
Ricerca dell’Informazione nel Web

Aris Anagnostopoulos

Docenti

 Dr. Aris Anagnostopoulos
http://aris.me
Stanza B118
Ricevimento: Inviate email a:
aris@cs.brown.edu

 Laboratorio:
Dr.ssa Ilaria Bordino (Yahoo! Barcelona)
Ing. Ida Mele (DIS)

Program
1. Information Retrieval: Indexing and Querying of document

databases
2. Vector space model
3. Search Engines: Architecture, Crawling, Ranking e

Compression
4. Classification and Clustering
5. Projects (lab)

Materiale didattico

Christopher D. Manning, Prabhakar Raghavan and Hinrich
Schueze, Introduction to Information Retrieval,
Cambridge University Press, 2007.

http://nlp.stanford.edu/IR-book/

Exam

 L'esame prevede lo svolgimento di una prova scritta sui
temi affrontati nel corso e di un progetto a scelta del
candidato.
Il progetto deve essere consegnato in occasione della
prova scritta ad eccezione che per gli studenti che
sostengono il primo appello del corso per cui la consegna
e' possibile anche in occasione del secondo appello.

Web page

 http://aris.me
and follow the link about teaching

 Slides and other class material

 Announcements:
We will be posting announcements about
changes etc. at the web page. Please check it
often!

Web Information Retrieval

Lecture 1
Introduction

Query

 Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

 Could grep all of Shakespeare’s plays for Brutus
and Caesar, then strip out lines containing
Calpurnia?
 Slow (for large corpora)
 NOT Calpurnia is non-trivial
 Other operations (e.g., find the phrase Romans

and countrymen) not feasible

Term-document incidence

1 if play contains
word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Incidence vectors

 So we have a 0/1 vector for each term.
 To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) 
bitwise AND.

 110100 AND 110111 AND 101111 = 100100.

Answers to query

 Antony and Cleopatra, Act III, Scene ii
 Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
 When Antony found Julius Caesar dead,
 He cried almost to roaring; and he wept
 When at Philippi he found Brutus slain.

 Hamlet, Act III, Scene ii
 Lord Polonius: I did enact Julius Caesar I was killed i' the
 Capitol; Brutus killed me.

Bigger corpora

 Consider n = 1M documents, each with about 1K
terms.

 Avg 6 bytes/term incl spaces/punctuation
 6GB of data in the documents.

 Say there are m = 500K distinct terms among
these.

Can’t build the matrix

 500K x 1M matrix has half-a-trillion 0’s and 1’s.
 But it has no more than one billion 1’s.

 matrix is extremely sparse.
 What’s a better representation?

 We only record the 1 positions.

Why?

Inverted index

 For each term T, must store a list of all
documents that contain T.

 Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

What happens if the word Caesar is
added to document 14?

Inverted index

 Linked lists generally preferred to arrays
 Dynamic space allocation
 Insertion of terms into documents easy
 Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings
Sorted by docID (more later on why).

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

 Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Indexer steps

 Sort by terms.
Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Core indexing step.

 Multiple term entries in a
single document are
merged.

 Frequency information is
added.

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Why frequency?
Will discuss later.

 The result is split into a Dictionary file and a
Postings file.

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

 Where do we pay in storage?

Doc # Freq
2 1
2 1
1 1
2 1
1 1
1 1
2 2
1 1
1 1
2 1
1 2
1 1
2 1
1 1
1 2
2 1
1 1
2 1
2 1
1 1
2 1
2 1
2 1
1 1
2 1
2 1

Term N docs Tot Freq
ambitious 1 1
be 1 1
brutus 2 2
capitol 1 1
caesar 2 3
did 1 1
enact 1 1
hath 1 1
I 1 2
i' 1 1
it 1 1
julius 1 1
killed 1 2
let 1 1
me 1 1
noble 1 1
so 1 1
the 2 2
told 1 1
you 1 1
was 2 2
with 1 1

Pointers

Terms

Will quantify
the storage,
later.

The index we just built

 How do we process a query?
 What kinds of queries can we process?

 Which terms in a doc do we index?
 All words or only “important” ones?

 Stopword list: terms that are so common that
they’re ignored for indexing.
 e.g., the, a, an, of, to …
 language-specific.

Today’s
focus

Query processing

 Consider processing the query:
Brutus AND Caesar
 Locate Brutus in the Dictionary;

 Retrieve its postings.

 Locate Caesar in the Dictionary;
 Retrieve its postings.

 “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

 Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.
Crucial: postings sorted by docID.

Merge algorithm

 Ex: Term0 AND Term1

 Index i0 traverse Post0[0,…,length0-1]
 Index i1 traverse Post1[0,…,length1-1]
i0=i1=0
Do While i0<length0 and i1<length1{

If Post1(i1) = Post0(i0)
then hit!; i0=i0+1; i1=i1+1
else If Post1(i1) < Post0(i0) then i1=i1+1

else i0=i0+1
}

Boolean queries: Exact match

 Queries using AND, OR and NOT together with
query terms
 Views each document as a set of words
 Is precise: document matches condition or not.

 Primary commercial retrieval tool for 3 decades.
 Professional searchers (e.g., Lawyers) still like

Boolean queries:
 You know exactly what you’re getting.

More general merges

 What about the following queries:

Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

Ex: Term0 AND NOT Term1

 Index i0 traverse Post0[0,…,length0-1]
 Index i1 traverse Post1[0,…,length1-1]
i0=i1=0
Do While i0<length0 and i1<length1

If Post1(i1) > Post0(i0) then hit Post0(i0)! ; i0=i0+1
else If Post1(i1) = Post0(i0) then i0=i0+1; i1=i1+1

else i1=i1+1
}

Do While i0<length0 hit Post0(i0) ! ; i0=i0+1

Ex: Term0 OR NOT Term1

 Index i0 traverse Post0[0,…,length0-1]
 Index i1 traverse Post1[0,…,length1-1]

i0=i1=0
Do While i0<length0 and i1<length1

If Post1(i1) >Post0(i0) then i0=i0+1;
else if Post1(i1) =Post0(i0) then

hit (Post1(i1-1), Post1(i1)] ! i0=i0+1; i1=i1+1
else hit (Post1(i1-1), Post1(i1))! ; i1=i1+1

}
Do While i1<length1 hit (Post1(i1-1), Post1(i1))! ; i1=i1+1
hit(Post1(length1-1), maxdocid)!;

Merging

What about an arbitrary Boolean formula?
(Brutus OR Caesar) AND NOT
(Antony OR Cleopatra)
 Can we always merge in “linear” time?
 Can we do better?

Query optimization

 What is the best order for query processing?
 Consider a query that is an AND of t terms.
 For each of the t terms, get its postings, then

AND together.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

 Process in order of increasing freq:
 start with smallest set, then keep cutting further.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

This is why we kept
freq in dictionary

Execute the query as (Caesar AND Brutus) AND Calpurnia.

More general optimization

 e.g., (madding OR crowd) AND (ignoble
OR strife)

 Get freq’s for all terms.
 Estimate the size of each OR by the sum

of its freq’s (conservative).
 Process in increasing order of OR sizes.

Exercise

 Recommend a query
processing order for

(tangerine OR trees) AND
(marmalade OR skies) AND
(kaleidoscope OR eyes)

 Term Freq
 eyes 213312
 kaleidoscope 87009
 marmalade 107913
 skies 271658
 tangerine 46653
 trees 316812

Query processing exercises

 If the query is friends AND romans AND (NOT
countrymen), how could we use the freq of
countrymen?

 Exercise: Extend the merge to an arbitrary
Boolean query. Can we always guaranteee
execution in time linear in the total postings size?
(Think of Conjunctive normal form)

 Hint: Begin with the case of a Boolean formula
query: each query term appears only once in the
query.

Query processing Excercise
 Can you process the query with only one traversal if all posting

lists are in main memory?
 Ex: Term0 AND Term1 …. AND Termn-1

 Index iktraverse Postk[0,…,lengthk-1]
Ik=0, k=1,..,n
k=1
Do While ik-1mod n<lengthk-1mod n

Do While Post(ik) <Post(ik-1 mod n) ik=ik+1
If Postk(ik) = Postk-1(ik-1 mod n) = ……=Postk-n+1mod n (ik-n+1 mod n)

then hit! ik=ik+1, k=1,..,n
else k=k+1 mod n

Query processing exercises
Process in linear time a CNF formula:

(C11OR C12... OR C1k1) AND …..AND
(Cn1OR Cn2… OR Cnkn)

Algorithm:
 If Cij= NOT Term then use the Doc id intervals not

containing Term while traversing the posting list of Term
 For each (Ci1OR Ci2... OR Ciki) implicitely consider the

posting interval list Ii union of the intervals for every Term
Cij while traversing the posting lists

 Find Doc ids contained in all intervals I1,….,In

Need all posting lists in main memory at the same time.

Digression: food for thought

 What if a doc consisted of components
 Each component has its own access control list.

 Your search should get a doc only if your query
meets one of its components that you have
access to.

 More generally: doc assembled from
computations on components
 e.g., in Lotus databases or in content

management systems
 Welcome to the real world … more later.

Beyond term search

 What about phrases?
 Proximity: Find Gates NEAR Microsoft.

 Need index to capture position information in
docs. More later.

 Zones in documents: Find documents with
(author = Ullman) AND (text contains automata).

Evidence accumulation

 1 vs. 0 occurrence of a search term
 2 vs. 1 occurrence
 3 vs. 2 occurrences, etc.

 Need term frequency information in docs

Ranking search results

 Boolean queries give inclusion or exclusion of
docs.

 Need to measure proximity from query to each
doc.

 Whether docs presented to user are singletons,
or a group of docs covering various aspects of
the query.

Structured vs unstructured data

 Structured data tends to refer to information in
“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.

Unstructured data

 Typically refers to free text
 Allows

 Keyword queries including operators
 More sophisticated “concept” queries e.g.,

 find all web pages dealing with drug abuse

 Classic model for searching text documents

Semi-structured data

 But in fact almost no data is “unstructured”
 E.g., this slide has distinctly identified zones such

as the Title and Bullets
 Facilitates “semi-structured” search such as

 Title contains data AND Bullets contain search

More sophisticated semi-
structured search

 Title is about Object Oriented Programming AND
Author something like stro*rup

 where * is the wild-card operator
 Issues:

 how do you process “about”?
 how do you rank results?

 The focus of XML search.

Clustering and classification

 Given a set of docs, group them into clusters
based on their contents.

 Given a set of topics, plus a new doc D, decide
which topic(s) D belongs to.

The web and its challenges

 Unusual and diverse documents
 Unusual and diverse users, queries,

information needs
 Beyond terms, exploit ideas from social

networks
 link analysis, clickstreams ...

Resources for today’s lecture

 IIR Chapter 1
 Shakespeare: http://www.rhymezone.com/shakespeare/
 Try the neat browse by keyword sequence feature!

