Influence Maximization in the Cascade Model

Finding Most Influential Nodes

 We want to find the set of nodes that can cause the highest effect to the network

Applications:

- Viral marketing: Find a set of users to give coupons
- Network mining: Find out most important/infectious blogs

Influence Maximization

- We are given a graph, and probabilities on the edges.
- f(S): Expected # active nodes at the end with the cascade model if we start with a set S of active nodes
- Problem: Find set S: $|S| \le k$ that maximizes f: $\max_{S \subset V: |S| \le k} f(S)$

The problem is NP-hard (reduction from set cover)

Can we show that f is nondecreasing and submodular?

Submodular Functions

- Let V be a set of elements
- Let f be a set function:

$$f: V \rightarrow R$$

- f is nondecreasing if $f(S \cup \{v\}) f(S) \ge 0$
- f is **submodular** if

$$f(SU\{v\}) - f(S) \ge f(TU\{v\}) - f(T),$$
 for $S \subset T$.

Submodular Functions II

- Submodularity is similar to concavity (but for sets)
- Diminishing returns

S: set of nodes

R(S): Set of nodes reachable from S

f(S) = |R(S)| = # nodes reachable from S

Here:

$$f(S) = 6$$

S: set of nodes

R(S): Set of nodes reachable from S

f(S) = |R(S)| = # nodes reachable from S

Here:

$$f(S) = 6$$

$$f(S \cup \{v\}) = 10$$

$$f(S \cup \{v\}) - f(S) = 4$$

S: set of nodes

R(S): Set of nodes reachable from S

f(S) = |R(S)| = # nodes reachable from S

Here:

$$f(S) = 6$$

$$f(S \cup \{v\}) = 10$$

$$f(S \cup \{v\}) - f(S) = 4$$

$$f(T) = 11$$

S: set of nodes

R(S): Set of nodes reachable from S

f(S) = |R(S)| = # nodes reachable from S

Here:

$$f(S) = 6$$

$$f(S\cup\{v\})=10$$

$$f(S \cup \{v\}) - f(S) = 4$$

$$f(T) = 11$$

$$f(T \cup \{v\}) = 14$$

$$f(T \cup \{v\}) - f(T) = 3$$

$$f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$$

Aris Anagnostopoulos, Online Social Networks and Network Economics

Whatever I gain by adding v to T I also gain by adding v to S

S: set of nodes

R(S): Set of nodes reachable from S

f(S) = |R(S)| = # nodes reachable from S

Here:

$$f(S) = 6$$

$$f(S\cup\{v\})=10$$

$$f(S \cup \{v\}) - f(S) = 4$$

$$f(T) = 11$$

$$f(T \cup \{v\}) = 14$$

$$f(T \cup \{v\}) - f(T) = 3$$

$$f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$$

Aris Anagnostopoulos, Online Social Networks and Network Economics

Submodular Function Maximization

- Consider a set function f: V → R that is nondecreasing and submodular
- We want to find a subset S of k elements from V that maximizes f:

$$\max_{S \subset V: |S| \le k} f(S)$$

- An easy strategy is the greedy:
 - $-S=\emptyset$
 - While (|S| < k)
 - Find an element v that maximizes f(SU{v})
 - $S = SU\{v\}$)
 - Return S
- Theorem. The greedy algorithm gives a $(1-1/e) \approx 0.63$ approximation.

Back to Influence Maximization

- We are given a graph, and probabilities on the edges.
- f(S): Expected # active nodes at the end with the cascade model if we start with a set S of active nodes
- Problem: Find set S: $|S| \le k$ that maximizes f: $\max_{S \subset V: |S| \le k} f(S)$

Can we show that f is nondecreasing and submodular?

If we show it then we can get a (1-1/e) approximation.

- Fix a set S and consider a particular scenario ω of the cascade model .
- $f(S, \omega)$: # active nodes at the end
- Then $f(S) = E[f(S,\omega)]$

- Fix a set S and consider a particular scenario ω of the cascade model .
- $f(S, \omega)$: # active nodes at the end
- Then $f(S) = E[f(S,\omega)]$

- Fix a set S and consider a particular scenario ω of the cascade model .
- $f(S, \omega)$: # active nodes at the end
- Then $f(S) = E[f(S,\omega)]$

- Fix a set S and consider a particular scenario ω of the cascade model .
- $f(S, \omega)$: # active nodes at the end
- Then $f(S) = E[f(S,\omega)]$

Show that $g(S) = f(S, \omega)$ is submodular

- We first show that for a fixed scenario ω , $g(S) = f(S, \omega)$ is submodular.
- To show that we will view the cascading model in a different way

A different view of the process

Another view of the cascading model

The cascading model and the new model give the same set of points in the end

But we already shown that g(S) is submodular

Back to f(S)

- For a fixed ω we showed that the function $g(S) = f(S, \omega)$ is submodular
- But we want to show that

$$f(S) = E[f(S,\omega)]$$

is submodular

• We have:

$$f(S) = E[f(S, \omega)] = \sum_{\omega} \Pr(\omega) \cdot f(S, \omega)$$

- Theorem. A nonnegative linear combination of submodular functions is submodular
- We are DONE