Community Detection



Community Detection:
Partitioning of the
network to partitions
with a lot of edges inside
and with a few with other
partitions

Aris Anagnostopoulos, Online Social Networks and Network Economics
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Web graph
— Can help for finding similar pages
Recommendation systems

— E.g., can recommend movies according based on
friends preferences

Sociology

— Who interacts with whom?
— E.g., Blogosphere
Communication networks
Biology



Aris Anagnostopoulos, Online Social Networks and Network Economics
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Graph Partitioning

— E.g. min-cut

— Minimizing conductance and variants

Hierarchical Clustering

— Agglomerative methods (Bottom-up)

— Divisive methods (Top-down)

Partitional Clustering

— Partition into k clusters so as to optimize some ob
function

— E.g., k-means, k-center, k-median

Spectral Clustering

— Based on spectral properties of the adjacency matrix

— E.g., use Fiedler vector
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A popular divisive method is the algorithm by
Newman and Girvan

Tries to find communities by discovering
weak-ties

Weak ties connect a lot of nodes with a lot of
nodes

This is measured by betweeness
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(Shortest-Path) Betweeness: For each edge
measures in how many shortest path it belongs

Aris Anagnostopoulos, Online Social Networks and Network Economics
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(Shortest-Path) Betweeness: For each edge
measures in how many shortest path it belongs
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e Straightforward way:

— For each pair of nodes compute the shortest paths
in time O(m).

— Total time = O(mn?)

e Faster way: O(mn)
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For each node s compute shortest path tree using BFS (time=0(m))

Simple case: Only one shortest path to each node

e Start from the leaves
e Score of edge =1
e While we have not reached s
e Go upward
e Score of edge =
1 + Sum of score of children

leaves



General case: Multiple paths

MV\\

n Y/
N U\mnj

@Y

weeness

Step 1. Compute # shortest paths

1. The initial vertex s is given distance d; = 0 and a
weight w, = 1.

e}

. Every vertex ¢ adjacent to s is given distance d; =
ds +1 =1, and weight w; = w, = 1.

3. For each vertex j adjacent to one of those vertices i
we do one of three things:

(a) If j has not yet been assigned a distance, it
is assigned distance d; = d; + 1 and weight
'U.-'j = W;.

(b) If j has already been assigned a distance and
d; = d; + 1, then the vertex’s weight is in-
creased by w;, that is w; — w; 4+ w;.

(e) If j has already been assigned a distance and
d; < d; + 1, we do nothing.

4. Repeat from step 3 until no vertices remain that
have assigned distances but whose neighbors do not
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General case: Multiple paths

Step 2. Compute edge score

1. Find every “leaf” vertex t, i.e., a vertex such that
no paths from s to other vertices go though .

1]

. For each vertex i neighboring t assign a score to the
edge from ¢ to i of w;/w;.

3. Now, starting with the edges that are farthest from
the source vertex s—lower down in a diagram such
as Fig. 4b—work up towards s. To the edge from
vertex i to vertex j, with j being farther from s
than ¢, assign a score that is 1 plus the sum of
the scores on the neighboring edges immediately
below it (i.e., those with which it shares a common
vertex), all multiplied by w;/w;.

4. Repeat from step 3 until vertex s is reached.

Aris Anagnostopoulos, Online Social Networks and Network Economics
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e Fori=1tom
— For each node s
e For each edge e compute score(s,e)
— betweeness(e) = Z score(s,e)
— Remove edge with highest betweeness

e Total time O(m?n)
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e At the end we have a dendrogram corresponding to the clustering
e Circles correspond to graph nodes

* As we move up vertices join to form larger communities

e Each level corresponds to a clustering
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We have a dendrogram with m levels and each
level corresponds to a clustering

What is a the best level?
What is a good clustering

Many ways to measure the quality of
clusterings (e.g., k-means)

A popular way for networks is modularity
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e Modularity Q is a score for clustering.
e Consider a partitioning V=(V,, V,, ..., V,)

ZZ(AJV

=1 u,veV

where

e m: # edges

* A,,=1if(uv)eE, 0if not
e d,: degree of node

e Measures how much the edges fall within a cluster compared
with the case that a graph was a random graph
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We compute the modularity for every
level

We stop at the level when modularity is
the highest
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A native Approacnes

 We can use modularity directly and cluster so
as to optimize Q

e Itis NP-hard

e Heuristics
— Greedy

— Connection of modularity with spectral theory
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 Another question we often have is which
nodes are central?

 Many ways we can define central
— Degree centrality
— Betweeness centrality
— Closeness centrality
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 With degree centrality we consider central the
nodes with high degree:

Degree centrality of nodev = d,

n-1
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e Betweeness centrality measures in how many shortest paths a
node belongs

Absolute betweeness centrality of nodev = Z Juw
uwev v Gow

where
g.,.,- # shortest paths between u and w
g, . # shortest paths between u and w passing through v
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Betweeness centrality of node v =
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 With closeness centrality a node is central when
its distance to other nodes is small

1
> d(v,u) -

Closeness centrality of node v = L&Y —
4 1 > d(v,u)

n_l ueV
where

d(v,u): distance between v and u



