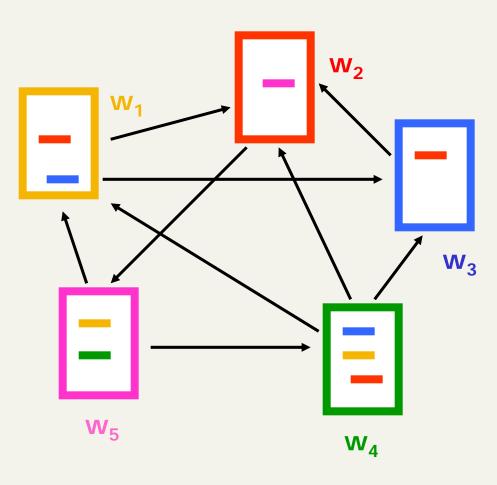
- First generation search engines
 - view documents as flat text files
 - could not cope with size, spamming, user needs
- Second generation search engines
 - Ranking becomes critical
 - use of Web specific data: Link Analysis
 - shift from relevance to authoritativeness
 - a success story for the network analysis

Link Analysis for ranking: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page

Link Analysis Ranking Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node

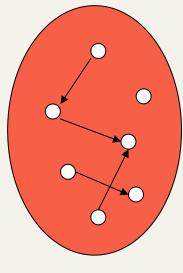


Algorithm input

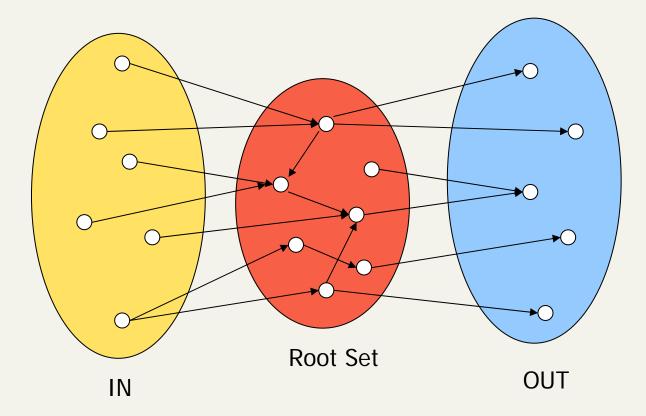
- Query independent: rank the whole Web
 - PageRank (Brin and Page 98) was proposed as query independent
- Query dependent: rank a small subset of pages related to a specific query
 - HITS (Kleinberg 98) was proposed as query dependent

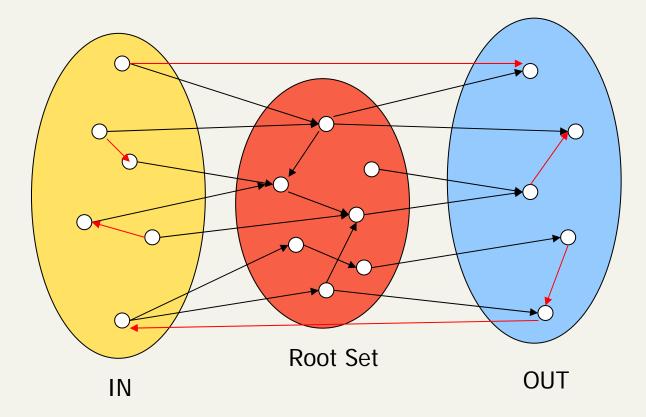
Query dependent analysis

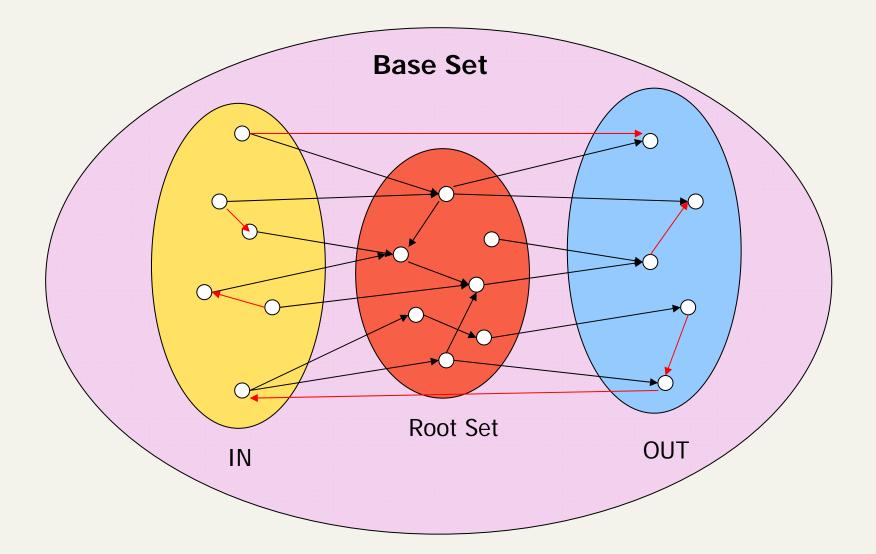
- First retrieve all pages meeting the text query (say venture capital).
- Order these by their link popularity



Root Set







Previous work

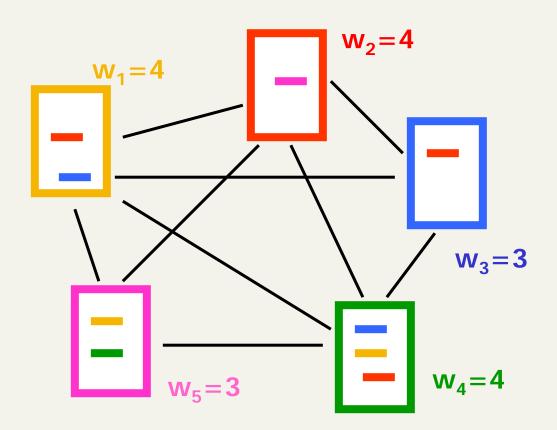
- The problem of identifying the most important nodes in a network has been studied before in social networks and bibliometrics
- The idea is similar
 - A link from node p to node q denotes endorsement
 - mine the network at hand
 - assign an centrality/importance/standing value to every node

Citation Analysis

- Citation frequency
- Co-citation coupling frequency
 - Cocitations with a given author measures "impact"
 - Cocitation analysis [Mcca90]
 - Convert frequencies to correlation coefficients, do multivariate analysis/clustering, validate conclusions
 - E.g., cocitation in the "Geography and GIS" web shows communities [Lars96]
- Bibliographic coupling frequency
 - Articles that co-cite the same articles are related
- Citation indexing
 - Who is a given author cited by? (Garfield [Garf72])
 - E.g., Science Citation Index (*http://www.isinet.com/*)
 - CiteSeer (*http://citeseer.ist.psu.edu*) [Lawr99a]
- Pagerank preview: Pinsker and Narin '60s

Undirected popularity

- Rank pages according to degree
 - w_i = | degree(i) |



- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

Spamming undirected popularity

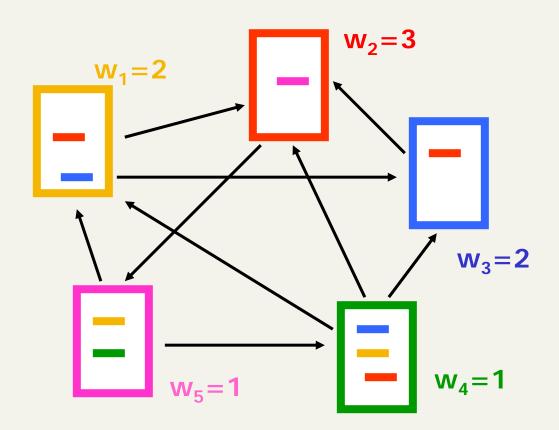
 Exercise: How do you spam the undirected popularity heurestic

Spamming undirected popularity

- Exercise: How do you spam the undirected popularity heurestic
- Add a lot of outlinks

Directed popularity

- Rank pages according to in-degree
 - w_i = | indegree(i) |



- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

Spamming directed popularity

 Exercise: How do you spam the directed popularity heurestic

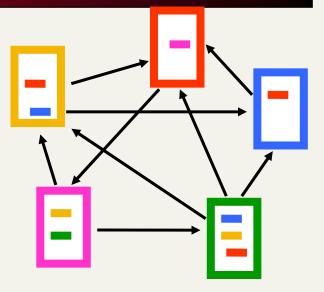
Spamming directed popularity

- Exercise: How do you spam the directed popularity heurestic
- Create a lot of web pages
- Add links to the page of interest

PageRank algorithm

High-level idea:

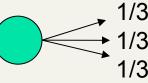
- A good page has a lot of endorsements by important (authoritative) pages
- Good authorities should be pointed by good authorities
- Count number of votes, but votes have different weights that depends on who votes for them, and so on
- Motivated also by the random-surfer model



- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Pagerank scoring

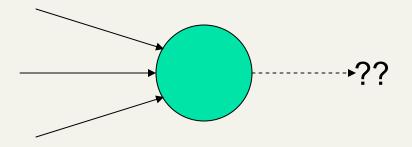
- Imagine a browser doing a random walk on web pages:
 - Start at a random page



- At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a long-term visit rate - use this as the page's score.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.



Teleporting

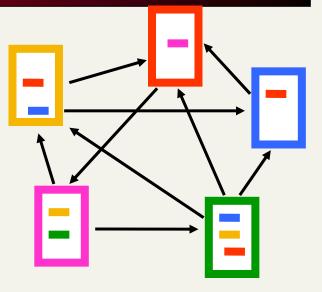
- At a dead end, jump to a random web page.
- At any non-dead end, with probability α = 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - $\alpha = 10\% a$ parameter

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited (not obvious, will show this).
- How do we compute this visit rate?

PageRank algorithm

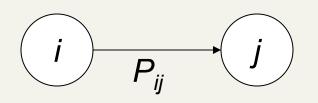
- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - Repeat
 - If dead end jump to a random page
 - with probability α jump to a random page
 - with probability 1-α follow a random outgoing link
- Pagerank weight of page p = Probability to be at page p



- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page

Markov chains

- A Markov chain consists of *n* states, plus an *n×n* transition probability matrix P.
- At each step, we are in exactly one of the states.
- For 1 ≤ i,j ≤ n, the matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.



Markov chains

 A Markov chain describes a discrete time stochastic process over a set of states

 $S = \{s_1, s_2, \dots s_n\}$

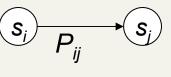
according to a transition probability matrix

$$\mathsf{P} = \{\mathsf{P}_{ij}\}$$

P_{ij} = probability of moving to state s_j when at state s_i

• $\sum_{j} P_{ij} = 1$ (stochastic matrix)

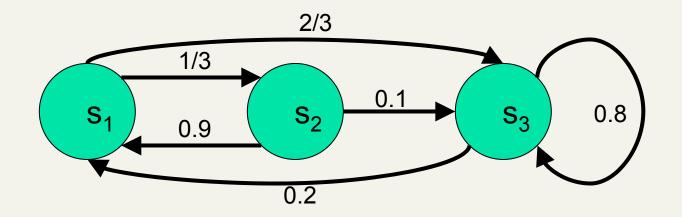
- Memorylessness property: The next state of the chain depends only at the current state and not on the past of the process
- Markov chains are abstractions and generalizations of random walks.



Markov chain graph

- Often we represent a Markov chain as a graph
- Nodes = states
- Edge weights = transition probabilities

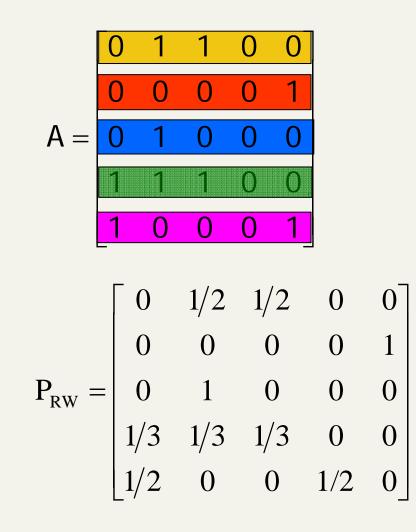
$$P = \begin{bmatrix} 0 & 1/3 & 2/3 \\ 0.9 & 0 & 0.1 \\ 0.2 & 0 & 0.8 \end{bmatrix}$$

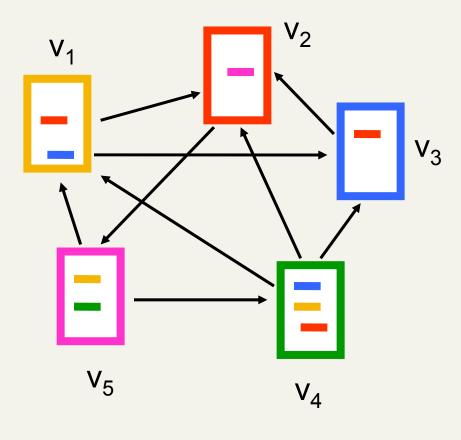


Random walks

- Random walks on graphs are examples of Markov chains
 - The set of states is the set of nodes of the graph **G**
 - The transition probability matrix is the probability that we follow an edge from one node to another
- Pagerank is NOT a random walk (but similar)
 Why?

An example



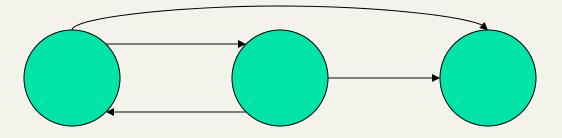


Markov chains

Clearly, for all i,

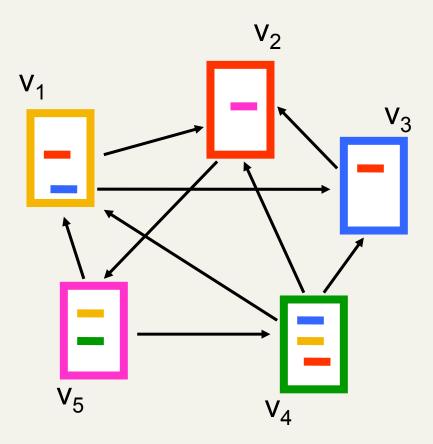
$$\sum_{j=1}^{n} P_{ij} = 1.$$

- Markov chains are abstractions and generalizations of random walks.
- *Exercise*: represent the teleporting random walk from 3 slides ago as a Markov chain, for this case:



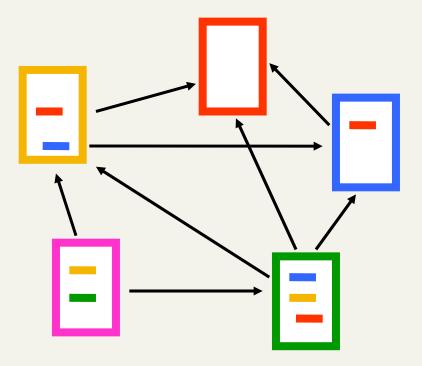
Previous graph:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

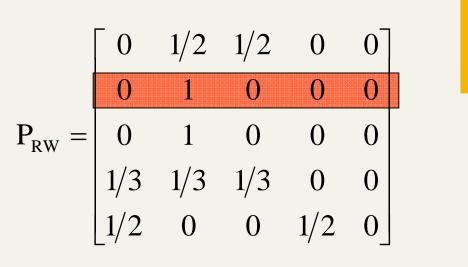


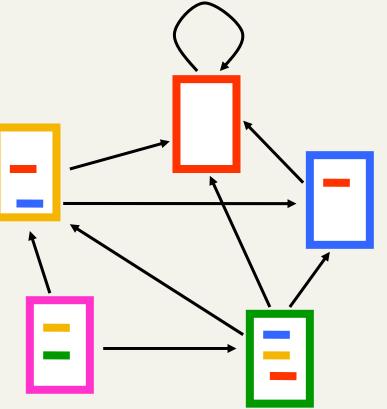
 Let's consider a different example (assume that page 2 has no outlinks)

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$



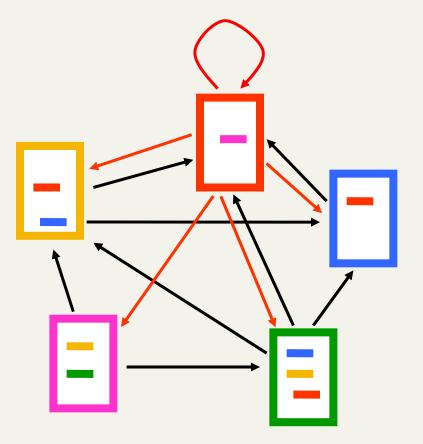
- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing inks?





- Replace these row vectors with a vector v
 - typically, the uniform vector

$$P_{RW} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$



- How do we guarantee irreducibility?
 - add a random jump to vector v with prob α
 - typically, to a uniform vector

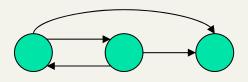
$$P_{PR} = (1 - \alpha) \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix} + \alpha \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

 $P_{PR} = (1-\alpha)P_{RW} + \alpha U$, where U is the uniform matrix with rows summing to 1

Transition matrix for pagerank

- Take the adjacency matrix A
- If a line i has no 1s set P_{ij} = 1/N
- For the rest of the rows:

• Set:
$$P_{ij} = (1-\alpha)P_{RW} + \frac{\alpha}{N} = (1-\alpha)\frac{A_{ij}}{(\# 1 \text{ s in line } i)} + \frac{\alpha}{N}$$



$$(1-\alpha)P_{RW} + \frac{\alpha}{N} = (1-\alpha)\frac{n_{ij}}{(\# \text{ 1s in line } i)} + \frac{\alpha}{N}$$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad P_{RW} = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{2} - \frac{\alpha}{6} & \frac{\alpha}{3} & \frac{1}{2} - \frac{\alpha}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Probability vectors

- A probability (row) vector **q** = (q₁, ... q_n) tells us where the walk is at any point.
- E.g., (000...1...000) means we're in state *i*.

1 i n

More generally, the vector $\mathbf{q} = (q_1, \dots, q_n)$ means the walk is in state *i* with probability q_i .

$$\sum_{i=1}^{n} q_i = 1.$$

Change in probability vector

- If the probability vector is q = (q₁, ... q_n) at this step, what is it at the next step?
- Recall that row *i* of the transition prob. Matrix P tells us where we go next from state *i*.
- So from q, our next state is distributed as qP.
- After t steps: **qP**^t

An example

$$\mathsf{P} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

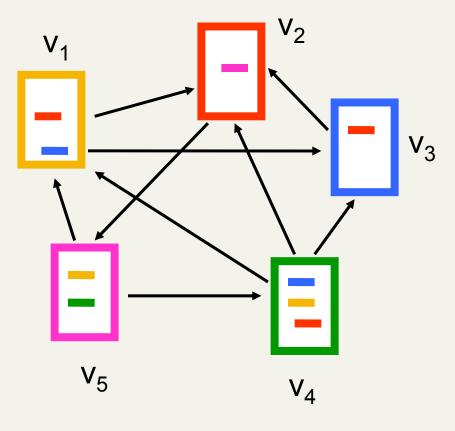
$$q^{t+1}_{1} = 1/3 q^{t}_{4} + 1/2 q^{t}_{5}$$

$$q^{t+1}_{2} = 1/2 q^{t}_{1} + q^{t}_{3} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{3} = 1/2 q^{t}_{1} + 1/3 q^{t}_{4}$$

$$q^{t+1}_{4} = 1/2 q^{t}_{5}$$

$$q^{t+1}_{5} = q^{t}_{2}$$



Questions:

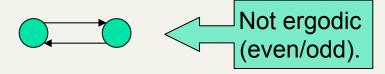
- What page should we start at?
- How does the probability depend on the starting page?
- How can we compute the probabilities?

Stationary distribution

- A stationary distribution or steady-state distribution for a MC with transition matrix P, is a probability distribution π, such that π = πP
- If we start or arrive at the stationary distribution then we remain there

Stationary distribution

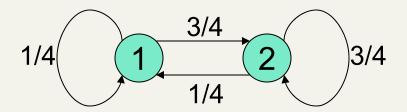
- A MC has a unique stationary distribution if
 - it is irreducible
 - From each state we can arrive to every other state
 - the underlying graph is strongly connected
 - it is aperiodic
 - After a number of steps, you can be in any state at every time step, with non-zero probability.



- Such a MC is called ergodic
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- The probability π_i is the fraction of times that we visited state i as $t \to \infty$

Steady state example

- The steady state looks like a vector of probabilities
 - **π** = (π_1 , ... π_n):
 - π_i is the probability that we are in state *i*.



For this example, $\pi_1 = 1/4$ and $\pi_2 = 3/4$.

How do we compute this vector?

- Let $\mathbf{\pi} = (\pi_1, \dots, \pi_n)$ denote the row vector of steadystate probabilities.
- If we our current position is described by π, then the next step is distributed as πP.
- But π is the steady state, so $\pi = \pi P$.
- Solving this matrix equation gives us $\boldsymbol{\pi}$
- (So π is the (left) eigenvector for **P**)

One way of computing π

- Recall, regardless of where we start, we eventually reach the steady state π
- Start with any distribution (say q⁰=(10...0))
- After one step, we're at q⁰P
- after two steps at $q^0 P^2$, then $\pi^T P^3$ and so on
- "Eventually" means for "large" t, $\mathbf{\pi}\mathbf{P}^t = \mathbf{\pi}$
- Algorithm: multiply q⁰ by increasing powers of P until the product looks stable

Pagerank summary

- Preprocessing:
 - Given graph of links, build matrix **P**.
 - From it compute π.
 - The entry π_i is a number between 0 and 1: the pagerank of page *i*.
- Query processing:
 - Retrieve pages meeting query.
 - Rank them by their pagerank.
 - Order is query-*independent*.
 - Combine pagerank with other scores (e.g., IR based)

Effects of random jump

- Guarantees irreducibility
- Motivated by the concept of random surfer
- Offers additional flexibility
 - personalization
 - anti-spam
- Controls the rate of convergence
 - the second eigenvalue of matrix P is α

Pagerank: Issues and Variants

- How realistic is the random surfer model?
 - What if we modeled the back button? [Fagi00]
 - Surfer behavior sharply skewed towards short paths
 - Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
 - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
 - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

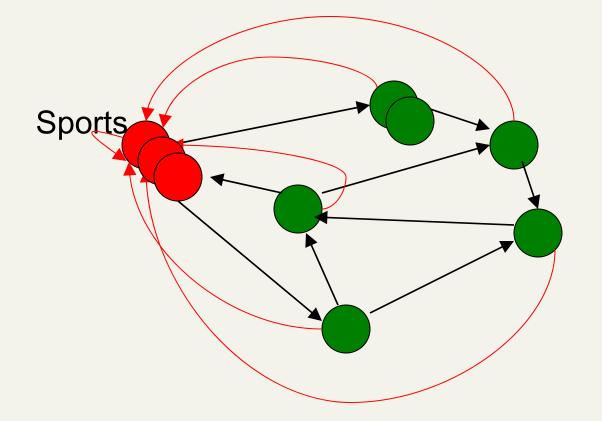
Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"

Topic Specific Pagerank

- Assume that I am interested in a topic:
 - Sports, Art, etc.
- Can I bias Pagerank towards this topic?

Non-uniform Teleportation



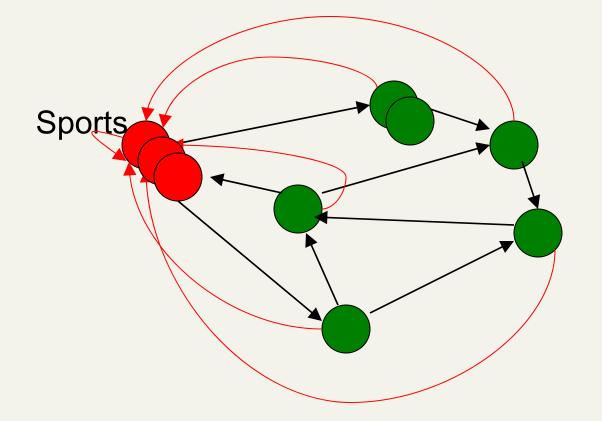
Teleport with 10% probability to a Sports page

Finding pages

- How do I know what pages are about Sports?
 - Use classification (Machine learning) later
 - Use preclassified pages
 - Open Directory Project (ODP)

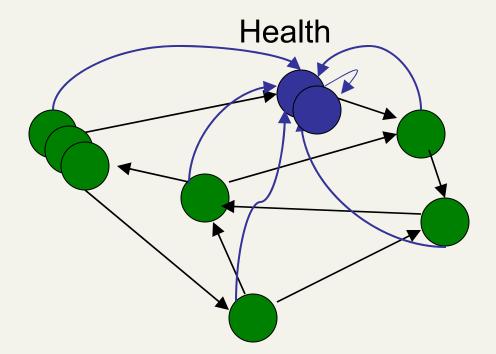
 Let PR(p, "sports") = Pagerank with teleport towards sports pages

Non-uniform Teleportation



Teleport with 10% probability to a Sports page

Non-uniform Teleportation

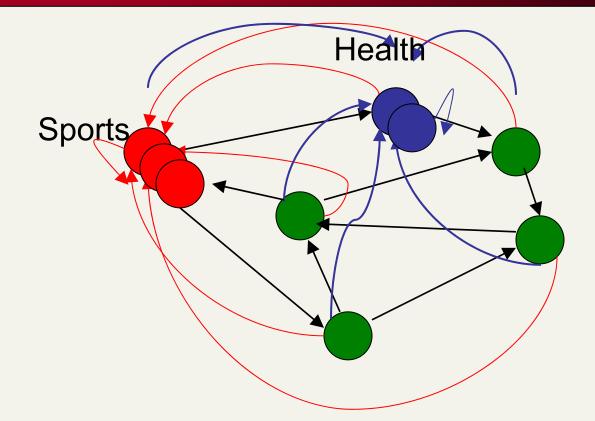


10% Health teleportation

General framework

- We have a set of categories C_i
 - C_1 = Sports, C_2 = health, C_3 = art, C_4 = politics, ...
- A user is characterized by a distribution over categories
 - E.g.: 90% sports, 10% health
 - Profile: u = (0.9, 0.1, 0, 0, 0, ...)
- We want for each page p: PR(p, u)
- We can compute the Pagerank as before but with different probabilities

Interpretation



If teleport probability $\alpha = 10\%$ We can have teleport: 9% to sport, 1% health

Problem

• We want:

PR(p, u) = Pagerank with respect to user profile **u**

 Problem: If every user has different profiles we need a pagerank for every user

Solution

- We can precompute offline for each category (sports, health, art, ...) $\mathsf{PR}(p, C_j)$
- Then, because of linearity, we have: $PR(p, u) = PR(p, \sum_{j} u_{j}C_{j})$ $= \sum_{i} u_{j} \cdot PR(p, C_{j})$

(Handwaving notation)

 When a user u comes, we only sum the precomputed pagerank scores

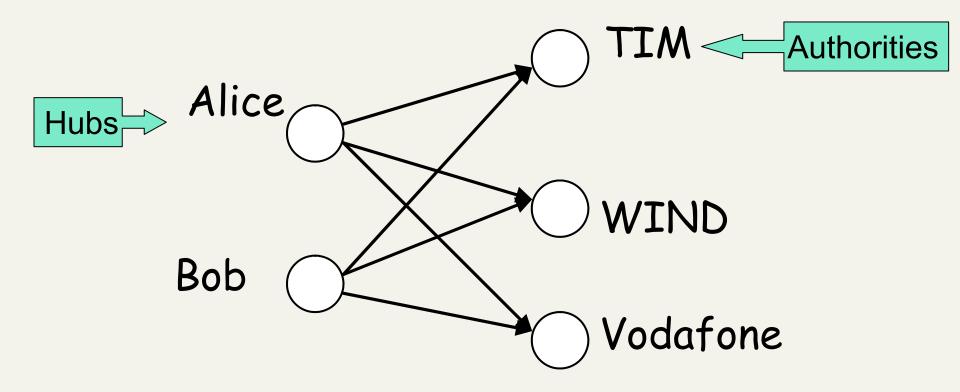
Hyperlink-Induced Topic Search (HITS) – Kleinberg 98

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of interrelated pages:
 - *Hub pages* are good lists of links on a subject.
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries (navigational queries).
- Gets at a broader slice of common *opinion*.

Hubs and Authorities

- Thus, a good hub page for a topic *points* to many authoritative pages for that topic.
- A good authority page for a topic is *pointed* to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.

The hope



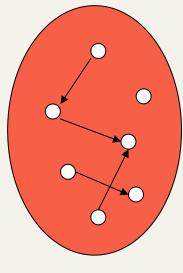
Cell phone providers

High-level scheme

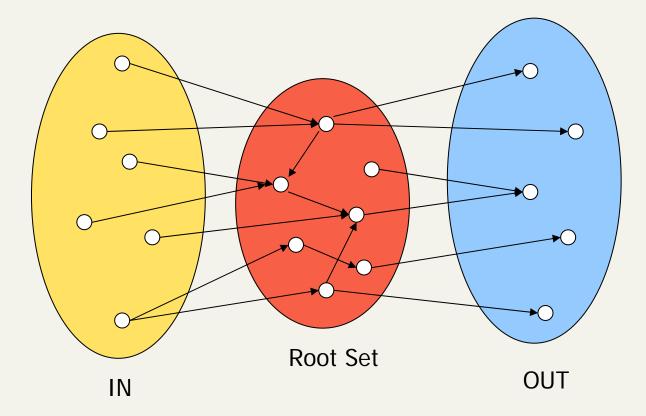
- Extract from the web a base set of pages that could be good hubs or authorities
- From these, identify a small set of top hub and authority pages
 - iterative algorithm

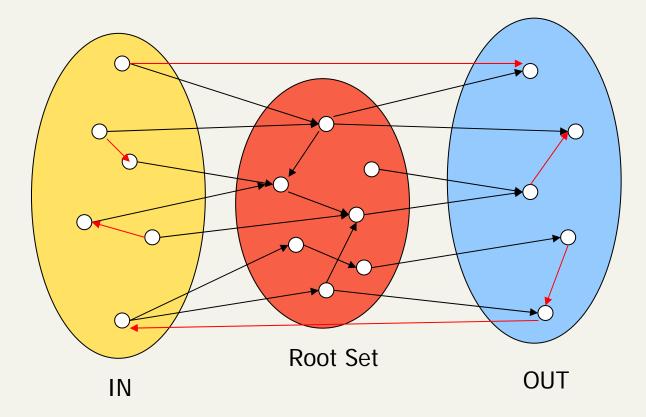
Base set

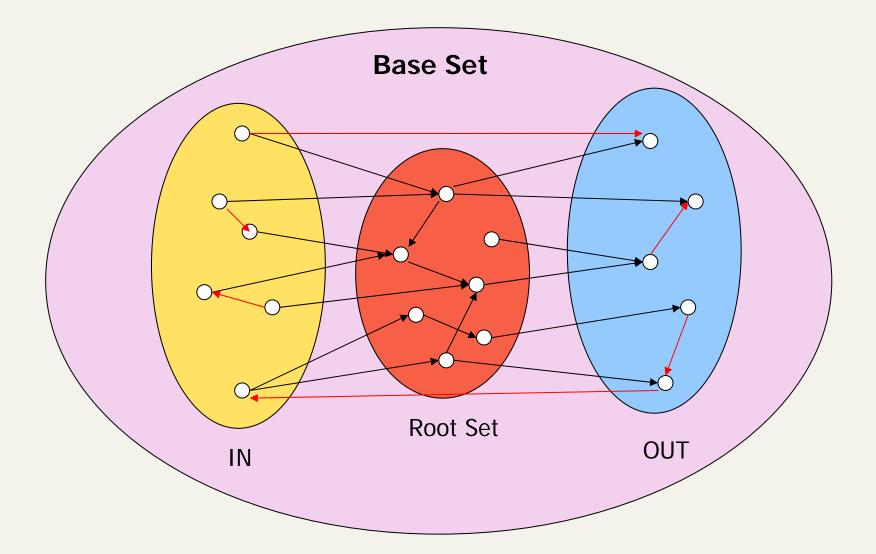
- Given text query (say *browser*), use a text index to get all pages containing *browser*.
 - Call this the **root set** of pages.
- Add in any page that either
 - points to a page in the root set, or
 - is pointed to by a page in the root set.
- Call this the base set.



Root Set







Assembling the base set [Klei98]

- Root set typically 200-1000 nodes.
- Base set may have up to 5000 nodes.
- How do you find the base set nodes?
 - Follow out-links by parsing root set pages.
 - Get in-links (and out-links) from a *connectivity server*.
 - (Actually, suffices to text-index strings of the form *href="<u>URL</u>"* to get in-links to <u>URL</u>.)

Distilling hubs and authorities

- Compute, for each page x in the base set, a hub score h(x) and an authority score a(x)
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x);

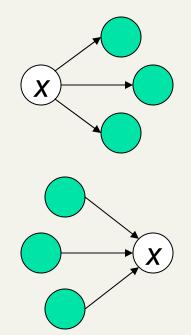
- After iterations
 - output pages with highest h() scores as top hubs
 - highest a() scores as top authorities.

Iterative update

Repeat the following updates, for all x:

 $h(x) \leftarrow \sum a(y)$ $x \mapsto y$

 $a(x) \leftarrow \sum h(y)$ $v \mapsto x$



Scaling

- To prevent the h() and a() values from getting too big, can scale down after each iteration.
 - E.g.: $h(x) \leftarrow h(x) / \max_x h(x)$ $a(y) \leftarrow a(y) / \max_y a(y)$
- Scaling factor doesn't really matter:
 - we only care about the relative values of the scores.

How many iterations?

- Claim: relative values of scores will converge after a few iterations:
 - suitably scaled, h() and a() scores settle into a steady state!
 - proof of this comes later.
- We only require the relative orders of the h() and a() scores - not their absolute values.
- In practice, ~5 iterations get you close to stability.

HITS Algorithms

Input: Graph G = (V,E)

• Output:
$$h(v)$$
, $a(v)$ for each $v \in V$

- For all $(v \in V)$ set $h^0(v) \leftarrow 1$, $a^0(v) \leftarrow 1$
- Repeat until convergence (E.g. $\max_{v \in V} \{|h^t(v) - h^{t-1}(v)|\} < \epsilon, \qquad \max_{v \in V} \{|a^t(v) - a^{t-1}(v)|\} < \epsilon$)
 - Authorities collect the weight of the hubs

$$orall u \in V$$
 : $a^t(u) \leftarrow \sum_{(v,u) \in E} h^{t-1}(v)$

Hubs collect the weight of the authorities

$$\forall v \in V : \qquad h^t(v) \leftarrow \sum_{(v,u) \in E} a^t(u)$$

Normalize weights:

$$\forall v \in V : \qquad h^t(v) \leftarrow \frac{h^t(v)}{\max_v h^t(v)}, \qquad a^t(v) \leftarrow \frac{a^t(v)}{\max_v a^t(v)}$$

Japan Elementary Schools

Hubs

- schools
- LINK Page-13
- "ú–{,ÌŠw Z
- a‰,, ¬Šw Zfz [f fy [fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
- http://www...iglobe.ne.jp/~IKESAN
- ,I,f,j ¬Šw Z,U"N,P'g•¨Œê
- ÒŠ—'¬—§ ÒŠ—"Œ ¬Šw Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
- _y"ì ¬Šw Z,Ìfz [f fy [fW
- UNIVERSITY
- ‰J—³ ¬Šw Z DRAGON97-TOP
- ‰^a ¬Šw Z,T"N,P'gfz [f fy [fW
- ¶µ°é¼ÂÁ© ¥á¥Ë¥åj¼ ¥á¥Ë¥åj¼

Authorities

- The American School in Japan
- The Link Page
- ‰ª è s—§^ä"c ¬Šw Zfz [f fy [fW
- Kids' Space
- ^À é s—§^À é ¼•" ¬Šw Z
- <{ 鋳^ç'åŠw• '® ¬Šw Z
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- __"Þ ìŒ§ E‰j•l s—§'† ì ¼ ¬Šw Z,Ìfy
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo
- Yakumo Elementary, Hokkaido, Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

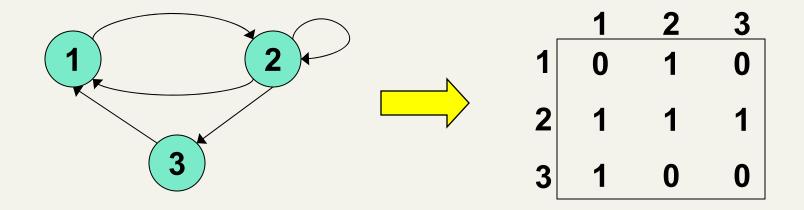
Things to note

- Pulled together good pages regardless of language of page content.
- Use only link analysis after base set assembled
 - iterative scoring is query-dependent.
- Iterative computation after text index retrieval significant overhead.

Proof of convergence

n×n adjacency matrix A:

- each of the *n* pages in the base set has a row and column in the matrix.
- Entry $A_{ij} = 1$ if page *i* links to page *j*, else = 0.



Hub/authority vectors

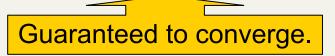
- View the hub scores h() and the authority scores a() as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$

$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$

HITS and eigenvectors

- We can write the HITS algorithm in vector terms:
 - $a^{t} = A^{T}h^{t-1} / c_{a}$ and $h^{t} = Aa^{t} / c_{h}$ (where c_{a} and c_{h} are the normalization constants)
- So:
 - $a^{t} = A^{T}h^{t-1} / c_{a} = A^{T}(Aa^{t-1}) / c_{a}c_{h} = A^{T}A a^{t-1} / c_{a}c_{h}$
 - $h^{t} = Aa^{t} / c_{h} = A(A^{T}h^{t-1}) / c_{a}c_{h} = AA^{T} h^{t-1} / c_{a}c_{h}$
- After convergence to values a and h we have
 - $a = (1/\lambda_a) A^T A a$ for a constant λ_a • $h = (1/\lambda_h) A A^T h$ for a constant λ_h
- The authority weight vector a is the eigenvector of A^TA and the hub weight vector h is the eigenvector of AA^T
- The HITS algorithm is a power-method eigenvector computation



Resources

IIR Chapters 21.2, 21.3