
Web Information Retrieval

Lecture 6
Vector Space Model

Recap of the last lecture

 Parametric and field searches
 Zones in documents

 Scoring documents: zone weighting
 Index support for scoring

 tfidf and vector spaces

This lecture

 Vector space model
 Efficiency considerations

 Nearest neighbors and approximations

Documents as vectors

 At the end of Lecture 5 we said:
 Each doc j can now be viewed as a vector of tfidf

values, one component for each term
 So we have a vector space

 terms are axes
 docs live in this space
 even with stemming, may have 20,000+ dimensions

Example

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

mercy 0.5 0.0 0.7 0.9 0.9 0.3

Why turn docs into vectors?

 First application: Query-by-example
 Given a doc D, find others “like” it.

 Now that D is a vector, find vectors (docs) “near” it.

Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.

t1

d2

d1

d3

d4

d5

t3

t2

The vector space model

Query as vector:
 We regard query as short document
 We return the documents ranked by the closeness of

their vectors to the query, also represented as a
vector.

Desiderata for proximity

 If d1 is near d2, then d2 is near d1.
 If d1 near d2, and d2 near d3, then d1 is not far from d3.
 No doc is closer to d than d itself.

First cut

 Distance between d1 and d2 is the length of the vector
|d1 – d2|.
 Euclidean distance

 Why is this not a great idea?
 We still haven’t dealt with the issue of length

normalization
 However, we can implicitly normalize by looking at

angles instead

Why distance is a bad idea

The Euclidean
distance between q
and d2 is large even
though the
distribution of terms
in the query q and
the distribution of
terms in the
document d2 are very
similar.

Sec. 6.3

Use angle instead of distance
 Thought experiment: take a document d and append it to

itself. Call this document d′.
 “Semantically” d and d′ have the same content
 The Euclidean distance between the two documents can

be quite large
 The angle between the two documents is 0,

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with
query.

Sec. 6.3

From angles to cosines
 The following two notions are equivalent.

 Rank documents in decreasing order of the angle between
query and document

 Rank documents in increasing order of
cosine(query,document)

 Cosine is a monotonically decreasing function for the
interval of interest [0o, 90o]

Sec. 6.3

From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3

Cosine similarity

 Distance between vectors d1 and d2 captured by the
cosine of the angle x between them.

 Note – this is similarity, not distance

t 1

d 2

d 1

t 3

t 2

θ

Cosine similarity

 A vector can be normalized (given a length of 1) by
dividing each of its components by its length – here
we use the L2 norm

 This maps vectors onto the unit sphere:

 Then,

 Longer documents don’t get more weight
1

1 ,

M

i jij wd

i ixx 2

2
x

Cosine similarity

 Cosine of angle between two vectors
 The denominator involves the lengths of the vectors.

M

i ki
M

i ji

M

i kiji

kj

kj
kjkj

ww

ww

dd

dd
ddddsim

1
2
,1

2
,

1 ,,),cos(),(

Normalization

Normalized vectors

 For normalized vectors, the cosine is simply the dot
product:

kjkj dddd

),cos(

Cosine similarity exercises

 Exercise: Rank the following by decreasing cosine
similarity:
 Two docs that have only frequent words (the, a, an, of)

in common.
 Two docs that have no words in common.
 Two docs that have many rare words in common

(wingspan, tailfin).

Exercise

 Euclidean distance between vectors:

 Show that, for normalized vectors, Euclidean
distance gives the same proximity ordering as the
cosine measure

M

i kijikj dddd
1

2
,,

Example

 Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254

Example

 Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254

Example

 Docs: Austen's Sense and Sensibility, Pride and
Prejudice; Bronte's Wuthering Heights

 cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
 cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254

Queries as vectors

 Key idea 1: Do the same for queries: represent them
as vectors in the space

 Key idea 2: Rank documents according to their
proximity to the query in this space

 proximity = similarity of vectors

Cosine(query,document)

M

i i
M

i i

M

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(

Dot product Unit vectors

cos(q, d) is the cosine similarity of q and d or, equivalently,

the cosine of the angle between q and d.

Summary: What’s the real point of
using vector spaces?

 Key: A user’s query can be viewed as a (very) short
document.

 Query becomes a vector in the same space as the
docs.

 Can measure each doc’s proximity to it.
 Natural measure of scores/ranking – no longer

Boolean.
 Queries are expressed as bags of words

 Other similarity measures: see
http://www.lans.ece.utexas.edu/~strehl/diss/node52.html for a
survey

Interaction: vectors and phrases

 Phrases don’t fit naturally into the vector space world:
 “hong kong” “new york”
 Positional indexes don’t capture tf/idf information for

“hong kong”
 Biword indexes treat certain phrases as terms

 For these, can pre-compute tf/idf.
 A hack: we cannot expect end-user formulating

queries to know what phrases are indexed

Vectors and Boolean queries

 Vectors and Boolean queries really don’t work
together very well

 We cannot express AND, OR, NOT, just by summing
term frequencies

Vector spaces and other operators

 Vector space queries are apt for no-syntax, bag-of-
words queries
 Clean metaphor for similar-document queries

 Not a good combination with Boolean, positional
query operators, phrase queries, …

 But …

Query language vs. scoring

 May allow user a certain query language, say
 Freetext basic queries
 Phrase, wildcard etc. in Advanced Queries.

 For scoring (oblivious to user) may use all of the
above, e.g. for a freetext query
 Highest-ranked hits have query as a phrase
 Next, docs that have all query terms near each other
 Then, docs that have some query terms, or all of them

spread out, with tf x idf weights for scoring

Exercises

 How would you augment the inverted index built in
lectures 1–3 to support cosine ranking computations?

 What information do we need to store?
 Walk through the steps of serving a query.
 The math of the vector space model is quite

straightforward, but being able to do cosine ranking
efficiently at runtime is nontrivial

Resources

 IIR Chapters 6.3, 7.3

