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Today’s lecture
 Crawling
 Duplicate and near-duplicate document detection



Basic crawler operation
 Begin with known “seed” pages
 Fetch and parse them

 Extract URLs they point to
 Place the extracted URLs on a queue

 Fetch each URL on the queue and repeat
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Simple picture – complications

 Web crawling isn’t feasible with one machine
 All of the above steps distributed

 Malicious pages
 Spam pages 
 Spider traps – incl dynamically generated

 Even non-malicious pages pose challenges
 Latency/bandwidth to remote servers vary
 Webmasters’ stipulations

 How “deep” should you crawl a site’s URL hierarchy?
 Site mirrors and duplicate pages

 Politeness – don’t hit a server too often



What any crawler must do

 Be Polite: Respect implicit and explicit politeness 
considerations
 Only crawl allowed pages
 Respect robots.txt (more on this shortly)

 Be Robust: Be immune to spider traps and other 
malicious behavior from web servers



What any crawler should do

 Be capable of distributed operation: designed to run 
on multiple distributed machines

 Be scalable: designed to increase the crawl rate by 
adding more machines

 Performance/efficiency: permit full use of available 
processing and network resources

 Fetch pages of “higher quality” first
 Continuous operation: Continue fetching fresh 

copies of a previously fetched page
 Extensible: Adapt to new data formats, protocols
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URL frontier

 Can include multiple pages from the same host
 Must avoid trying to fetch them all at the same time
 Must try to keep all crawling threads busy



Explicit and implicit politeness

 Explicit politeness: specifications from webmasters 
on what portions of site can be crawled
 robots.txt

 Implicit politeness: even with no specification, avoid 
hitting any site too often



Robots.txt

 Protocol for giving spiders (“robots”) limited access to 
a website, originally from 1994
 www.robotstxt.org/wc/norobots.html

 Website announces its request on what can(not) be 
crawled
 For a URL, create a file URL/robots.txt
 This file specifies access restrictions



Robots.txt example

 No robot should visit any URL starting with 
"/yoursite/temp/", except the robot called 
“searchengine": 

User-agent: *
Disallow: /yoursite/temp/ 

User-agent: searchengine

Disallow:



Processing steps in crawling

 Pick a URL from the frontier
 Fetch the document at the URL
 Parse the URL

 Extract links from it to other docs (URLs)
 Check if URL has content already seen

 If not, add to indexes
 For each extracted URL

 Ensure it passes certain URL filter tests
 Check if it is already in the frontier (duplicate URL 

elimination)

E.g., only crawl .edu, 
obey robots.txt, etc.

Which one?
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DNS (Domain Name Server)

 A lookup service on the internet
 Given a URL, retrieve its IP address
 Service provided by a distributed set of servers – thus, 

lookup latencies can be high (even seconds)
 Common OS implementations of DNS lookup are 

blocking: only one outstanding request at a time
 Solutions

 DNS caching
 Batch DNS resolver – collects requests and sends 

them out together



Parsing: URL normalization

 When a fetched document is parsed, some of the extracted 
links are relative URLs

 E.g., at http://en.wikipedia.org/wiki/Main_Page
we have a relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

 During parsing, must normalize (expand) such relative 
URLs



Content seen?
 Duplication is widespread on the web
 If the page just fetched is already in the index, do not 

further process it
 This is verified using document fingerprints or 

shingles



Filters and robots.txt 
 Filters – regular expressions for URL’s to be 

crawled/not
 Once a robots.txt file is fetched from a site, need not 

fetch it repeatedly
 Doing so burns bandwidth, hits web server

 Cache robots.txt files



Duplicate URL elimination

 For a non-continuous (one-shot) crawl, test to see if 
an extracted+filtered URL has already been passed 
to the frontier

 For a continuous crawl – see details of frontier 
implementation



Distributing the crawler

 Run multiple crawl threads, under different processes 
– potentially at different nodes
 Geographically distributed nodes

 Partition hosts being crawled into nodes
 Hash used for partition

 How do these nodes communicate?



Communication between nodes
 The output of the URL filter at each node is sent to the 

Duplicate URL Eliminator at all nodes
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URL frontier: two main considerations

 Politeness: do not hit a web server too frequently
 Freshness: crawl some pages more often than others

 E.g., pages (such as News sites) whose content changes 
often

These goals may conflict each other.
(E.g., simple priority queue fails – many links out of a page 

go to its own site, creating a burst of accesses to that 
site.)



Politeness – challenges

 Even if we restrict only one thread to fetch from a 
host, can hit it repeatedly

 Common heuristic: insert time gap between 
successive requests to a host that is >> time for most 
recent fetch from that host



URL frontier: Mercator scheme
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Mercator URL frontier

 URLs flow in from the top into the frontier
 Front queues manage prioritization
 Back queues enforce politeness
 Each queue is FIFO
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Front queues

 Prioritizer assigns to URL an integer priority between 
1 and K
 Appends URL to corresponding queue

 Heuristics for assigning priority
 Refresh rate sampled from previous crawls
 Application-specific (e.g., “crawl news sites more 

often”)



Biased front queue selector

 When a back queue requests a URL (in a sequence 
to be described): picks a front queue from which to 
pull a URL

 This choice can be round robin biased to queues of 
higher priority, or some more sophisticated variant
 Can be randomized
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Back queue invariants

 Each back queue is kept non-empty while the crawl is 
in progress

 Each back queue only contains URLs from a single 
host
 Maintain a table from hosts to back queues

Host name Back queue

www.uniroma1.it 3

www.cnn.com 27

B



Back queue heap

 One entry for each back queue
 The entry is the earliest time te at which the host 

corresponding to the back queue can be hit again
 This earliest time is determined from

 Last access to that host
 Any time buffer heuristic we choose



Back queue processing

 A crawler thread seeking a URL to crawl:
 Extracts the root of the heap
 Fetches URL at head of corresponding back queue q

(look up from table)
 Checks if queue q is now empty – if so, pulls a URL v

from front queues
 If there’s already a back queue for v’s host, append v to q

and pull another URL from front queues, repeat
 Else add v to q

 When q is non-empty, create heap entry for it



Number of back queues B

 Keep all threads busy while respecting politeness
 Mercator recommendation: three times as many back 

queues as crawler threads



 Duplication: Exact match with fingerprints
 Near-Duplication: Approximate match

 Overview
 Compute syntactic similarity with an edit-distance measure
 Use similarity threshold to detect near-duplicates

 E.g.,  Similarity > 80% => Documents are “near duplicates”
 Not transitive though sometimes used transitively

Duplicate/Near-duplicate detection



Duplicate documents
 The web is full of duplicated content
 Strict duplicate detection = exact match

 Not as common
 But many, many cases of near duplicates

 E.g., last-modified date the only difference between two 
copies of a page

Sec. 19.6



Computing near similarity

 Features:
 Segments of a document (natural or artificial breakpoints)
 Shingles (Word N-Grams)  [Brod98]

“a rose is a rose is a rose” => 
a_rose_is_a

rose_is_a_rose
is_a_rose_is

a_rose_is_a
 Similarity Measure

 TFIDF
 Set intersection

(Specifically, Size_of_Intersection / Size_of_Union )
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Shingles + Set intersection
 Computing exact set intersection of shingles between all
pairs of documents is expensive/intractable
 Approximate using a cleverly chosen subset of shingles from 

each (a sketch)
 Estimate Jaccard based on a short sketch 

Doc 
A

Doc 
A

Shingle set A Sketch A

Doc 
B

Doc 
B

Shingle set B Sketch B

Jaccard
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Shingles + Set intersection
 Computing exact set intersection of shingles between all 
pairs of documents is expensive and infeasible
 Approximate using a cleverly chosen subset of shingles from 

each (a sketch)



Shingles + Set intersection
 Estimate Jaccard based on a short sketch 
 Create a “sketch vector” (e.g., of size 200) for each 
document
 Documents which share more than t (say 80%) corresponding 

vector elements are similar
 For doc D, sketch[ i ] is computed as follows:

 Let f map all shingles in the universe to 0..2m

(e.g., f = fingerprinting)
 Let i be a specific random permutation on 0..2m

 Pick sketch[i] := MIN {i ( f(s) )}  over all shingles s in D



Computing Sketch[i] for Doc1

Document 1

264
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Start with 64 bit shingles

Permute on the number line

with i

Pick the min value
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Test if Doc1.Sketch[i] = Doc2.Sketch[i] 

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: , ,… 200

A B



However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of Doc1 and 
Doc2 is common to both (I.e., lies in the intersection)

This happens with probability:
Size_of_intersection / Size_of_union

BA

Why?



Set Similarity of sets X, Y

 View sets as columns of a matrix M; one row for each element in 
the universe.  mij = 1 indicates presence of item i  in set j

 Example

X Y

0    1
1    0
1    1        Jaccard(X,Y) = 2/5 = 0.4
0    0
1    1
0    1

Sec. 19.6



Key Observation
 For columns Ci, Cj, four types of rows

X Y
A 1 1
B 1 0
C 0 1
D 0 0

 Overload notation: A = # of rows of type A
 Claim

CBA
AY)Jaccard(X,




Sec. 19.6



“Min” Hashing

 Randomly permute rows
 Hash h(X) = index of first row with 1 in column X 
 Surprising Property

 Why?
 Both are A/(A+B+C)
 Look down columns X, Y until first non-Type-D row
 h(X) = h(Y)  type A row

   YX,Jaccardh(Y)h(X) P 

Sec. 19.6



Min-Hash sketches
 Pick P random row permutations 
 MinHash sketch
SketchD = list of P indexes of first rows with 1 in column C

 Similarity of signatures
 Let sim[sketch(X),sketch(Y)] = fraction of permutations 

where MinHash values agree 
 Observe E[sim(sketch(X),sketch(Y))] = Jaccard(X,Y)

Sec. 19.6



Question
 Document D1=D2 iff size_of_intersection=size_of_union ?



Example

C1 C2 C3
R1 1    0    1
R2 0    1    1
R3 1    0    0
R4 1    0    1
R5 0    1    0

Signatures
S1 S2 S3

Perm 1 = (12345) 1    2    1
Perm 2 = (54321) 4    5    4
Perm 3 = (34512) 3    5    4

Similarities
1-2      1-3      2-3

Col-Col 0.00    0.50    0.25
Sig-Sig 0.00    0.67    0.00

Sec. 19.6



All signature pairs
 Now we have an extremely efficient method for 

estimating a Jaccard coefficient for a single pair of 
documents.

 But we still have to estimate N2 coefficients where N is 
the number of web pages.
 Still slow

 One solution: locality sensitive hashing (LSH)
 Another solution: sorting (Henzinger 2006)

Sec. 19.6
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Resources

 IIR Chapters 20, 19.6


