
Web Information Retrieval

Lecture 4
Dictionaries, Index Compression



Recap: lecture 2,3

 Stemming, tokenization etc.
 Faster postings merges
 Phrase queries
 Index construction



This lecture

 Dictionary data structure
 Index compression



Entire data structure
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A naïve dictionary
 An array of records:

char[20]   int Postings *
20 bytes   4/8 bytes        4/8 bytes  

 How do we quickly look up elements at query time?
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Exercises

 Is binary search really a good idea?
 What are the alternatives?



Dictionary data structures
 Two main choices:

 Hashtables
 Trees

 Some IR systems use hashtables, some trees
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Hashtables
 Each vocabulary term is hashed to an integer

 (We assume you’ve seen hashtables before)
 Pros:

 Lookup is faster than for a tree: O(1)
 Cons:

 No easy way to find minor variants:
 judgment/judgement

 No prefix search [tolerant  retrieval]
 If vocabulary keeps growing, need to occasionally do 

the expensive operation of rehashing everything
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Tree: binary tree



Tree: B-tree

 Definition: Every internal nodel has a number of 
children in the interval [a,b] where a, b are 
appropriate natural numbers, e.g., [2,4].

a-hu
hy-m

n-z
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Trees
 Simplest: binary tree
 More usual: B-trees
 Trees require a standard ordering of characters and hence 

strings … but we typically have one
 Pros:

 Solves the prefix problem (terms starting with hyp)
 Cons:

 Slower: O(log M)  [and this requires balanced tree]
 Rebalancing binary trees is expensive

 But B-trees mitigate the rebalancing problem

Sec. 3.1



Why compression (in general)?
 Use less disk space

 Saves a little money
 Keep more stuff in memory

 Increases speed
 Increase speed of data transfer from disk to memory

 [read compressed data | decompress] is faster than     
[read uncompressed data]

 Premise: Decompression algorithms are fast
 True of the decompression algorithms we use

Ch. 5



Why compression for inverted 
indexes?
 Dictionary

 Make it small enough to keep in main memory
 Make it so small that you can keep some postings 

lists in main memory too
 Postings file(s)

 Reduce disk space needed
 Decrease time needed to read postings lists from disk
 Large search engines keep a significant part of the 

postings in memory.
 Compression lets you keep more in memory

 We will devise various IR-specific compression schemes
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Compression: Two alternatives

 Lossless compression: all information is 
preserved, but we try to encode it compactly
 What IR people mostly do

 Lossy compression: discard some information
 Using a stopword list can be viewed this way
 Techniques such as Latent Semantic Indexing 

(later) can be viewed as lossy compression
 One could prune from postings entries unlikely to 

turn up in the top k list for query on word
 Especially applicable to web search with huge numbers of 

documents but short queries (e.g., Carmel et al. SIGIR 
2002)



Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
T                non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?
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DICTIONARY COMPRESSION
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Why compress the dictionary?
 Search begins with the dictionary
 We want to keep it in memory
 Memory footprint competition with other applications
 Embedded/mobile devices may have very little 

memory
 Even if the dictionary isn’t in memory, we want it to 

be small for a fast search startup time
 So, compressing the dictionary is important

Sec. 5.2



Dictionary storage - first cut
 Array of fixed-width entries

 ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search
structure

20 bytes 4 bytes each
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Fixed-width terms are wasteful
 Most of the bytes in the Term column are wasted –

we allot 20 bytes for 1 letter terms.
 And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons.

 Written English averages ~4.5 characters/word.
 Exercise: Why is/isn’t this the number to use for 

estimating the dictionary size?
 Ave. dictionary word in English: ~8 characters

 How do we use ~8 characters per dictionary term?
 Short words dominate token counts but not type 

average.
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Compressing the term list: 
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

Store dictionary as a (long) string of characters:
Pointer to next word shows end of current word
Hope to save up to 60% of dictionary space.
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Space for dictionary as a string
 4 bytes per term for Freq.
 4 bytes per term for pointer to Postings.
 3 bytes per term pointer
 Avg. 8 bytes per term in term string
 400K terms x 19  7.6 MB (against 11.2MB for 

fixed width)

 Now avg. 11
 bytes/term,
 not 20.
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Blocking
 Store pointers to every kth term string.

 Example below: k=4.
 Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

 Save 9 bytes
 on 3
 pointers.

Lose 4 bytes on
term lengths.
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Front coding
 Front-coding:

 Sorted words commonly have long common prefix –
store differences only

 (for last k-1 in a block of k)
8automata8automate9automatic10automation

8automat*a1e2ic3ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.
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RCV1 dictionary compression 
summary

Technique Size in 
MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9
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Entire data structure
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Details (no compression)
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Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

Term Freq. Postings ptr.

alice 56,265  

… …  

ant 658,452  

… …  
 

 

3 19 25 33 48 57 70 71 89 …

6 10 22 40 46 66 69 87 94 …



Details (no compression)
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Details (dictionary compression)
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Term 
pointer 

Freq. Postings ptr.

 56,265  

… …  

  658,452  

… …  
 

 

…alicantealicealien…anotherantante…dog…

Postings list for “bad”

Postings list for “bed”

Postings list for “dog”

Postings list for “bus”

Postings list for “cat”

3 19 25 33 48 57 70 71 89 …

6 10 22 40 46 66 69 87 94 …



POSTINGS COMPRESSION
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Postings compression
 The postings file is much larger than the dictionary, 

factor of at least 10.
 Key desideratum: store each posting compactly.
 A posting for our purposes is a docID.
 For Reuters (800,000 documents), we would use 32 

bits per docID when using 4-byte integers.
 Alternatively, we can use log2 800,000  20 bits per 

docID.
 Our goal: use far fewer than 20 bits per docID.
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Storage analysis

 First will consider space for postings pointers
 Basic Boolean index only

 Devise compression schemes
 Then will do the same for dictionary
 No analysis for positional indexes, etc.



Postings: two conflicting forces
 A term like arachnocentric occurs in maybe one 

doc out of a million – we would like to store this 
posting using log2 1M ~ 20 bits.

 A term like the occurs in virtually every doc, so 20 
bits/posting is too expensive.
 Prefer 0/1 bitmap vector in this case 
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Postings file entry

 Store list of docs containing a term in increasing 
order of doc id.
 Brutus: 33,47,154,159,202 …

 Consequence: suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps encoded with far fewer than 20 
bits.
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Postings file entry

 Store list of docs containing a term in increasing 
order of doc id.
 Brutus: 33,47,154,159,202 …

 Consequence: suffices to store gaps.
 33,14,107,5,43 …

 Hope: most gaps encoded with far fewer than 20 
bits.



Variable encoding

 For arachnocentric, will use ~20 bits/gap entry.
 For the, will use ~1 bit/gap entry.
 If the average gap for a term is G, want to use 

~log2G bits/gap entry.
 Key challenge: encode every integer (gap) with ~ 

as few bits as needed for that integer.



Three postings entries
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Variable length encoding
 Aim:

 For arachnocentric, we will use ~20 bits/gap entry.
 For the, we will use ~1 bit/gap entry.

 If the average gap for a term is G, we want to use 
~log2G bits/gap entry.

 Key challenge: encode every integer (gap) with 
about as few bits as needed for that integer.

 This requires a variable length encoding
 Variable length codes achieve this by using short 

codes for small numbers

Sec. 5.3



Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level encodings
Minimize number of bits used
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Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level endodings
Minimize number of bits used
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Variable Byte (VB) codes
 For a gap value G, we want to use close to the 

fewest bytes needed to hold log2 G bits
 Begin with one byte to store G and dedicate 1 bit in 

it to be a continuation bit c
 If G ≤ 127, binary-encode it in the 7 available bits 

and set c =1
 Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 
using the same algorithm

 At the end set the continuation bit of the last byte to 
1 (c =1) – and for the other bytes c = 0.
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Example

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 

10111000 
10000101 00001101 

00001100 
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.
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Other variable unit codes
 Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).
 Variable byte alignment wastes space if you have 

many small gaps – nibbles do better in such cases.
 Variable byte codes:

 Used by many commercial/research systems
 Good low-tech blend of variable-length coding and 

sensitivity to computer memory alignment matches 
(vs. bit-level codes, which we look at next).
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Encoding types
There are 2 types of encodings:

 Variable byte encodings
Minimize number of bytes used

 Bit-level encodings
Minimize number of bits used
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 (gamma) codes for gap encoding

 Represent a gap G as the pair <length,offset>
 length is in unary and uses log2G +1 bits to specify 

the length of the binary encoding of
 offset = G - 2log2G in binary.

Length Offset

Recall that the unary encoding of x is
a sequence of x 1’s followed by a 0.



Unary code
 Represent n as n 1s with a final 0.
 Unary code for 3 is 1110.
 Unary code for 40 is
11111111111111111111111111111111111111110 .
 Unary code for 80 is:
1111111111111111111111111111111111111111111

11111111111111111111111111111111111110

 This doesn’t look promising, but….



 codes
 We can compress better with bit-level codes

 The  code is the best known of these.
 Represent a gap G as a pair length and offset
 offset is G in binary, with the leading bit cut off

 For example 13  1101  101
 length is the length of offset

 For 13 (offset 101), this is 3.
 We encode length with unary code: 1110.
  code of 13 is the concatenation of length and 

offset: 1110101
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 codes for gap encoding

 e.g., 9 represented as <1110,001>.
 2 is represented as <10,0>.
 Exercise: does zero have a code?



Exercise

 Given the following sequence of  coded gaps, 
reconstruct the postings sequence:

1110001110101011111101101111011

From these decode and reconstruct gaps,
then full postings. 



Gamma code examples

number length offset -code
0 none
1 0 0
2 10 0 10,0
3 10 1 10,1
4 110 00 110,00
9 1110 001 1110,001

13 1110 101 1110,101
24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 000000000

1
11111111110,0000000001

Sec. 5.3



 code properties
 G is encoded using 2 log G + 1 bits

 Length of offset is log G bits
 Length of length is log G + 1 bits

 All gamma codes have an odd number of bits
 Almost within a factor of 2 of best possible, log2 G

 Gamma code is uniquely prefix-decodable, like VB
 Gamma code can be used for any distribution
 Gamma code is parameter-free
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What we’ve just done

 Encoded each gap as tightly as possible, to 
within a factor of 2.

 For better tuning (and a simple analysis) - need a 
handle on the distribution of gap values.



Analysis

 To analyze the space used we need to know the 
distribution of the word frequencies

 This approximately follows Zipf’s law



Zipf’s law

 The i-th most frequent term has frequency 
proportional to 1/i

 Use this for a crude analysis of the space used 
by our postings file pointers
 Not yet ready for analysis of dictionary space



Zipf’s law log-log plot



Rough analysis based on Zipf

 The i-th most frequent term has relative frequency 
proportional to

 Let this relative frequency be
 Then
 The M-th Harmonic number is

 Thus      which is 

 So the i-th most frequent term has frequency roughly



Postings analysis contd.

 Expected number of occurrences of the i th most 
frequent term in a doc of length L = 200 is:

 Let Q = Lc  15
 Then the Q most frequent terms are likely to 

occur in every document.
 The second Q most frequent terms are likely to 

occur in every 2 documents.
 Now imagine the term-document incidence 

matrix with rows sorted in decreasing order of 
term frequency:



Postings analysis contd.

 Expected number of occurrences of the i th most 
frequent term in a doc of length L = 200 is:

 Let Q = Lc  15
 Then the Q most frequent terms are likely to 

occur in every document.
 The second Q most frequent terms are likely to 

occur in every 2 documents.
 Now imagine the term-document incidence 
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term frequency:



Rows by decreasing frequency
N docs

M
terms

Q most
frequent
terms.

Q next most
frequent
terms.
Q next most
frequent
terms.

etc.

N gaps of ‘1’ each.

N/2 gaps of ‘2’ each.

N/3 gaps of ‘3’ each.



Q-row blocks

 In the j-th of these Q-row blocks, we have Q rows 
each with Q/i gaps of i each.

 Encoding a gap of i takes us
bits

 So such a row uses space                        bits. 

 For the entire block:

 Total:



Exercise

 So we’ve taken 1GB of text and produced from it 
a 225MB index that can handle Boolean queries!

 It is an approximation. In practice, if we try 
encoding for RCV1 we compress it to 101MB

Make sure you understand all the approximations in our 
probabilistic calculation.



Caveats

 Assumes Zipf’s law applies to occurrence of 
terms in docs.

 All gaps for a term taken to be the same.
 Does not talk about query processing.
 This is not the entire space for our index:

 does not account for dictionary storage
 as we get further, we’ll store even more stuff in the 

index



Exercise

 How would you adapt the space analysis for  
coded indexes to the scheme using continuation 
bits?



Exercise (harder)

 How would you adapt the analysis for the case of 
positional indexes?

 Intermediate step: forget compression. Adapt the 
analysis to estimate the number of positional 
postings entries.



 seldom used in practice
 Machines have word boundaries – 8, 16, 32, 64 bits

 Operations that cross word boundaries are slower
 Compressing and manipulating at the granularity of 

bits can be slow
 Variable byte encoding is aligned and thus 

potentially more efficient
 Regardless of efficiency, variable byte is 

conceptually simpler at little additional space cost
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RCV1 compression

Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, encoded 101.0

Sec. 5.3



Resources

 IIR Chapters 3.1, 5


