
Web Information Retrieval

Lecture 6
Vector Space Model



Recap of the last lecture

 Parametric and field searches
 Zones in documents

 Scoring documents: zone weighting
 Index support for scoring

 tfidf and vector spaces



This lecture

 Vector space model
 Efficiency considerations

 Nearest neighbors and approximations



Documents as vectors

 At the end of Lecture 5 we said:
 Each doc j can now be viewed as a vector of tfidf

values, one component for each term
 So we have a vector space

 terms are axes
 docs live in this space
 even with stemming, may have 20,000+ dimensions



Example

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Brutus 3.0 8.3 0.0 1.0 0.0 0.0

Caesar 2.3 2.3 0.0 0.5 0.3 0.3

mercy 0.5 0.0 0.7 0.9 0.9 0.3



Why turn docs into vectors?

 First application: Query-by-example
 Given a doc D, find others “like” it.

 Now that D is a vector, find vectors (docs) “near” it.



Intuition

Postulate: Documents that are “close together”
in the vector space talk about the same things.
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The vector space model

Query as vector:
 We regard query as short document
 We return the documents ranked by the closeness of 

their vectors to the query, also represented as a 
vector.



Desiderata for proximity

 If d1 is near d2, then d2 is near d1.
 If d1 near d2, and d2 near d3, then d1 is not far from d3.
 No doc is closer to d than d itself.



First cut

 Distance between d1 and d2 is the length of the vector 
|d1 – d2|.
 Euclidean distance

 Why is this not a great idea?
 We still haven’t dealt with the issue of length 

normalization
 However, we can implicitly normalize by looking at 

angles instead



Why distance is a bad idea

The Euclidean 
distance between q
and d2 is large even 
though the 
distribution of terms
in the query q and 
the distribution of 
terms in the
document d2 are very 
similar.

Sec. 6.3



Use angle instead of distance
 Thought experiment: take a document d and append it to 

itself. Call this document d′.
 “Semantically” d and d′ have the same content
 The Euclidean distance between the two documents can 

be quite large
 The angle between the two documents is 0, 

corresponding to maximal similarity.

 Key idea: Rank documents according to angle with 
query.

Sec. 6.3



From angles to cosines
 The following two notions are equivalent.

 Rank documents in decreasing order of the angle between 
query and document

 Rank documents in increasing order  of 
cosine(query,document)

 Cosine is a monotonically decreasing function for the 
interval of interest [0o, 90o]

Sec. 6.3



From angles to cosines

 But how – and why – should we be computing cosines?

Sec. 6.3



Cosine similarity

 Distance between vectors d1 and d2 captured by the 
cosine of the angle x between them.

 Note – this is similarity, not distance
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Cosine similarity

 A vector can be normalized (given a length of 1) by 
dividing each of its components by its length – here 
we use the L2 norm

 This maps vectors onto the unit sphere:

 Then, 

 Longer documents don’t get more weight
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Cosine similarity

 Cosine of angle between two vectors
 The denominator involves the lengths of the vectors.
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Normalized vectors

 For normalized vectors, the cosine is simply the dot 
product:
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Cosine similarity exercises

 Exercise: Rank the following by decreasing cosine 
similarity:
 Two docs that have only frequent words (the, a, an, of)

in common.
 Two docs that have no words in common.
 Two docs that have many rare words in common 

(wingspan, tailfin).



Exercise

 Euclidean distance between vectors:

 Show that, for normalized vectors, Euclidean 
distance gives the same proximity ordering as the 
cosine measure
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Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Example

 Docs: Austen's Sense and Sensibility, Pride and 
Prejudice; Bronte's Wuthering Heights

 cos(SAS, PAP) = .996 x .993 + .087 x .120 + .017 x 0.0 = 0.999
 cos(SAS, WH) = .996 x .847 + .087 x .466 + .017 x .254 = 0.889

SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0.000 0.254



Queries as vectors

 Key idea 1: Do the same for queries: represent them 
as vectors in the space

 Key idea 2: Rank documents according to their 
proximity to the query in this space

 proximity = similarity of vectors



Cosine(query,document)
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cos(q, d) is the cosine similarity of q and d or, equivalently,

the cosine of the angle between q and d.



Summary: What’s the real point of 
using vector spaces?

 Key: A user’s query can be viewed as a (very) short 
document.

 Query becomes a vector in the same space as the 
docs.

 Can measure each doc’s proximity to it.
 Natural measure of scores/ranking – no longer 

Boolean.
 Queries are expressed as bags of words

 Other similarity measures: see 
http://www.lans.ece.utexas.edu/~strehl/diss/node52.html for a 
survey



Interaction: vectors and phrases

 Phrases don’t fit naturally into the vector space world:
 “hong kong” “new york”
 Positional indexes don’t capture tf/idf information for 

“hong kong”
 Biword indexes treat certain phrases as terms

 For these, can pre-compute tf/idf.
 A hack: we cannot expect end-user formulating 

queries to know what phrases are indexed



Vectors and Boolean queries

 Vectors and Boolean queries really don’t work 
together very well

 We cannot express AND, OR, NOT, just by summing 
term frequencies



Vector spaces and other operators

 Vector space queries are apt for no-syntax, bag-of-
words queries
 Clean metaphor for similar-document queries

 Not a good combination with Boolean, positional 
query operators, phrase queries, …

 But …



Query language vs. scoring

 May allow user a certain query language, say
 Freetext basic queries
 Phrase, wildcard etc. in Advanced Queries.

 For scoring (oblivious to user) may use all of the 
above, e.g. for a freetext query
 Highest-ranked hits have query as a phrase
 Next, docs that have all query terms near each other
 Then, docs that have some query terms, or all of them 

spread out, with tf x idf weights for scoring



Exercises

 How would you augment the inverted index built in 
lectures 1–3 to support cosine ranking computations?

 What information do we need to store?
 Walk through the steps of serving a query.
 The math of the vector space model is quite 

straightforward, but being able to do cosine ranking 
efficiently at runtime is nontrivial



Resources

 IIR Chapters 6.3, 7.3


