Seminar of Computer Networks Homework 1

You can do the homeworks alone or in groups of two students. Write a single solution with both names.

Make sure that the solutions are typewritten or clear to read.

Hand in your solutions and keep a copy for yourself. After the due date we will post the solutions and in the final exam we will ask you to explain us what were your mistakes.

Due: 28/4/2010, before the class.

Problem 1. We roll two standard six-sided dice. Find the probability of the following events, assuming that the outcomes of the rolls are independent.

- 1. The two dice show the same number.
- 2. The number that appears on the first die is larger than the number on the second.
- 3. The sum of the dice outcomes is even.
- 4. The product of the dice outcomes is even.
- 5. The product of the dice outcomes is a perfect square.

Problem 2. Consider the Erdős-Rényi $G_{n,p}$ random-graph model.

- 1. What is the probability that a graph created according to $G_{n,p}$ contains only one triangle (three nodes connected with each other and no other edges exist)?
- 2. What is the probability that all the n nodes are connected in a line (with no other edges present)?
- **Problem 3.** Show that for the Watts-Strogatz small-world model for p = 0 and as $k, n \to \infty$ the clustering coefficient approaches 3/4.
- **Problem 4.** In the class we showed that given a directed graph G = (V, E), the function f(S) = "number of nodes reachable from S", for $S \subseteq V$, is submodular. Show that finding the set S that maximizes the number of nodes reachable from S subject to the constraint $|S| \leq k$ is NP-hard.
- **Problem 5.** Consider a graph G = (V, E), with $V = V_1 \cup V_2 \cup V_3 \cup V_4$, each $|V_i| = n'$, and all the V_i s disjoint, so that |V| = n = 4n'. Assume that for each V_i a fraction p' of the edges exist, that is, $m' = p' \cdot \binom{n'}{2}$ out of the $\binom{n'}{2}$ edges within V_i exist, and that for each V_i, V_j with $i \neq j$ a fraction p'' of edges exist (i.e., $m'' = p'' \cdot n'^2$ out of the n'^2 possible edges exist). Consider the following two partitionings of the graph:
 - 1. There are four partitions, with every V_i in each own partition
 - 2. There are two partitions, V_1 and V_2 in one and V_3 and V_4 in the other.

Show that the modularity of the first partition is asymptotically higher from the modularity of the second if and only if p' > p''. Explain whether this result is expected.