
Web Information Retrieval

Lecture 7
Scoring and results assembly

Recap: tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and
its idf weight.

 Most used scheme in information retrieval
 Increases with the number of occurrences within a

document
 Increases with the rarity of the term in the collection

)df/(logtfw 10,, tdt N
dt

Recap: Queries as vectors

 Key idea 1: Do the same for queries: represent them
as vectors in the space

 Key idea 2: Rank documents according to their
proximity to the query in this space

 proximity = similarity of vectors

Recap: Cosine(query,document)

M

i i
M

i i

M

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(

Dot product Unit vectors

cos(q, d) is the cosine similarity of q and d or, equivalently,

the cosine of the angle between q and d.

This lecture

 Speeding up vector space ranking
 Putting together a complete search system

 Will require learning about a number of miscellaneous
topics and heuristics

Computing cosine scores

Special case – unweighted queries

 For ranking, don’t need to normalize query vector
 No weighting on query terms

 Assume each query term occurs only once
 Slight simplification of the algorithm we saw

Faster cosine: unweighted query

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the
query K largest query-doc cosines.

 Efficient ranking:
 Computing a single cosine efficiently.
 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest
neighbor problem for a query vector

 In general, we do not know how to do this efficiently
for high-dimensional spaces

 But it is solvable for short queries, and standard
indexes support this well

Computing the K largest cosines:
selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)
 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?
 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Use heap for selecting top K

 Binary tree in which each node’s value > the values
of children

 Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8.4

.1

.1 .2

.2 .3

Bottlenecks

 Primary computational bottleneck in scoring: cosine
computation

 Can we avoid all this computation?
 Yes, but may sometimes get it wrong:

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Cosine similarity is only a proxy

 User has a task and a query formulation
 Cosine matches docs to query
 Thus cosine is anyway a proxy for user happiness
 If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Generic approach

 Find a set A of contenders, with K < |A| << J
 A does not necessarily contain the top K, but has many

docs from among the top K
 Return the top K docs in A

 Think of A as pruning non-contenders
 The same approach is also used for other (non-

cosine) scoring functions
 Will look at several schemes following this approach

Index elimination

 The basic algorithm we saw only considers docs
containing at least one query term

 Take this further:
 Only consider high-idf query terms
 Only consider docs containing many query terms

High-idf query terms only

 For a query such as catcher in the rye
 Only accumulate scores from catcher and rye
 Intuition: in and the contribute little to the scores and

don’t alter rank-ordering much
 Benefit:

 Postings of low-idf terms have many docs these
(many) docs get eliminated from A

Docs containing many query terms

 Any doc with at least one query term is a candidate
for the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms
 Say, at least 3 out of 4
 Imposes a “soft conjunction” on queries seen on web

search engines (early Google)
 Easy to implement in postings traversal

3 of 4 query terms

Scores only computed for 8, 16 and 32.

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings
 Call this the champion list for t
 (aka fancy list or top docs for t)

 Note that r has to be chosen at index time
 At query time, only compute scores for docs in the

champion list of some query term
 Pick the K top-scoring docs from amongst these

Exercises

 How do champion lists relate to index elimination?
Can they be used together?

 How can Champion Lists be implemented in an
inverted index?
 Note the champion list has nothing to do with small

docIDs

 We want top-ranking documents to be both relevant
and authoritative

 Relevance is being modeled by cosine scores
 Authority is typically a query-independent property of

a document
 Examples of authority signals

 Wikipedia among websites
 Articles in certain newspapers
 A paper with many citations
 Many diggs, Y!buzzes or del.icio.us marks
 (Pagerank)
 Recency (for news)

QuantitativeQuantitative

Static quality scores

Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d
 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]
 Exercise: suggest a formula for this.

Net score

 Consider a simple total score combining cosine
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)
 Can use some other linear combination than an equal

weighting
 Indeed, any function of the two “signals” of user

happiness – more later
 Now we seek the top K docs by net score

Top K by net score – fast methods

 First idea: Order all postings by g(d)
 Key: this is a common ordering for all postings
 Thus, can concurrently traverse query terms’

postings for
 Postings intersection
 Cosine score computation

 Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to appear
early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early
 Short of computing scores for all docs in postings

Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering
 Maintain for each term a champion list of the r docs

with highest g(d) + tf-idftd
 Seek top-K results from only the docs in these

champion lists

High and low lists – Tiers

 For each term, we maintain two postings lists called
high and low
 Think of high as the champion list

 When traversing postings on a query, only traverse
high lists first
 If we get more than K docs, select the top K and stop
 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without
global quality g(d)

 A means for segmenting index into two tiers

Impact-ordered postings

 We only want to compute scores for docs for which
wft,d is high enough

 We sort each postings list by wft,d
 Now: not all postings in a common order!
 How do we compute scores in order to pick off top K?

 Two ideas follow
 This is called Term-at-a-Time retrieval

 We process terms one after the other
 The standard inverted index is Document-at-a-

time
 We process documents one after the other

1. Early termination

 When traversing t’s postings, stop early after either
 a fixed number of r docs
 wft,d drops below some threshold

 Take the union of the resulting sets of docs
 One from the postings of each query term

 Compute only the scores for docs in this union

2. idf-ordered terms

 When considering the postings of query terms
 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score
 As we update score contribution from each query

term
 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Cluster pruning: preprocessing

 Pick N docs at random: call these leaders
 For every other doc, pre-compute nearest leader

 Docs attached to a leader: its followers;
 Likely: each leader has ~ N followers.

Cluster pruning: query processing

 Process a query as follows:
 Given query Q, find its nearest leader L.
 Seek K nearest docs from among L’s followers.

Visualization

Query

Leader Follower

Why use random sampling

 Fast
 Leaders reflect data distribution

General variants

 Have each follower attached to b1=3 (say) nearest
leaders.

 From query, find b2=4 (say) nearest leaders and their
followers.

 Can recur on leader/follower construction.

Exercises

 To find the nearest leader in step 1, how many cosine
computations do we do?
 Why did we have N in the first place?

 What is the effect of the constants b1, b2 on the
previous slide?

 Devise an example where this is likely to fail – i.e.,
we miss one of the K nearest docs.
 Likely under random sampling.

Resources

 IIR Chapter 7

