
Web Information Retrieval

Lecture 4
Dictionaries, Index Compression

Recap: lecture 2,3

 Stemming, tokenization etc.
 Faster postings merges
 Phrase queries
 Index construction

This lecture

 Dictionary data structure
 Index compression

Entire data structure

Sec. 3.1

alice

ant

bad

bed

bus

cat

dog

Postings list for “alice”

Postings list for “ant”

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

D
ic

tio
na

ry

A naïve dictionary
 An array of records:

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

 How do we quickly look up elements at query time?

Sec. 3.1

Exercises

 Is binary search really a good idea?
 What are the alternatives?

Dictionary data structures
 Two main choices:

 Hashtables
 Trees

 Some IR systems use hashtables, some trees

Sec. 3.1

Hashtables
 Each vocabulary term is hashed to an integer

 (We assume you’ve seen hashtables before)
 Pros:

 Lookup is faster than for a tree: O(1)
 Cons:

 No easy way to find minor variants:
 judgment/judgement

 No prefix search [tolerant retrieval]
 If vocabulary keeps growing, need to occasionally do

the expensive operation of rehashing everything

Sec. 3.1

Root
a-m n-z

a-hu hy-m n-sh si-z

a
a
r
d
v
a
r
k

h
u
y
g
e
n
s

s
i
c
k
l
e

z
y
g
o
t

Tree: binary tree

Tree: B-tree

 Definition: Every internal nodel has a number of
children in the interval [a,b] where a, b are
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1

Trees
 Simplest: binary tree
 More usual: B-trees
 Trees require a standard ordering of characters and hence

strings … but we typically have one
 Pros:

 Solves the prefix problem (terms starting with hyp)
 Cons:

 Slower: O(log M) [and this requires balanced tree]
 Rebalancing binary trees is expensive

 But B-trees mitigate the rebalancing problem

Sec. 3.1

Why compression (in general)?
 Use less disk space

 Saves a little money
 Keep more stuff in memory

 Increases speed
 Increase speed of data transfer from disk to memory

 [read compressed data | decompress] is faster than
[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use

Ch. 5

Why compression for inverted
indexes?
 Dictionary

 Make it small enough to keep in main memory
 Make it so small that you can keep some postings

lists in main memory too
 Postings file(s)

 Reduce disk space needed
 Decrease time needed to read postings lists from disk
 Large search engines keep a significant part of the

postings in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes

Ch. 5

Compression: Two alternatives

 Lossless compression: all information is
preserved, but we try to encode it compactly
 What IR people mostly do

 Lossy compression: discard some information
 Using a stopword list can be viewed this way
 Techniques such as Latent Semantic Indexing

(later) can be viewed as lossy compression
 One could prune from postings entries unlikely to

turn up in the top k list for query on word
 Especially applicable to web search with huge numbers of

documents but short queries (e.g., Carmel et al. SIGIR
2002)

Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
T non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2

DICTIONARY COMPRESSION

Sec. 5.2

Why compress the dictionary?
 Search begins with the dictionary
 We want to keep it in memory
 Memory footprint competition with other applications
 Embedded/mobile devices may have very little

memory
 Even if the dictionary isn’t in memory, we want it to

be small for a fast search startup time
 So, compressing the dictionary is important

Sec. 5.2

Dictionary storage - first cut
 Array of fixed-width entries

 ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2

Fixed-width terms are wasteful
 Most of the bytes in the Term column are wasted –

we allot 20 bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or

hydrochlorofluorocarbons.

 Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for

estimating the dictionary size?
 Ave. dictionary word in English: ~8 characters

 How do we use ~8 characters per dictionary term?
 Short words dominate token counts but not type

average.

Sec. 5.2

Compressing the term list:
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.

Sec. 5.2

Space for dictionary as a string
 4 bytes per term for Freq.
 4 bytes per term for pointer to Postings.
 3 bytes per term pointer
 Avg. 8 bytes per term in term string
 400K terms x 19 7.6 MB (against 11.2MB for

fixed width)

 Now avg. 11
 bytes/term,
 not 20.

Sec. 5.2

Blocking
 Store pointers to every kth term string.

 Example below: k=4.
 Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2

Front coding
 Front-coding:

 Sorted words commonly have long common prefix –
store differences only

 (for last k-1 in a block of k)
8automata8automate9automatic10automation

8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2

RCV1 dictionary compression
summary

Technique Size in
MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2

Entire data structure

Sec. 3.1

alice

ant

bad

bed

bus

cat

dog

Postings list for “alice”

Postings list for “ant”

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

D
ic

tio
na

ry

Details (no compression)

Sec. 3.1

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

Term Freq. Postings ptr.

alice 56,265

… …

ant 658,452

… …

3 19 25 33 48 57 70 71 89 …

6 10 22 40 46 66 69 87 94 …

Details (no compression)

Sec. 3.1

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

Term Freq. Postings ptr.

alice 56,265

… …

ant 658,452

… …

3 19 25 33 48 57 70 71 89 …

6 10 22 40 46 66 69 87 94 …

Details (dictionary compression)

Sec. 3.1

Term
pointer

Freq. Postings ptr.

 56,265

… …

 658,452

… …

…alicantealicealien…anotherantante…dog…

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

3 19 25 33 48 57 70 71 89 …

6 10 22 40 46 66 69 87 94 …

POSTINGS COMPRESSION

Sec. 5.2

Postings compression
 The postings file is much larger than the dictionary,

factor of at least 10.
 Key desideratum: store each posting compactly.
 A posting for our purposes is a docID.
 For Reuters (800,000 documents), we would use 32

bits per docID when using 4-byte integers.
 Alternatively, we can use log2 800,000 20 bits per

docID.
 Our goal: use far fewer than 20 bits per docID.

Sec. 5.3

Storage analysis

 First will consider space for postings pointers
 Basic Boolean index only

 Devise compression schemes
 Then will do the same for dictionary
 No analysis for positional indexes, etc.

Postings: two conflicting forces
 A term like arachnocentric occurs in maybe one

doc out of a million – we would like to store this
posting using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 20
bits/posting is too expensive.
 Prefer 0/1 bitmap vector in this case

Sec. 5.3

Postings file entry

 Store list of docs containing a term in increasing
order of doc id.
 Brutus: 33,47,154,159,202 …

 Consequence: suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps encoded with far fewer than 20
bits.

Postings file entry

 Store list of docs containing a term in increasing
order of doc id.
 Brutus: 33,47,154,159,202 …

 Consequence: suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps encoded with far fewer than 20
bits.

Postings file entry

 Store list of docs containing a term in increasing
order of doc id.
 Brutus: 33,47,154,159,202 …

 Consequence: suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps encoded with far fewer than 20
bits.

Variable encoding

 For arachnocentric, will use ~20 bits/gap entry.
 For the, will use ~1 bit/gap entry.
 If the average gap for a term is G, want to use

~log2G bits/gap entry.
 Key challenge: encode every integer (gap) with ~

as few bits as needed for that integer.

Three postings entries

Sec. 5.3

Variable length encoding
 Aim:

 For arachnocentric, we will use ~20 bits/gap entry.
 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use
~log2G bits/gap entry.

 Key challenge: encode every integer (gap) with
about as few bits as needed for that integer.

 This requires a variable length encoding
 Variable length codes achieve this by using short

codes for small numbers

Sec. 5.3

Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level encodings
Minimize number of bits used

Sec. 5.3

Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level endodings
Minimize number of bits used

Sec. 5.3

Variable Byte (VB) codes
 For a gap value G, we want to use close to the

fewest bytes needed to hold log2 G bits
 Begin with one byte to store G and dedicate 1 bit in

it to be a continuation bit c
 If G ≤ 127, binary-encode it in the 7 available bits

and set c =1
 Else encode G’s lower-order 7 bits and then use

additional bytes to encode the higher order bits
using the same algorithm

 At the end set the continuation bit of the last byte to
1 (c =1) – and for the other bytes c = 0.

Sec. 5.3

Example

docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101

00001100
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Sec. 5.3

Other variable unit codes
 Instead of bytes, we can also use a different “unit of

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).
 Variable byte alignment wastes space if you have

many small gaps – nibbles do better in such cases.
 Variable byte codes:

 Used by many commercial/research systems
 Good low-tech blend of variable-length coding and

sensitivity to computer memory alignment matches
(vs. bit-level codes, which we look at next).

Sec. 5.3

Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level encodings
Minimize number of bits used

Sec. 5.3

Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level encodings
Minimize number of bits used

Sec. 5.3

 (gamma) codes for gap encoding

 Represent a gap G as the pair <length,offset>
 length is in unary and uses log2G +1 bits to specify

the length of the binary encoding of
 offset = G - 2log2G in binary.

Length Offset

Recall that the unary encoding of x is
a sequence of x 1’s followed by a 0.

Unary code
 Represent n as n 1s with a final 0.
 Unary code for 3 is 1110.
 Unary code for 40 is
110 .
 Unary code for 80 is:
111

11111111111111111111111111111111111110

 This doesn’t look promising, but….

 codes
 We can compress better with bit-level codes

 The code is the best known of these.
 Represent a gap G as a pair length and offset
 offset is G in binary, with the leading bit cut off

 For example 13 1101 101
 length is the length of offset

 For 13 (offset 101), this is 3.
 We encode length with unary code: 1110.
 code of 13 is the concatenation of length and

offset: 1110101

Sec. 5.3

 codes for gap encoding

 e.g., 9 represented as <1110,001>.
 2 is represented as <10,0>.
 Exercise: does zero have a code?

Exercise

 Given the following sequence of coded gaps,
reconstruct the postings sequence:

1110001110101011111101101111011

From these decode and reconstruct gaps,
then full postings.

Gamma code examples

number length offset -code
0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 000000000

1
11111111110,0000000001

Sec. 5.3

 code properties
 G is encoded using 2 log G + 1 bits

 Length of offset is log G bits
 Length of length is log G + 1 bits

 All gamma codes have an odd number of bits
 Almost within a factor of 2 of best possible, log2 G

 Gamma code is uniquely prefix-decodable, like VB
 Gamma code can be used for any distribution
 Gamma code is parameter-free

Sec. 5.3

What we’ve just done

 Encoded each gap as tightly as possible, to
within a factor of 2.

 For better tuning (and a simple analysis) - need a
handle on the distribution of gap values.

Analysis

 To analyze the space used we need to know the
distribution of the word frequencies

 This approximately follows Zipf’s law

Zipf’s law

 The i-th most frequent term has frequency
proportional to 1/i

 Use this for a crude analysis of the space used
by our postings file pointers
 Not yet ready for analysis of dictionary space

Zipf’s law log-log plot

Rough analysis based on Zipf

 The i-th most frequent term has relative frequency
proportional to

 Let this relative frequency be
 Then
 The M-th Harmonic number is

 Thus which is

 So the i-th most frequent term has frequency roughly

Postings analysis contd.

 Expected number of occurrences of the i th most
frequent term in a doc of length L = 200 is:

 Let Q = Lc 15
 Then the Q most frequent terms are likely to

occur in every document.
 The second Q most frequent terms are likely to

occur in every 2 documents.
 Now imagine the term-document incidence

matrix with rows sorted in decreasing order of
term frequency:

Postings analysis contd.

 Expected number of occurrences of the i th most
frequent term in a doc of length L = 200 is:

 Let Q = Lc 15
 Then the Q most frequent terms are likely to

occur in every document.
 The second Q most frequent terms are likely to

occur in every 2 documents.
 Now imagine the term-document incidence

matrix with rows sorted in decreasing order of
term frequency:

Rows by decreasing frequency
N docs

M
terms

Q most
frequent
terms.

Q next most
frequent
terms.
Q next most
frequent
terms.

etc.

N gaps of ‘1’ each.

N/2 gaps of ‘2’ each.

N/3 gaps of ‘3’ each.

Q-row blocks

 In the j-th of these Q-row blocks, we have Q rows
each with Q/i gaps of i each.

 Encoding a gap of i takes us
bits

 So such a row uses space bits.

 For the entire block:

 Total:

Exercise

 So we’ve taken 1GB of text and produced from it
a 225MB index that can handle Boolean queries!

 It is an approximation. In practice, if we try
encoding for RCV1 we compress it to 101MB

Make sure you understand all the approximations in our
probabilistic calculation.

Caveats

 Assumes Zipf’s law applies to occurrence of
terms in docs.

 All gaps for a term taken to be the same.
 Does not talk about query processing.
 This is not the entire space for our index:

 does not account for dictionary storage
 as we get further, we’ll store even more stuff in the

index

Exercise

 How would you adapt the space analysis for
coded indexes to the scheme using continuation
bits?

Exercise (harder)

 How would you adapt the analysis for the case of
positional indexes?

 Intermediate step: forget compression. Adapt the
analysis to estimate the number of positional
postings entries.

 seldom used in practice
 Machines have word boundaries – 8, 16, 32, 64 bits

 Operations that cross word boundaries are slower
 Compressing and manipulating at the granularity of

bits can be slow
 Variable byte encoding is aligned and thus

potentially more efficient
 Regardless of efficiency, variable byte is

conceptually simpler at little additional space cost

Sec. 5.3

RCV1 compression

Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, encoded 101.0

Sec. 5.3

Resources

 IIR Chapters 3.1, 5

