
Web Information Retrieval

Lecture 10
Crawling and Near-Duplicate Document

Detection

Today’s lecture
 Crawling
 Duplicate and near-duplicate document detection

Basic crawler operation
 Begin with known “seed” pages
 Fetch and parse them

 Extract URLs they point to
 Place the extracted URLs on a queue

 Fetch each URL on the queue and repeat

Crawling picture

Web

URLs frontier

Unseen Web

Seed
pages

URLs crawled
and parsed

Sec. 20.2

4

Simple picture – complications

 Web crawling isn’t feasible with one machine
 All of the above steps distributed

 Malicious pages
 Spam pages
 Spider traps – incl dynamically generated

 Even non-malicious pages pose challenges
 Latency/bandwidth to remote servers vary
 Webmasters’ stipulations

 How “deep” should you crawl a site’s URL hierarchy?
 Site mirrors and duplicate pages

 Politeness – don’t hit a server too often

What any crawler must do

 Be Polite: Respect implicit and explicit politeness
considerations
 Only crawl allowed pages
 Respect robots.txt (more on this shortly)

 Be Robust: Be immune to spider traps and other
malicious behavior from web servers

What any crawler should do

 Be capable of distributed operation: designed to run
on multiple distributed machines

 Be scalable: designed to increase the crawl rate by
adding more machines

 Performance/efficiency: permit full use of available
processing and network resources

 Fetch pages of “higher quality” first
 Continuous operation: Continue fetching fresh

copies of a previously fetched page
 Extensible: Adapt to new data formats, protocols

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

URL frontier

 Can include multiple pages from the same host
 Must avoid trying to fetch them all at the same time
 Must try to keep all crawling threads busy

Explicit and implicit politeness

 Explicit politeness: specifications from webmasters
on what portions of site can be crawled
 robots.txt

 Implicit politeness: even with no specification, avoid
hitting any site too often

Robots.txt

 Protocol for giving spiders (“robots”) limited access to
a website, originally from 1994
 www.robotstxt.org/wc/norobots.html

 Website announces its request on what can(not) be
crawled
 For a URL, create a file URL/robots.txt
 This file specifies access restrictions

Robots.txt example

 No robot should visit any URL starting with
"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Processing steps in crawling

 Pick a URL from the frontier
 Fetch the document at the URL
 Parse the URL

 Extract links from it to other docs (URLs)
 Check if URL has content already seen

 If not, add to indexes
 For each extracted URL

 Ensure it passes certain URL filter tests
 Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

DNS (Domain Name Server)

 A lookup service on the internet
 Given a URL, retrieve its IP address
 Service provided by a distributed set of servers – thus,

lookup latencies can be high (even seconds)
 Common OS implementations of DNS lookup are

blocking: only one outstanding request at a time
 Solutions

 DNS caching
 Batch DNS resolver – collects requests and sends

them out together

Parsing: URL normalization

 When a fetched document is parsed, some of the extracted
links are relative URLs

 E.g., at http://en.wikipedia.org/wiki/Main_Page
we have a relative link to /wiki/Wikipedia:General_disclaimer

which is the same as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

 During parsing, must normalize (expand) such relative
URLs

Content seen?
 Duplication is widespread on the web
 If the page just fetched is already in the index, do not

further process it
 This is verified using document fingerprints or

shingles

Filters and robots.txt
 Filters – regular expressions for URL’s to be

crawled/not
 Once a robots.txt file is fetched from a site, need not

fetch it repeatedly
 Doing so burns bandwidth, hits web server

 Cache robots.txt files

Duplicate URL elimination

 For a non-continuous (one-shot) crawl, test to see if
an extracted+filtered URL has already been passed
to the frontier

 For a continuous crawl – see details of frontier
implementation

Distributing the crawler

 Run multiple crawl threads, under different processes
– potentially at different nodes
 Geographically distributed nodes

 Partition hosts being crawled into nodes
 Hash used for partition

 How do these nodes communicate?

Communication between nodes
 The output of the URL filter at each node is sent to the

Duplicate URL Eliminator at all nodes

WWW

Fetch

DNS

Parse
Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

Host
splitter

To
other
hosts

From
other
hosts

URL frontier: two main considerations

 Politeness: do not hit a web server too frequently
 Freshness: crawl some pages more often than others

 E.g., pages (such as News sites) whose content changes
often

These goals may conflict each other.
(E.g., simple priority queue fails – many links out of a page

go to its own site, creating a burst of accesses to that
site.)

Politeness – challenges

 Even if we restrict only one thread to fetch from a
host, can hit it repeatedly

 Common heuristic: insert time gap between
successive requests to a host that is >> time for most
recent fetch from that host

URL frontier: Mercator scheme

Prioritizer

Biased front queue selector
Back queue router

Back queue selector

K front queues

B back queues
Single host on each

URLs

Crawl thread requesting URL

Mercator URL frontier

 URLs flow in from the top into the frontier
 Front queues manage prioritization
 Back queues enforce politeness
 Each queue is FIFO

Front queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Front queues

 Prioritizer assigns to URL an integer priority between
1 and K
 Appends URL to corresponding queue

 Heuristics for assigning priority
 Refresh rate sampled from previous crawls
 Application-specific (e.g., “crawl news sites more

often”)

Biased front queue selector

 When a back queue requests a URL (in a sequence
to be described): picks a front queue from which to
pull a URL

 This choice can be round robin biased to queues of
higher priority, or some more sophisticated variant
 Can be randomized

Back queues
Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Back queue invariants

 Each back queue is kept non-empty while the crawl is
in progress

 Each back queue only contains URLs from a single
host
 Maintain a table from hosts to back queues

Host name Back queue

www.uniroma1.it 3

www.cnn.com 27

B

Back queue heap

 One entry for each back queue
 The entry is the earliest time te at which the host

corresponding to the back queue can be hit again
 This earliest time is determined from

 Last access to that host
 Any time buffer heuristic we choose

Back queue processing

 A crawler thread seeking a URL to crawl:
 Extracts the root of the heap
 Fetches URL at head of corresponding back queue q

(look up from table)
 Checks if queue q is now empty – if so, pulls a URL v

from front queues
 If there’s already a back queue for v’s host, append v to q

and pull another URL from front queues, repeat
 Else add v to q

 When q is non-empty, create heap entry for it

Number of back queues B

 Keep all threads busy while respecting politeness
 Mercator recommendation: three times as many back

queues as crawler threads

 Duplication: Exact match with fingerprints
 Near-Duplication: Approximate match

 Overview
 Compute syntactic similarity with an edit-distance measure
 Use similarity threshold to detect near-duplicates

 E.g., Similarity > 80% => Documents are “near duplicates”
 Not transitive though sometimes used transitively

Duplicate/Near-duplicate detection

Duplicate documents
 The web is full of duplicated content
 Strict duplicate detection = exact match

 Not as common
 But many, many cases of near duplicates

 E.g., last-modified date the only difference between two
copies of a page

Sec. 19.6

Computing near similarity

 Features:
 Segments of a document (natural or artificial breakpoints)
 Shingles (Word N-Grams) [Brod98]

“a rose is a rose is a rose” =>
a_rose_is_a

rose_is_a_rose
is_a_rose_is

a_rose_is_a
 Similarity Measure

 TFIDF
 Set intersection

(Specifically, Size_of_Intersection / Size_of_Union)

Computing near similarity

 Features:
 Segments of a document (natural or artificial breakpoints)
 Shingles (Word N-Grams) [Brod98]

“a rose is a rose is a rose” =>
a_rose_is_a

rose_is_a_rose
is_a_rose_is

a_rose_is_a
 Similarity Measure

 TFIDF
 Set intersection

(Specifically, Size_of_Intersection / Size_of_Union)

Shingles + Set intersection
 Computing exact set intersection of shingles between all
pairs of documents is expensive/intractable
 Approximate using a cleverly chosen subset of shingles from

each (a sketch)
 Estimate Jaccard based on a short sketch

Doc
A

Doc
A

Shingle set A Sketch A

Doc
B

Doc
B

Shingle set B Sketch B

Jaccard

Sec. 19.6

Shingles + Set intersection
 Computing exact set intersection of shingles between all
pairs of documents is expensive and infeasible
 Approximate using a cleverly chosen subset of shingles from

each (a sketch)

Shingles + Set intersection
 Estimate Jaccard based on a short sketch
 Create a “sketch vector” (e.g., of size 200) for each
document
 Documents which share more than t (say 80%) corresponding

vector elements are similar
 For doc D, sketch[i] is computed as follows:

 Let f map all shingles in the universe to 0..2m

(e.g., f = fingerprinting)
 Let i be a specific random permutation on 0..2m

 Pick sketch[i] := MIN {i (f(s))} over all shingles s in D

Computing Sketch[i] for Doc1

Document 1

264

264

264

264

Start with 64 bit shingles

Permute on the number line

with i

Pick the min value

Computing Sketch[i] for Doc1

Document 1

264

264

264

264

Start with 64 bit shingles

Permute on the number line

with i

Pick the min value

Test if Doc1.Sketch[i] = Doc2.Sketch[i]

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: , ,… 200

A B

However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of Doc1 and
Doc2 is common to both (I.e., lies in the intersection)

This happens with probability:
Size_of_intersection / Size_of_union

BA

Why?

Set Similarity of sets X, Y

 View sets as columns of a matrix M; one row for each element in
the universe. mij = 1 indicates presence of item i in set j

 Example

X Y

0 1
1 0
1 1 Jaccard(X,Y) = 2/5 = 0.4
0 0
1 1
0 1

Sec. 19.6

Key Observation
 For columns Ci, Cj, four types of rows

X Y
A 1 1
B 1 0
C 0 1
D 0 0

 Overload notation: A = # of rows of type A
 Claim

CBA
AY)Jaccard(X,




Sec. 19.6

“Min” Hashing

 Randomly permute rows
 Hash h(X) = index of first row with 1 in column X
 Surprising Property

 Why?
 Both are A/(A+B+C)
 Look down columns X, Y until first non-Type-D row
 h(X) = h(Y)  type A row

   YX,Jaccardh(Y)h(X) P 

Sec. 19.6

Min-Hash sketches
 Pick P random row permutations
 MinHash sketch
SketchD = list of P indexes of first rows with 1 in column C

 Similarity of signatures
 Let sim[sketch(X),sketch(Y)] = fraction of permutations

where MinHash values agree
 Observe E[sim(sketch(X),sketch(Y))] = Jaccard(X,Y)

Sec. 19.6

Question
 Document D1=D2 iff size_of_intersection=size_of_union ?

Example

C1 C2 C3
R1 1 0 1
R2 0 1 1
R3 1 0 0
R4 1 0 1
R5 0 1 0

Signatures
S1 S2 S3

Perm 1 = (12345) 1 2 1
Perm 2 = (54321) 4 5 4
Perm 3 = (34512) 3 5 4

Similarities
1-2 1-3 2-3

Col-Col 0.00 0.50 0.25
Sig-Sig 0.00 0.67 0.00

Sec. 19.6

All signature pairs
 Now we have an extremely efficient method for

estimating a Jaccard coefficient for a single pair of
documents.

 But we still have to estimate N2 coefficients where N is
the number of web pages.
 Still slow

 One solution: locality sensitive hashing (LSH)
 Another solution: sorting (Henzinger 2006)

Sec. 19.6

51

Resources

 IIR Chapters 20, 19.6

