Web Information Retrieval

Lecture 3
Index Construction

Plan

= This time:
= Index construction

Index construction

s How do we construct an index?

= What strategies can we use with limited
main memory?

RCV1: Our collection for this
lecture

= Shakespeare’s collected works definitely aren’t large
enough for demonstrating many of the points in this
course.

= The collection we’ll use isn’t really large enough
either, but it’s publicly available and is at least a
more plausible example.

= As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

= This Is one year of Reuters newswire (part of 1995
and 1996)

A Reuters RCV1 document

REUTERS i}

You are here: Home » News » SciEnce » Article

Gotoa Section: LS. International Business Markests Politics Entertainment Technology Sports Oddly Enout

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2005 3:20am ET

Email This Article | Print This Article | Reprints
r-l_-_n;i L
SYDMEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Reuters RCV1 statistics

symbol statistic value

N documents 800,000
L avg. # tokens per doc 200

M terms (= word types) 400,000

avg. # bytes per token 6

(incl. spaces/punct.)

avg. # bytes per token 4.5

(without spaces/punct.)
avg. # bytes perterm 7.5
T non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Recall IR 1 index constructior: ™"

did

I Rt

= Documents are parsed to extract words and

these are saved with the Document ID.

Doc 1

Doc 2 —

| did enact Julius
Caesar | was killed
I' the Capitol;
Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

julius
caesar
I

was
killed
i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

)
o
o
3+

NDNDNDNDNNNMNDNNNMNDNNNMNNNPRPPRPRPRPPRPPRPRPRPPRPRPEPREEPR

O
o
3)
3+

Key step R

2

T T 1 be 2
enact 1-brutus 1

julius 1 brutus 2

= After all documents have caesar ! cepitol !
been parsed, the inverted file was 1 >

. killed 1 caesar 2

IS sorted by terms. 1 1 did 1

the 1 enact 1

capitol 1 hath 1

4 brutus 1 I 1

killed 1 [1

We focus on this sort step. me ! ' L
We have 100M items to sort. i o [!
be 2 killed 1

with 2 let 2

caesar 2 me 1

the 2 noble 2

noble 2 so 2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2

Index construction

= As we build up the index, cannot exploit compression
tricks

s Parse docs one at a time.
= Final postings for any term — incomplete until the end.

= (actually you can exploit compression, but this becomes a lot
more complex)

= At 10-12 bytes per postings entry, demands several
temporary gigabytes
= T =100,000,000 in the case of RCV1

= SO ... we can do this in memory in 2011, but
typical collections are much larger. E.g., the New
York Times provides an index of >150 years of
newswire

System parameters for design
- OO0
= Disk seek ~ 10 milliseconds

= Block transfer from disk ~ 1 microsecond per
byte (following a seek)
= All other ops ~ 10 microseconds

» E.g., compare two postings entries and decide
their merge order

Bottleneck
-

= Parse and build postings entries one doc at a
time

= Now sort postings entries by term (then by doc
within each term)

= Doing this with random disk seeks would be too
slow — must sort T=100M records

If every comparison took 2 disk seeks, and T items could be
sorted with T log, T comparisons, how long would this take?

Sorting with fewer disk seeks

s 12-byte (4+4+4) records (term, doc, freq).
= These are generated as we parse docs.

= Must now sort 100M such 12-byte records by
term.

s Define a Block|~ 10M|such records
= can “easily” f%couple INto memory.
= Will have|10 |such blocks to start with.

= Will sort within blocks first, then merge the blocks
Into one long sorted order.

Sorting 10 blocks of 10M records

= First, read each block and sort within:
= Quicksort takes 2n In n expected steps
= Inour case 2 x (10M In 10M) steps

m EXxercise: estimate total time to read each block
from disk and quicksort it.

= 10 times this estimate - gives us 10 sorted runs
of 10M records each.

= Need 2 copies of data on disk, throughout.

BSBINDEXCONSTRUCTION()

1 n—Q0

2 while (all documents have not been processed)
3 don+—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, f,)

7 MERGEBLOCKS(f1,. .., fn; fmerged)

Merging 10 sorted runs

= Merge tree of log,10= 4 layers.

= During each layer, read into memory runs in

blocks of 10M, merge, write back.

Merged run.

1 2
3 4
Runs being \
merged. — = |

Merge tree

Sorted runs.

JaTas

How to merge the sorted runs?

= But it is more efficient to do a multi-way merge, where you are
reading from all blocks simultaneously

= Providing you read decent-sized chunks of each block into
memory and then write out a decent-sized output chunk, then
you're not killed by disk seeks

Distributed indexing

.
= For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster
= Individual machines are fault-prone

= Can unpredictably slow down or fail

= How do we exploit such a pool of machines?

Web search engine data centers

= Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

s Data centers are distributed around the world.

= Estimate: Google ~1 million servers, 3 million
processors/cores (Gartner 2007)

Web search engine data centers

= Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

s Data centers are distributed around the world.

= Estimate: Google ~1 million servers, 3 million
processors/cores (Gartner 2007)

= Use of MapReduce

= An architecture for distributed computing
= We will cover it in the labs

Resources

= |IR Chapters 4.1, 4.2

