Web Information Retrieval

Lecture 4 Dictionaries, Index Compression

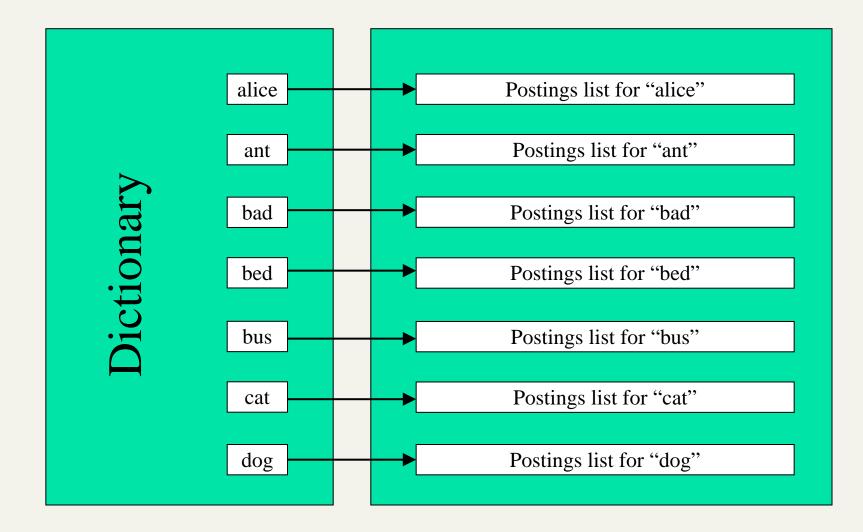
Recap: lecture 2,3

- Stemming, tokenization etc.
- Faster postings merges
- Phrase queries
- Index construction

This lecture

- Dictionary data structure
- Index compression

Entire data structure



A naïve dictionary

An array of records:

to
list

How do we quickly look up elements at query time?

Exercises

- Is binary search really a good idea?
- What are the alternatives?

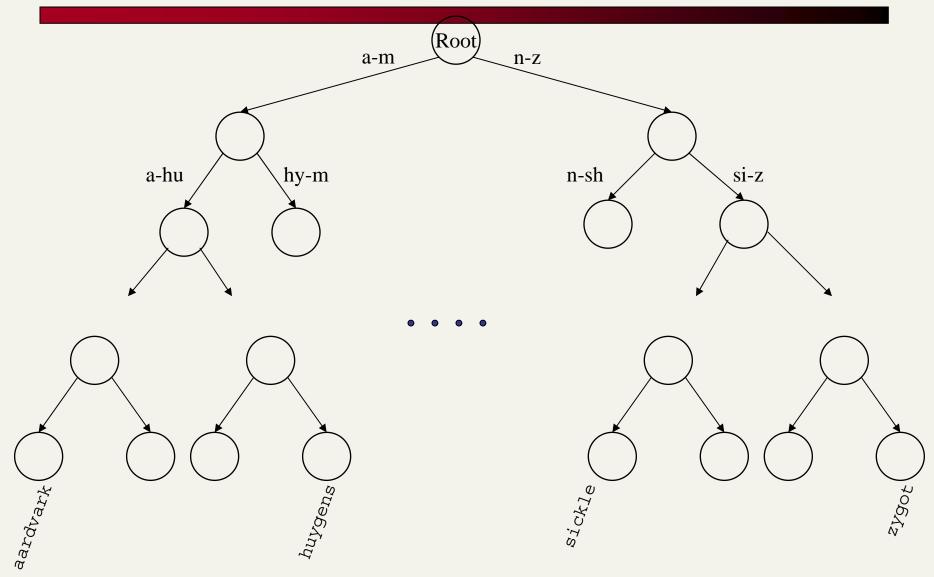
Dictionary data structures

- Two main choices:
 - Hashtables
 - Trees
- Some IR systems use hashtables, some trees

Hashtables

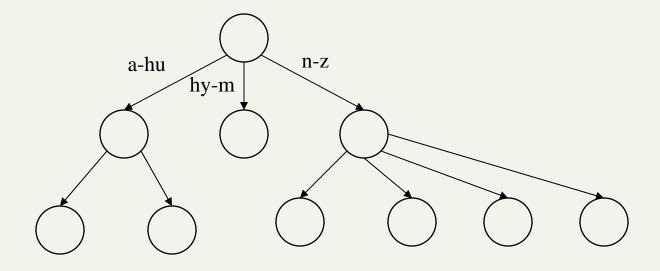
- Each vocabulary term is hashed to an integer
 - (We assume you've seen hashtables before)
- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search [tolerant retrieval]
 - If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing *everything*

Tree: binary tree



Sec. 3.

Tree: B-tree



Definition: Every internal nodel has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

Trees

- Simplest: binary tree
- More usual: B-trees
- Trees require a standard ordering of characters and hence strings ... but we typically have one
- Pros:
 - Solves the prefix problem (terms starting with hyp)
- Cons:
 - Slower: O(log M) [and this requires balanced tree]
 - Rebalancing binary trees is expensive
 - But B-trees mitigate the rebalancing problem

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?

Dictionary

- Make it small enough to keep in main memory
- Make it so small that you can keep some postings lists in main memory too

Postings file(s)

- Reduce disk space needed
- Decrease time needed to read postings lists from disk
- Large search engines keep a significant part of the postings in memory.
 - Compression lets you keep more in memory
- We will devise various IR-specific compression schemes

Compression: Two alternatives

- Lossless compression: all information is preserved, but we try to encode it compactly
 - What IR people mostly do
- Lossy compression: discard some information
 - Using a stopword list can be viewed this way
 - Techniques such as Latent Semantic Indexing (later) can be viewed as lossy compression
 - One could prune from postings entries unlikely to turn up in the top k list for query on word
 - Especially applicable to web search with huge numbers of documents but short queries (e.g., Carmel et al. SIGIR 2002)

Reuters RCV1 statistics

symbol	statistic	value
Ν	documents	800,000
L	avg. # tokens per doc	200
Μ	terms (= word types)	400,000
	avg. # bytes per token (incl. spaces/punct.)	6
	avg. # bytes per token (without spaces/punct.)	4.5
	avg. # bytes per term	7.5
Т	non-positional postings	100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 5.2

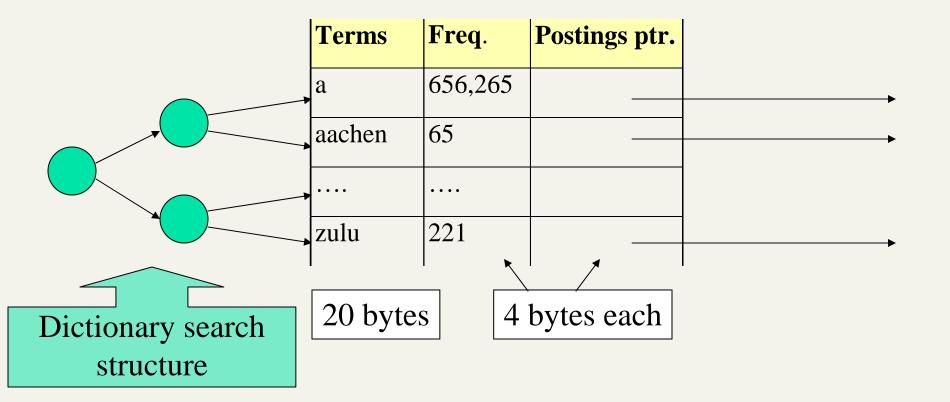
Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Dictionary storage - first cut

Array of fixed-width entries

~400,000 terms; 28 bytes/term = 11.2 MB.



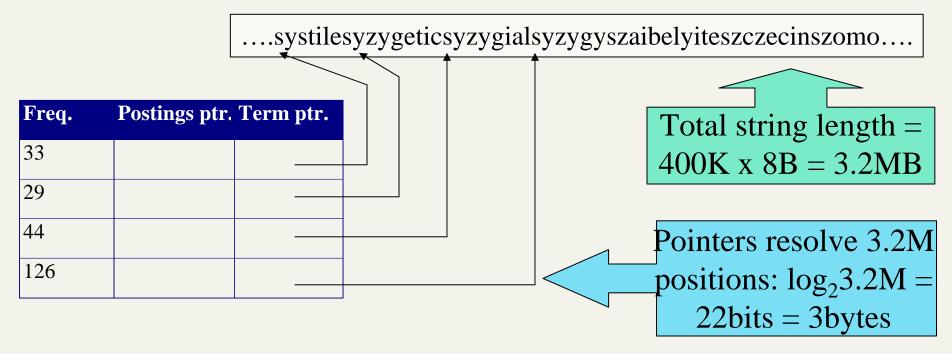
Fixed-width terms are wasteful

- Most of the bytes in the Term column are wasted we allot 20 bytes for 1 letter terms.
 - And we still can't handle supercalifragilisticexpialidocious or hydrochlorofluorocarbons.
- Written English averages ~4.5 characters/word.
 - Exercise: Why is/isn't this the number to use for estimating the dictionary size?
- Ave. dictionary word in English: ~8 characters
 - How do we use ~8 characters per dictionary term?
- Short words dominate token counts but not type average.

Compressing the term list: Dictionary-as-a-String

Store dictionary as a (long) string of characters:

- Pointer to next word shows end of current word
- •Hope to save up to 60% of dictionary space.



Space for dictionary as a string

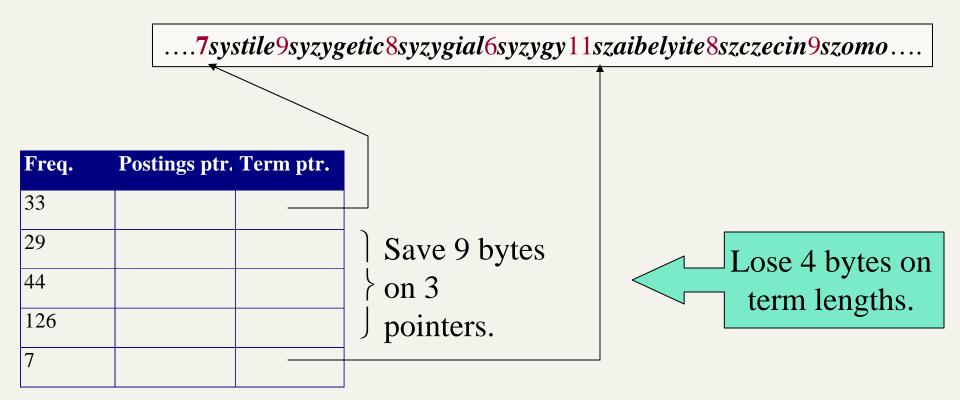
- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- 3 bytes per term pointer

```
Now avg. 11
bytes/term,
not 20.
```

- Avg. 8 bytes per term in term string
- 400K terms x 19 ⇒ 7.6 MB (against 11.2MB for fixed width)

Blocking

- Store pointers to every kth term string.
 - Example below: *k*=4.
- Need to store term lengths (1 extra byte)

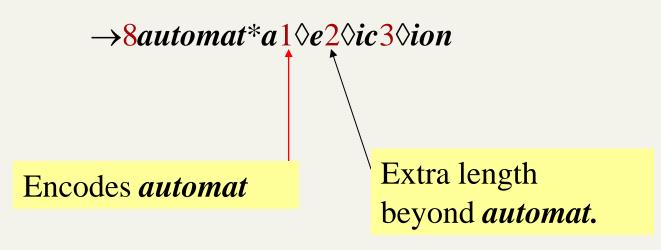


Front coding

Front-coding:

- Sorted words commonly have long common prefix store differences only
- (for last *k*-1 in a block of *k*)

8automata8automate9automatic10automation

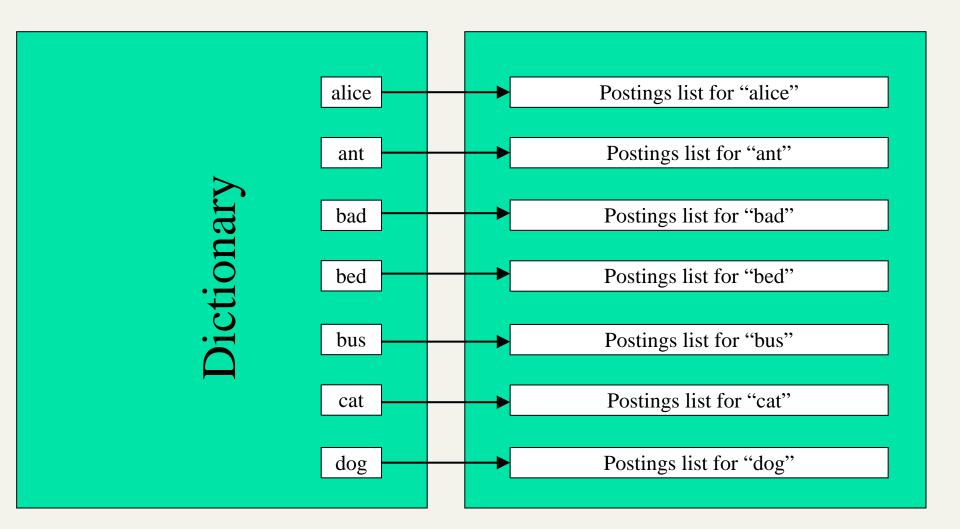


Begins to resemble general string compression.

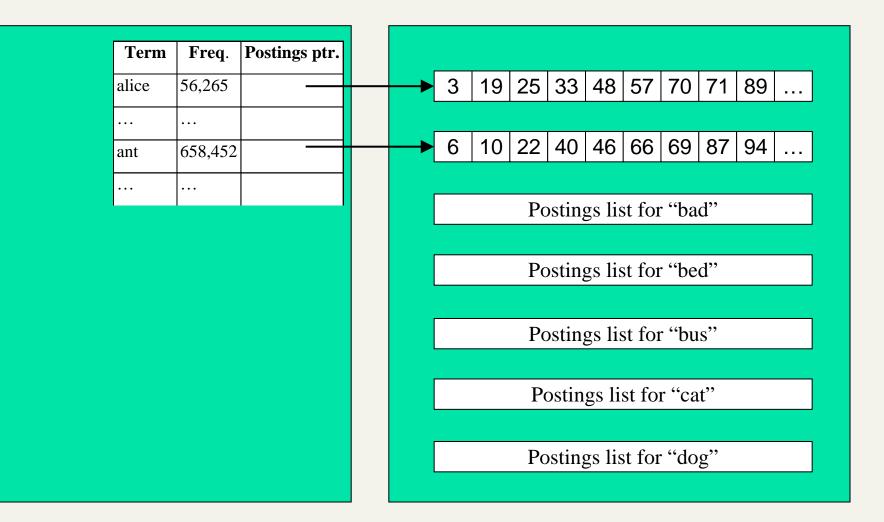
RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

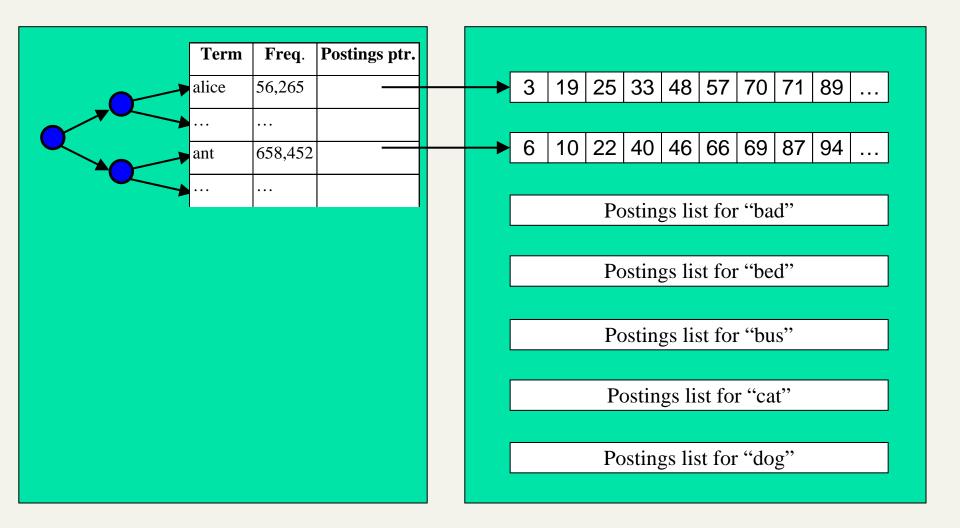
Entire data structure



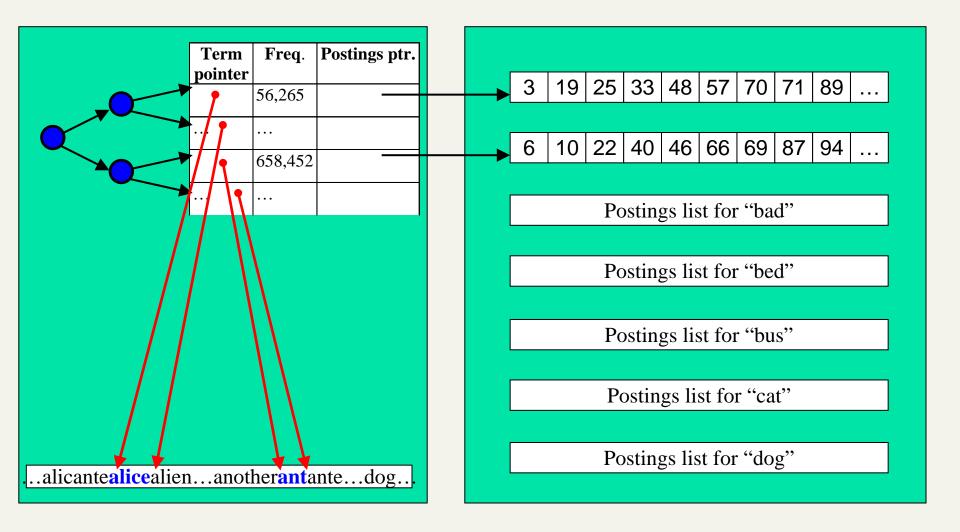
Details (no compression)



Details (no compression)



Details (dictionary compression)



Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use far fewer than 20 bits per docID.

Storage analysis

- First will consider space for postings pointers
- Basic Boolean index only
 - Devise compression schemes
- Then will do the same for dictionary
- No analysis for positional indexes, etc.

- A term like *arachnocentric* occurs in maybe one doc out of a million – we would like to store this posting using log₂ 1M ~ 20 bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.
 - Prefer 0/1 bitmap vector in this case

Postings file entry

- Store list of docs containing a term in increasing order of doc id.
 - **Brutus**: 33,47,154,159,202 ...
- <u>Consequence</u>: suffices to store *gaps*.
 - **3**3,14,107,5,43 ...
- <u>Hope</u>: most gaps encoded with far fewer than 20 bits.

Postings file entry

- Store list of docs containing a term in increasing order of doc id.
 - **Brutus**: 33,47,154,159,202 ...
- <u>Consequence</u>: suffices to store gaps.
 3314,107,5,43 ...
- <u>Hope</u>: most gaps encoded with far fewer than 20 bits.

Postings file entry

- Store list of docs containing a term in increasing order of doc id.
 - *Brutus*: 33 47,154 159,202 …
- <u>Consequence</u>: suffices to store gaps.
 33,14,107,5,43 ...
- <u>Hope</u>: most gaps encoded with far fewer than 20 bits.

Variable encoding

For arachnocentric, will use ~20 bits/gap entry.

- For *the*, will use ~1 bit/gap entry.
- If the average gap for a term is G, want to use ~log₂G bits/gap entry.
- Key challenge: encode every integer (gap) with ~ as few bits as needed for that integer.

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Variable length encoding

Aim:

- For *arachnocentric*, we will use ~20 bits/gap entry.
- For *the*, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use ~log₂G bits/gap entry.
- Key challenge: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Encoding types

There are 2 types of encodings:

Variable byte encodings Minimize number of bytes used
Bit-level encodings

Minimize number of bits used

Encoding types

There are 2 types of encodings:

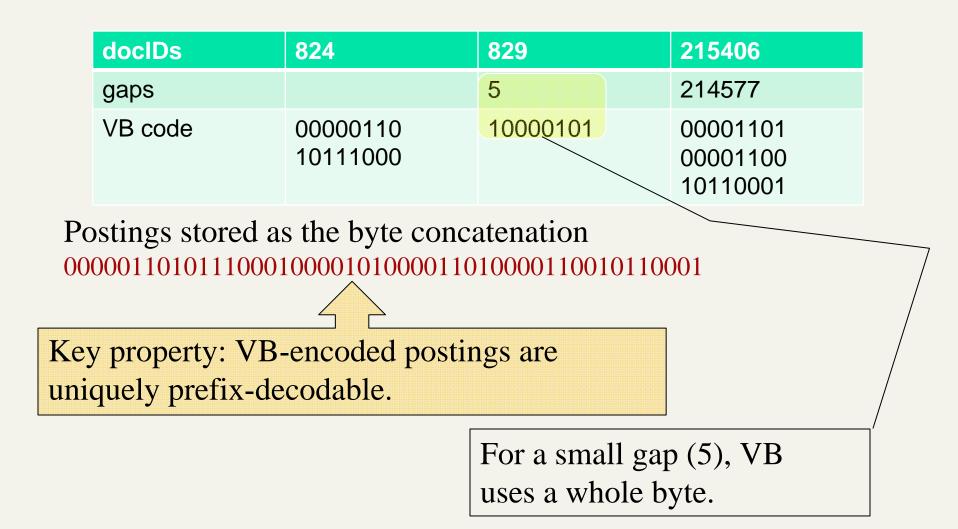
Variable byte encodings
 Minimize number of bytes used
 Bit-level endodings

Minimize number of bits used

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a <u>continuation</u> bit c
- If G ≤ 127, binary-encode it in the 7 available bits and set c =1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to
 1 (c=1) and for the other bytes c = 0.

Example



Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps – nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).

Encoding types

There are 2 types of encodings:

Variable byte encodings Minimize number of bytes used
Bit-level encodings

Minimize number of bits used

Encoding types

There are 2 types of encodings:

- Variable byte encodings
 Minimize number of bytes used
- Bit-level encodings
 Minimize number of bits used

γ (gamma) codes for gap encoding

- Represent a gap G as the pair <*length,offset*>
- *length* is in unary and uses $\lfloor \log_2 G \rfloor + 1$ bits to specify the length of the binary encoding of
- offset = $G 2^{\lfloor \log_2 G \rfloor}$ in binary.

Recall that the unary encoding of x is a sequence of x 1's followed by a 0.

Unary code

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 40 is
- Unary code for 80 is:
- This doesn't look promising, but....

γ codes

- We can compress better with <u>bit-level</u> codes
 - The γ code is the best known of these.
- Represent a gap G as a pair length and offset
- offset is G in binary, with the leading bit cut off
 - For example $13 \Rightarrow 1101 \Rightarrow 101$
- *length* is the length of offset
 - For 13 (offset 101), this is 3.
- We encode *length* with *unary code*: 1110.
- γ code of 13 is the concatenation of *length* and *offset*: 1110101

γ codes for gap encoding

- e.g., 9 represented as <1110,001>.
- 2 is represented as <10,0>.
- Exercise: does zero have a γ code?

Exercise

- Given the following sequence of γ –coded gaps, reconstruct the postings sequence:
- 1110001110101011111101101111011

From these γ -decode and reconstruct gaps, then full postings.

Gamma code examples

number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	111111110	11111111	11111110,1111111
1025	11111111110	00000000	1111111110,000000001
		1	

γ code properties

- *G* is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - Length of offset is $\lfloor \log G \rfloor$ bits
 - Length of length is $\lfloor \log G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, log₂ G
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

What we've just done

- Encoded each gap as tightly as possible, to within a factor of 2.
- For better tuning (and a simple analysis) need a handle on the <u>distribution</u> of gap values.

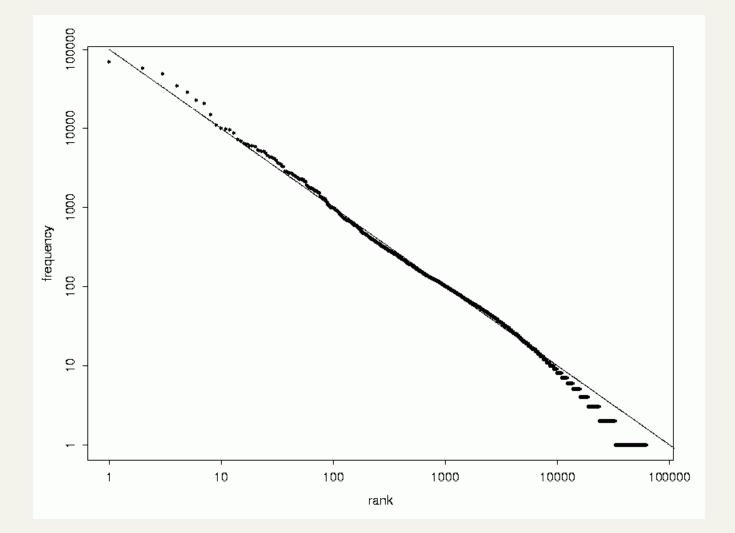
Analysis

- To analyze the space used we need to know the distribution of the word frequencies
- This approximately follows Zipf's law

Zipf's law

- The *i*-th most frequent term has frequency proportional to 1/i
- Use this for a crude analysis of the space used by our postings file pointers
 - Not yet ready for analysis of dictionary space

Zipf's law log-log plot



Rough analysis based on Zipf

- The *i*-th most frequent term has relative frequency proportional to $\frac{1}{i}$

- Let this relative frequency be ^c/_i
 Then ^{M(=400K)} ^c/_i = 1
 The *M*-th Harmonic number is $H_M = \sum_{i=1}^{M} \frac{1}{i} \approx \ln M$

• Thus
$$c = \frac{1}{H_M}$$
 which is $\approx \frac{1}{\ln M} = \frac{1}{\ln 400K} \approx \frac{1}{13}$

So the *i*-th most frequent term has frequency roughly $rac{c}{i} pprox rac{1}{13i}$

Postings analysis contd.

Expected number of occurrences of the *i* th most frequent term in a doc of length L = 200 is:

$$L\frac{c}{i} \approx L\frac{13}{i} = 200\frac{13}{i} \approx \frac{15}{i}$$

• Let $Q = Lc \approx 15$

- Then the Q most frequent terms are likely to occur in every document.
- The second Q most frequent terms are likely to occur in every 2 documents.
- Now imagine the term-document incidence matrix with rows sorted in decreasing order of term frequency:

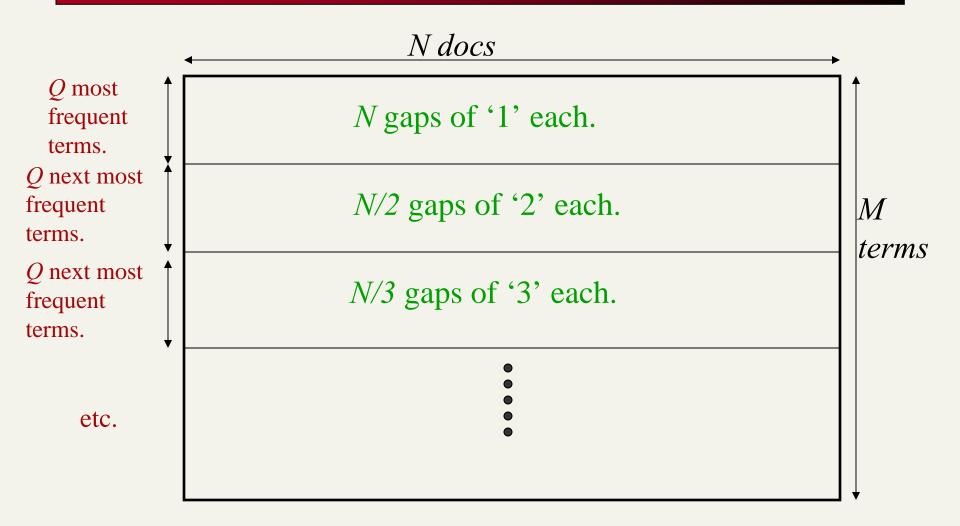
Postings analysis contd.

Expected number of occurrences of the *i* th most frequent term in a doc of length L = 200 is:

$$L\frac{c}{i} \approx L\frac{13}{i} = 200\frac{13}{i} \approx \frac{15}{i}$$

- Let $Q = Lc \approx 15$
- Then the Q most frequent terms are likely to occur in every document.
- The second Q most frequent terms are likely to occur in every 2 documents.
- Now imagine the term-document incidence matrix with rows sorted in decreasing order of term frequency:

Rows by decreasing frequency



Q-row blocks

- In the *j*-th of these Q-row blocks, we have Q rows each with Q/*i* gaps of *i* each.
- Encoding a gap of *i* takes us $\log_2 i + 1 \approx \log_2 i$ bits
- So such a row uses space

$$\approx \frac{2N\log_2 i}{i}$$
 bits.

• For the entire block:

$$\approx \frac{2NQ\log_2 i}{i} = \frac{2 \cdot 800,000 \cdot 15\log_2 i}{i} = \frac{2.4 \cdot 10^7 \log_2 i}{i}$$
 bits

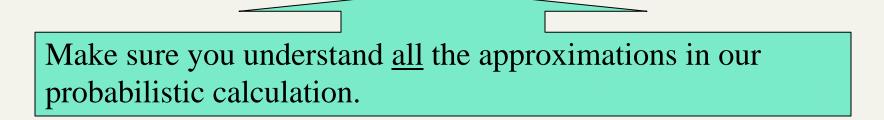
Total:

2

$$\approx \sum_{j=1}^{M/Q} \frac{2.4 \cdot 10^7 \log_2 i}{i} = \sum_{j=1}^{400,000/15} \frac{2.4 \cdot 10^7 \log_2 i}{i} = 1.8 \cdot 10^9 \text{ bits} = 225 \text{GB}$$

Exercise

- So we've taken 1GB of text and produced from it a 225MB index that can handle Boolean queries!
- It is an approximation. In practice, if we try γ encoding for RCV1 we compress it to 101MB



Caveats

- Assumes Zipf's law applies to occurrence of terms in docs.
- All gaps for a term taken to be the same.
- Does not talk about query processing.
- This is not the entire space for our index:
 - does not account for dictionary storage
 - as we get further, we'll store even more stuff in the index

Exercise

How would you adapt the space analysis for γ – coded indexes to the scheme using continuation bits?

Exercise (harder)

- How would you adapt the analysis for the case of positional indexes?
- Intermediate step: forget compression. Adapt the analysis to estimate the number of positional postings entries.

γ seldom used in practice

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be slow
- Variable byte encoding is aligned and thus potentially more efficient
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, $k = 4$	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

Resources

IIR Chapters 3.1, 5