
Web Information Retrieval

Lecture 6
Vector Space Model



Recap of the last lecture

 Parametric and field searches
 Zones in documents

 Scoring documents: zone weighting
 Index support for scoring

 tfidf and vector spaces



This lecture

 Vector space model
 Efficiency considerations

 Nearest neighbors and approximations



Documents as vectors

 At the end of Lecture 5 we said:
 Each doc j can now be viewed as a vector of tfidf

values, one component for each term
 So we have a vector space

 terms are axes
 docs live in this space
 even with stemming, may have 20,000+ dimensions



Example

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

mercy 0.5 0.0 0.7 0.9 0.9 0.3



Why turn docs into vectors?

 First application: Query-by-example
 Given a doc D, find others “like” it.

 Now that D is a vector, find vectors (docs) “near” it.



Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.
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The vector space model

Query as vector:
 We regard query as short document
 We return the documents ranked by the closeness of 

their vectors to the query, also represented as a 
vector.



Desiderata for proximity

 If d1 is near d2, then d2 is near d1.
 If d1 near d2, and d2 near d3, then d1 is not far from d3.
 No doc is closer to d than d itself.



First cut

 Distance between d1 and d2 is the length of the vector 
|d1 – d2|.
 Euclidean distance

 Why is this not a great idea?
 We still haven’t dealt with the issue of length 

normalization
 However, we can implicitly normalize by looking at 

angles instead



Why distance is a bad idea

The Euclidean 
distance between q
and d2 is large even 
though the 
distribution of terms
in the query q and 
the distribution of 
terms in the
document d2 are very 
similar.

Sec. 6.3



Use angle instead of distance
 Thought experiment: take a document d and append it to 

itself. Call this document d′.
 “Semantically” d and d′ have the same content
 The Euclidean distance between the two documents can 

be quite large
 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with 
query.

Sec. 6.3



From angles to cosines
 The following two notions are equivalent.

 Rank documents in decreasing order of the angle between 
query and document

 Rank documents in increasing order  of 
cosine(query,document)

 Cosine is a monotonically decreasing function for the 
interval of interest [0o, 90o]

Sec. 6.3



From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3



Cosine similarity

 Distance between vectors d1 and d2 captured by the 
cosine of the angle x between them.

 Note – this is similarity, not distance
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Cosine similarity

 A vector can be normalized (given a length of 1) by 
dividing each of its components by its length – here 
we use the L2 norm

 This maps vectors onto the unit sphere:

 Then, 

 Longer documents don’t get more weight
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Cosine similarity

 Cosine of angle between two vectors
 The denominator involves the lengths of the vectors.
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Normalization



Normalized vectors

 For normalized vectors, the cosine is simply the dot 
product:
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Cosine similarity exercises

 Exercise: Rank the following by decreasing cosine 
similarity:
 Two docs that have only frequent words (the, a, an, of)

in common.
 Two docs that have no words in common.
 Two docs that have many rare words in common 

(wingspan, tailfin).



Exercise

 Euclidean distance between vectors:

 Show that, for normalized vectors, Euclidean 
distance gives the same proximity ordering as the 
cosine measure
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Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

 cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
 cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Queries as vectors

 Key idea 1: Do the same for queries: represent them 
as vectors in the space

 Key idea 2: Rank documents according to their 
proximity to the query in this space

 proximity = similarity of vectors



Cosine(query,document)
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Dot product Unit vectors

cos(q, d) is the cosine similarity of q and d or, equivalently,

the cosine of the angle between q and d.



Summary: What’s the real point of 
using vector spaces?

 Key: A user’s query can be viewed as a (very) short 
document.

 Query becomes a vector in the same space as the 
docs.

 Can measure each doc’s proximity to it.
 Natural measure of scores/ranking – no longer 

Boolean.
 Queries are expressed as bags of words

 Other similarity measures: see 
http://www.lans.ece.utexas.edu/~strehl/diss/node52.html for a 
survey



Interaction: vectors and phrases

 Phrases don’t fit naturally into the vector space world:
 “hong kong” “new york”
 Positional indexes don’t capture tf/idf information for 

“hong kong”
 Biword indexes treat certain phrases as terms

 For these, can pre-compute tf/idf.
 A hack: we cannot expect end-user formulating 

queries to know what phrases are indexed



Vectors and Boolean queries

 Vectors and Boolean queries really don’t work 
together very well

 We cannot express AND, OR, NOT, just by summing 
term frequencies



Vector spaces and other operators

 Vector space queries are apt for no-syntax, bag-of-
words queries
 Clean metaphor for similar-document queries

 Not a good combination with Boolean, positional 
query operators, phrase queries, …

 But …



Query language vs. scoring

 May allow user a certain query language, say
 Freetext basic queries
 Phrase, wildcard etc. in Advanced Queries.

 For scoring (oblivious to user) may use all of the 
above, e.g. for a freetext query
 Highest-ranked hits have query as a phrase
 Next, docs that have all query terms near each other
 Then, docs that have some query terms, or all of them 

spread out, with tf x idf weights for scoring



Exercises

 How would you augment the inverted index built in 
lectures 1–3 to support cosine ranking computations?

 What information do we need to store?
 Walk through the steps of serving a query.
 The math of the vector space model is quite 

straightforward, but being able to do cosine ranking 
efficiently at runtime is nontrivial



Resources

 IIR Chapters 6.3, 7.3


