
Web Information Retrieval

Lecture 3
Index Construction



Plan

 This time:
 Index construction



Index construction

 How do we construct an index?
 What strategies can we use with limited 

main memory?



RCV1: Our collection for this 
lecture
 Shakespeare’s collected works definitely aren’t large 

enough for demonstrating many of the points in this 
course.

 The collection we’ll use isn’t really large enough 
either, but it’s publicly available and is at least a 
more plausible example.

 As an example for applying scalable index 
construction algorithms, we will use the Reuters 
RCV1 collection.

 This is one year of Reuters newswire (part of 1995 
and 1996)

Sec. 4.2



A Reuters RCV1 document

Sec. 4.2



Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
T                non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2



 Documents are parsed to extract words and 
these are saved with the Document ID.

I did enact Julius
Caesar I was killed 
i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index constructionTerm Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2



Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

 After all documents have 
been parsed, the inverted file 
is sorted by terms. 

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2



Index construction

 As we build up the index, cannot exploit compression 
tricks
 Parse docs one at a time.
 Final postings for any term – incomplete until the end.
 (actually you can exploit compression, but this becomes a lot 

more complex)
 At 10-12 bytes per postings entry, demands several 

temporary gigabytes
 T = 100,000,000 in the case of RCV1

 So … we can do this in memory in 2011, but 
typical collections are much larger.  E.g., the New 
York Times provides an index of >150 years of 
newswire



System parameters for design

 Disk seek ~ 10 milliseconds
 Block transfer from disk ~ 1 microsecond per 

byte (following a seek)
 All other ops ~ 10 microseconds

 E.g., compare two postings entries and decide 
their merge order



Bottleneck

 Parse and build postings entries one doc at a 
time

 Now sort postings entries by term (then by doc 
within each term)

 Doing this with random disk seeks would be too 
slow – must sort T=100M records

If every comparison took 2 disk seeks, and T items could be
sorted with T log2T comparisons, how long would this take?



Sorting with fewer disk seeks

 12-byte (4+4+4) records (term, doc, freq).
 These are generated as we parse docs.
 Must now sort 100M such 12-byte records by 

term.
 Define a Block ~ 10M such records

 can “easily” fit a couple into memory.
 Will have 10 such blocks to start with.

 Will sort within blocks first, then merge the blocks 
into one long sorted order.



Sorting 10 blocks of 10M records

 First, read each block and sort within: 
 Quicksort takes 2n ln n expected steps
 In our case 2 x (10M ln 10M) steps

 Exercise: estimate total time to read each block Exercise: estimate total time to read each block 
from disk and from disk and quicksortquicksort it.it.

 10 times this estimate - gives us 10 sorted runs
of 10M records each.

 Need 2 copies of data on disk, throughout.



Sec. 4.2



Merging 10 sorted runs

 Merge tree of log210= 4 layers.
 During each layer, read into memory runs in 

blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.



Merge tree

…

…

Sorted runs.

1 2 109



How to merge the sorted runs?
 But it is more efficient to do a multi-way merge, where you are 

reading from all blocks simultaneously
 Providing you read decent-sized chunks of each block into 

memory and then write out a decent-sized output chunk, then 
you’re not killed by disk seeks

Sec. 4.2



Distributed indexing
 For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster
 Individual machines are fault-prone

 Can unpredictably slow down or fail
 How do we exploit such a pool of machines?

Sec. 4.4



Web search engine data centers
 Web search data centers (Google, Bing, Baidu) 

mainly contain commodity machines.
 Data centers are distributed around the world.
 Estimate: Google ~1 million servers, 3 million 

processors/cores (Gartner 2007)

Sec. 4.4



Web search engine data centers
 Web search data centers (Google, Bing, Baidu) 

mainly contain commodity machines.
 Data centers are distributed around the world.
 Estimate: Google ~1 million servers, 3 million 

processors/cores (Gartner 2007)

 Use of MapReduce
 An architecture for distributed computing
 We will cover it in the labs

Sec. 4.4



Resources

 IIR Chapters 4.1, 4.2


