Web Information Retrieval

Lecture 7 Scoring and results assembly

Recap: tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

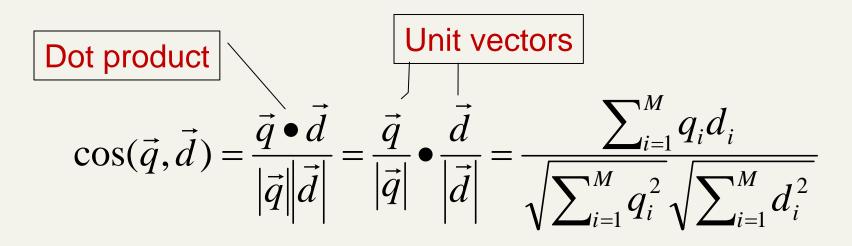
$$\mathbf{w}_{t,d} = \mathbf{tf}_{t,d} \times \log_{10}(N/\mathrm{df}_t)$$

- Most used scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Recap: Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors

Recap: Cosine(query,document)



 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

This lecture

- Speeding up vector space ranking
- Putting together a complete search system
 - Will require learning about a number of miscellaneous topics and heuristics

Computing cosine scores

$\operatorname{COSINESCORE}(q)$

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 for each query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list
- 6 **do** Scores[d]+ = $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

Special case – unweighted queries

- For ranking, don't need to normalize query vector
- No weighting on query terms
 - Assume each query term occurs only once
 - Slight simplification of the algorithm we saw

Faster cosine: unweighted query

$\operatorname{COSINESCORE}(q)$

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 for each query term t
- 4 **do** calculate $w_{t,q}$ and fetch postings list for t
- 5 **for each** $pair(d, tf_{t,d})$ in postings list
- 6 **do** $Scores[d] + = w_{t,d} \times W_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

Efficient cosine ranking

- Find the K docs in the collection "nearest" to the query \Rightarrow K largest query-doc cosines.
- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the *K* largest cosine values efficiently.
 - Can we do this without computing all *N* cosines?

Efficient cosine ranking

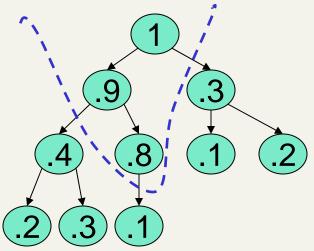
- What we're doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well

Computing the *K* largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with *K* highest cosines?
- Let J = number of docs with nonzero cosines
 - We seek the *K* best of these *J*

Use heap for selecting top K

- Binary tree in which each node's value > the values of children
- Takes 2J operations to construct, then each of K "winners" read off in 2log J steps.
- For J=1M, K=100, this is about 10% of the cost of sorting.



Bottlenecks

- Primary computational bottleneck in scoring: cosine computation
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong:
 - a doc *not* in the top K may creep into the list of K output docs
 - Is this such a bad thing?

Cosine similarity is only a proxy

- User has a task and a query formulation
- Cosine matches docs to query
- Thus cosine is anyway a proxy for user happiness
- If we get a list of K docs "close" to the top K by cosine measure, should be ok

Generic approach

- Find a set A of contenders, with K < |A| << J
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top *K* docs in *A*
- Think of A as pruning non-contenders
- The same approach is also used for other (noncosine) scoring functions
- Will look at several schemes following this approach

Index elimination

- The basic algorithm we saw only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

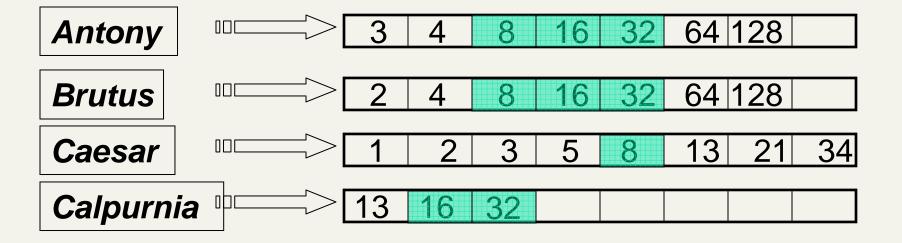
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from catcher and rye
- Intuition: *in* and *the* contribute little to the scores and don't alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from A

Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a "soft conjunction" on queries seen on web search engines (early Google)
- Easy to implement in postings traversal

3 of 4 query terms



Scores only computed for 8, 16 and 32.

Champion lists

- Precompute for each dictionary term *t*, the *r* docs of highest weight in *t*'s postings
 - Call this the **champion list** for *t*
 - (aka fancy list or top docs for t)
- Note that r has to be chosen at index time
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the *K* top-scoring docs from amongst these

Exercises

- How do champion lists relate to index elimination? Can they be used together?
- How can Champion Lists be implemented in an inverted index?
 - Note the champion list has nothing to do with small docIDs

Static quality scores

- We want top-ranking documents to be both *relevant* and *authoritative*
- *Relevance* is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - (Pagerank)
 - Recency (for news)

Quantitative

Modeling authority

- Assign to each document a *query-independent* quality score in [0,1] to each document d
 - Denote this by g(d)
- Thus, a quantity like the number of citations is scaled into [0,1]
 - Exercise: suggest a formula for this.

Net score

- Consider a simple total score combining cosine relevance and authority
- net-score(q,d) = g(d) + cosine(q,d)
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two "signals" of user happiness – more later
- Now we seek the top K docs by <u>net score</u>

Top K by net score – fast methods

- First idea: Order all postings by g(d)
- Key: this is a common ordering for all postings
- Thus, can concurrently traverse query terms' postings for
 - Postings intersection
 - Cosine score computation
- Exercise: write pseudocode for cosine score computation if postings are ordered by g(d)

Why order postings by g(d)?

- Under g(d)-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings

Champion lists in g(d)-ordering

- Can combine champion lists with g(d)-ordering
- Maintain for each term a champion list of the r docs with highest g(d) + tf-idf_{td}
- Seek top-K results from only the docs in these champion lists

High and low lists – Tiers

- For each term, we maintain two postings lists called high and low
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse high lists first
 - If we get more than *K* docs, select the top *K* and stop
 - Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality g(d)
- A means for segmenting index into two tiers

Impact-ordered postings

- We only want to compute scores for docs for which wf_{t,d} is high enough
- We sort each postings list by wf_{t,d}
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top *K*?
 - Two ideas follow
- This is called Term-at-a-Time retrieval
 - We process terms one after the other
- The standard inverted index is Document-at-atime
 - We process documents one after the other

1. Early termination

- When traversing *t*'s postings, stop early after either
 - a fixed number of *r* docs
 - $wf_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union

2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores

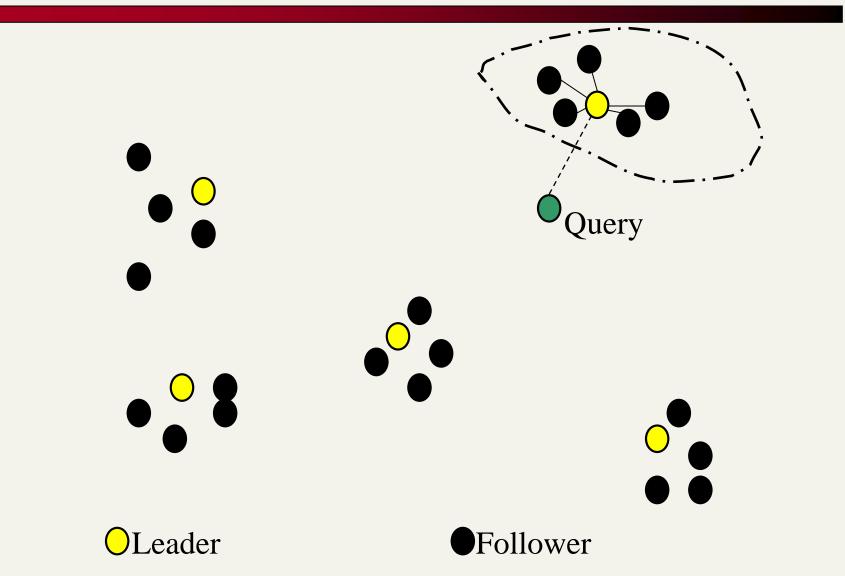
Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these *leaders*
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.

Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek *K* nearest docs from among *L*'s followers.

Visualization



Why use random sampling

- Fast
- Leaders reflect data distribution

General variants

- Have each follower attached to b₁=3 (say) nearest leaders.
- From query, find b₂=4 (say) nearest leaders and their followers.
- Can recur on leader/follower construction.

Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
 - Why did we have \sqrt{N} in the first place?
- What is the effect of the constants b₁, b₂ on the previous slide?
- Devise an example where this is *likely to* fail i.e., we miss one of the K nearest docs.
 - *Likely* under random sampling.

Resources

IIR Chapter 7