
Web Information Retrieval

Lecture 3
Index Construction

Plan

 This time:
 Index construction

Index construction

 How do we construct an index?
 What strategies can we use with limited

main memory?

RCV1: Our collection for this
lecture
 Shakespeare’s collected works definitely aren’t large

enough for demonstrating many of the points in this
course.

 The collection we’ll use isn’t really large enough
either, but it’s publicly available and is at least a
more plausible example.

 As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

 This is one year of Reuters newswire (part of 1995
and 1996)

Sec. 4.2

A Reuters RCV1 document

Sec. 4.2

Reuters RCV1 statistics
symbol statistic value
N documents 800,000
L avg. # tokens per doc 200
M terms (= word types) 400,000

avg. # bytes per token 6
(incl. spaces/punct.)

avg. # bytes per token 4.5
(without spaces/punct.)

avg. # bytes per term 7.5
T non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Sec. 4.2

 Documents are parsed to extract words and
these are saved with the Document ID.

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall IIR 1 index constructionTerm Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Key step

 After all documents have
been parsed, the inverted file
is sorted by terms.

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

Index construction

 As we build up the index, cannot exploit compression
tricks
 Parse docs one at a time.
 Final postings for any term – incomplete until the end.
 (actually you can exploit compression, but this becomes a lot

more complex)
 At 10-12 bytes per postings entry, demands several

temporary gigabytes
 T = 100,000,000 in the case of RCV1

 So … we can do this in memory in 2011, but
typical collections are much larger. E.g., the New
York Times provides an index of >150 years of
newswire

System parameters for design

 Disk seek ~ 10 milliseconds
 Block transfer from disk ~ 1 microsecond per

byte (following a seek)
 All other ops ~ 10 microseconds

 E.g., compare two postings entries and decide
their merge order

Bottleneck

 Parse and build postings entries one doc at a
time

 Now sort postings entries by term (then by doc
within each term)

 Doing this with random disk seeks would be too
slow – must sort T=100M records

If every comparison took 2 disk seeks, and T items could be
sorted with T log2T comparisons, how long would this take?

Sorting with fewer disk seeks

 12-byte (4+4+4) records (term, doc, freq).
 These are generated as we parse docs.
 Must now sort 100M such 12-byte records by

term.
 Define a Block ~ 10M such records

 can “easily” fit a couple into memory.
 Will have 10 such blocks to start with.

 Will sort within blocks first, then merge the blocks
into one long sorted order.

Sorting 10 blocks of 10M records

 First, read each block and sort within:
 Quicksort takes 2n ln n expected steps
 In our case 2 x (10M ln 10M) steps

 Exercise: estimate total time to read each block Exercise: estimate total time to read each block
from disk and from disk and quicksortquicksort it.it.

 10 times this estimate - gives us 10 sorted runs
of 10M records each.

 Need 2 copies of data on disk, throughout.

Sec. 4.2

Merging 10 sorted runs

 Merge tree of log210= 4 layers.
 During each layer, read into memory runs in

blocks of 10M, merge, write back.

Disk

1

3 4

2
2

1

4

3

Runs being
merged.

Merged run.

Merge tree

…

…

Sorted runs.

1 2 109

How to merge the sorted runs?
 But it is more efficient to do a multi-way merge, where you are

reading from all blocks simultaneously
 Providing you read decent-sized chunks of each block into

memory and then write out a decent-sized output chunk, then
you’re not killed by disk seeks

Sec. 4.2

Distributed indexing
 For web-scale indexing (don’t try this at home!):

must use a distributed computing cluster
 Individual machines are fault-prone

 Can unpredictably slow down or fail
 How do we exploit such a pool of machines?

Sec. 4.4

Web search engine data centers
 Web search data centers (Google, Bing, Baidu)

mainly contain commodity machines.
 Data centers are distributed around the world.
 Estimate: Google ~1 million servers, 3 million

processors/cores (Gartner 2007)

Sec. 4.4

Web search engine data centers
 Web search data centers (Google, Bing, Baidu)

mainly contain commodity machines.
 Data centers are distributed around the world.
 Estimate: Google ~1 million servers, 3 million

processors/cores (Gartner 2007)

 Use of MapReduce
 An architecture for distributed computing
 We will cover it in the labs

Sec. 4.4

Resources

 IIR Chapters 4.1, 4.2

