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Abstract

Motivation: Disease gene prioritization consists in identifying genes that are likely to be involved in the
mechanisms of a given disease, providing a ranking of such genes. Recently, the research community
has used computational methods to uncover unknown gene–disease associations; these methods range
from combinatorial to machine learning-based approaches. In particular, during the last years, approaches
based on deep learning have provided superior results compared to more traditional ones. Yet, the problem
with these is their inherent black-box structure, which prevents interpretability.
Results: We propose a new methodology for disease gene discovery, which leverages graph-structured
data using graph neural networks (GNNs) along with an explainability phase for determining the ranking of
candidate genes and understanding the model’s output. Our approach is based on a positive–unlabeled
learning strategy, which outperforms existing gene discovery methods by exploiting GNNs in a non-black-
box fashion. Our methodology is effective even in scenarios where a large number of associated genes
need to be retrieved, in which gene prioritization methods often tend to lose their reliability.
Availability: The source code of XGDAG is available on GitHub at: https://github.com/GiDeCarlo/XGDAG
Contact: mastropietro@diag.uniroma1.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction1

Gene–disease association (GDA) discovery is one of the main tasks in2

network medicine. The goal of computational methods in this field is3

to prioritize what genes are more likely to be associated with diseases.4

This is usually performed by leveraging network data, such as protein–5

protein interaction (PPI) networks and gene–disease networks. Among the6

most used PPIs, we find, for instance, BioGRID (Oughtred et al., 2019),7

HuRI (Luck et al., 2020), and STRING (Szklarczyk et al., 2021). In these8

networks, nodes are proteins (or genes) that are connected with each other9

if an interaction exists. For gene discovery purposes, these networks are10

extended with information on disease associations, for which databases11

such as DisGeNET (Piñero et al., 2016, 2020) and eDGAR (Babbi et al.,12

2017) are typically used.13

Many gene detection techniques have been developed over the years.14

Among the most known approaches are DIAMOnD (Ghiassian et al., 2015)15

and DiaBLE (Petti et al., 2019), which rely on the concept of connectivity16

significance for finding new candidate disease genes. Other techniques,17

such as ProDiGe (Mordelet and Vert, 2011) and DOMINO (Quinodoz18

et al., 2017), use machine learning to determine associated genes. Another19

approach, Markov clustering (MCL) (Enright et al., 2002; Sun et al., 2011),20

creates clusters by applying stochastic flow simulation in graphs, and genes21

in the same clusters of associated genes are considered candidates. Another22

line of work uses random walks with restart (RWR) (Köhler et al., 2008;23

Valdeolivas et al., 2019) for the task of gene discovery. GUILD (Guney and24

Oliva, 2012) leverages the paths interconnecting nodes corresponding to25

disease genes to derive topology-based rankings. ToppGene (Chen et al.,26

2009) makes use of a fuzzy similarity measure to compute the similarity27

between pairs of genes based on semantic annotations. Furthermore, gene28

discovery can be framed as a positive–unlabeled (PU) learning problem29

(Bekker and Davis, 2020).30

Differently from classic machine learning scenarios, in which a binary31

dataset consists of positive and negative samples, in PU learning instead32

of negative samples we have a set of unlabeled instances, which can be33

regarded as a set of negative elements and some positive samples that have34

not yet been discovered. Different strategies approach gene discovery as a35

PU learning task by employing two-step techniques, such as PUDI (Yang36
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et al., 2012), EPU (Yang et al., 2014), and, more recently, NIAPU (Stolfi37

et al., 2023).38

Motivated by these previous studies, we frame gene prioritization as39

a PU learning problem. Given its performance, we rely on the NIAPU40

pipeline to define the node features and the label propagation system. Then,41

after the application of NIAPU, we train a GraphSAGE (Hamilton et al.,42

2017) model over the propagated labels. Finally, the explainability phase43

defines the explanation subgraph for associated genes that we use to expand44

the set of candidate genes for further analysis: we make the hypothesis that45

such genes may have newly associated genes, following the connectivity46

significance principle (Ghiassian et al., 2015), according to which a seed47

gene is likely to be connected to other seed genes. At first, we explore48

different explainable artificial intelligence (XAI) methods to determine49

the top-performing ones, and then we compare those selected with several50

state-of-the-art methods for disease gene identification. We call our51

proposed method XGDAG (eXplainable Gene–Disease Associations via52

Graph neural networks).53

To the best of our knowledge, XGDAG is the first method to use54

an XAI-based solution in the context of positive–unlabeled learning for55

disease gene prioritization with GNNs. The main contribution of the work56

lies in the novel use of the explainability results. Commonly, XAI is used57

as a passive tool to support and rationalize model decisions. In our case,58

explainability tools have an active role in the computation of the final59

ranking, given that the new candidate genes are directly extracted from the60

explanation subgraphs (see Section 3.3). This approach drastically diverges61

from previous attempts to use XAI for GNNs for a similar task. Indeed,62

Pfeifer et al., 2022 proposed the use of XAI to weight patient-specific PPIs63

before applying clustering for disease module detection. Even in this case,64

the use of XAI can be regarded as a support tool to enhance the output of65

other methods rather than an active tool to produce the final results.66

2 Data Sources and Processing67

We selected BioGRID (version: 4.4.206) as the PPI network for our68

experiments. We collected GDAs from DisGeNET (Piñero et al.,69

2015, 2016, 2020) (version: 7.0), considering ten diseases: malignant70

neoplasm of breast (disease ID C0006142), schizophrenia (C0036341),71

liver cirrhosis (C0023893), colorectal carcinoma (C0009402), malignant72

neoplasm of prostate (C0376358), bipolar disorder (C0005586),73

intellectual disability (C3714756), drug-induced liver disease (C0860207),74

depressive disorder (C0011581), and chronic alcoholic intoxication75

(C0001973). Disease selection and data cleaning criteria are the same76

as in Stolfi et al., 2023. In particular, we considered diseases with a77

high number of seed genes, to allow for coherent learning of the neural78

network. We filtered the PPI to save interactions only between Homo79

sapiens genes. After isolating the largest connected component of the80

network, we ended up having a PPI consisting of 19,761 genes and81

678,932 undirected links. Regarding GDAs, we removed genes that were82

not in BioGRID, resulting in 1,025 genes for disease C0006142, 832 for83

C0036341, 747 for C0023893, 672 for C0009402, 606 for C0376358, 45184

for C0005586, 431 for C3714756, 320 for C0860207, 279 for C0011581,85

and 255 for C0001973. To train our deep learning model, we considered86

GDAs from the curated set of associations, which contains GDAs from87

reliable sources (Consortium, 2015; Davis et al., 2019; Rehm et al., 2015;88

Martin et al., 2019; Tamborero et al., 2018; Gutiérrez-Sacristán et al.,89

2015). Instead, as we describe in Section 4, for the validation of our90

methodology, we rely on the set of all associations. This is an extension91

of the dataset composed of GDAs gathered from additional sources not92

considered in the curated set (Bundschus et al., 2008, 2010; Bravo et al.,93

2014, 2015), and forms a solid base to evaluate the discovery efficacy94

of computational methods. An in-depth structural analysis of network95

properties is available in the supplementary material.96

3 Methodology97

We frame gene discovery as a PU learning problem. Our method is a three-98

step procedure that consists of (1) applying the NIAPU label propagation99

methodology to assign pseudo-labels to enable proper PU learning, (2)100

training a GNN GraphSAGE model, and (3) using explainability strategies101

for GNNs to compute explanation subgraphs for gene prioritization and102

define new putative disease genes. We now explain these steps, depicted103

in Figure 1.104

3.1 Label Propagation105

Our dataset can be seen as a PU dataset, in which a gene can be associated106

with a disease (positive) or not (unlabeled). Because associations may exist107

but not been discovered yet, it is not safe to mark unknown associations108

as negative. Moreover, PU datasets are usually highly unbalanced. In109

fact, only a small fraction of the entire set of genes in the interactome110

are associated with a given disease. Training on unbalanced datasets can111

negatively impinge on the performance of machine and deep learning112

models, and this results in the need for specific methods for unbalanced113

learning (Wang et al., 2021). For these reasons, label propagation114

procedures can be used to assign pseudo-labels to unlabeled instances,115

with a two-fold benefit: avoid the bias introduced by setting the unlabeled116

instances as negative and obtain a more balanced dataset.117

NIAPU (Stolfi et al., 2023) uses a Markovian diffusion process to118

assign four pseudo-labels to unlabeled genes according to the likelihood119

of association: likely positive (LP), weakly negative (WN), likely negative120

(LN), and reliably negative (RN). To do that, it relies on disease-specific121

features that allow the proper identification of the different classes (the122

positive class P and the pseudo-classes). In particular, it assigns to each123

gene, for each disease, the following features: heat diffusion (Carlin124

et al., 2017), balanced diffusion, NetShort (White and Smyth, 2003), and125

NetRing (Baronchelli and Loreto, 2006). Differently from classic network126

measures (degree, betweenness centrality, etc.), which only depend on the127

graph topology and are the same regardless of the disease considered, these128

features are computed taking into account the seed genes (represented129

by the class P). For this reason, for each disease, we have a different130

set of features assigned to the genes which properly characterize the131

disease itself. The NIAPU label assignment pipeline is composed of six132

core steps. In the first step, a gene similarity matrix is built, relying on133

the aforementioned features. As a second step, the similarity matrix is134

simplified by removing edges with weak connections, excluding them135

from the label propagation process. Third, the starting probabilities for the136

Markovian diffusion process are initialized and the RN set is defined to137

be the set of genes that are furthest from the genes in P. The fourth step is138

the Markov diffusion process itself, which distributes label probabilities139

across the graph. In the fifth step, the stationary distribution of the Markov140

process is used to assign the rest of the pseudo-labels. The sixth and last141

step consists in training a machine learning model (a GNN, in our case)142

on the newly assigned labels. More details on the features used, their143

effectiveness in gene discovery, and the NIAPU algorithm can be found in144

the work of Stolfi et al. (2023) and in the supplementary material.145

3.2 Graph Neural Network Model and Training146

After the label propagation, we obtain a dataset in which previously147

unlabeled items are labeled with the most suitable pseudo-label. We next148

train a GraphSAGE (Hamilton et al., 2017) GNN model. This is an149

inductive learning procedure that learns the embedding of a node assuming150
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Fig. 1: The XGDAG framework. A graph based on a PPI network and enriched with GDA information and node features is fed into a graph neural network. After the network
has been trained, the predictions for the positive (P) genes are explained using an XAI methodology. Next, the nodes that appear in both the explanation subgraph and in the
likely positive (LP) set are marked as candidate genes for prioritization.

that the nodes in the same neighborhood have similar features. It does that151

by learning aggregator functions that generate node embeddings relying152

upon a node’s features and neighbors. A GraphSAGE layer, as defined in153

the PyTorch Geometric implementation we used (Fey and Lenssen, 2019),154

that generates the embedding x′
i for node i, after the application of a155

nonlinear activation function σ, has the following formula:156

x′
i = σ

(
W1xi +W2 ·meanj∈N(i)

xj

)
, (1)

157

where W1 and W2 are the weights learned by the neural network, xi is158

the feature vector for node i, N(i) is the 1-hop neighborhood of node i,159

and xj is the feature vector for the neighbor node j. The mean function160

aggregates information from all the neighboring nodes without applying161

any sampling. In our case, σ is a ReLU function (Fukushima, 1975).162

The use of this GNN is also suitable for dynamic graphs, as it is able to163

generate embeddings of new nodes without the need to retrain the model;164

only node features and neighbor node information is needed. Because a165

single layer aggregates information at a distance of 1-hop and the diameter166

of our network is 7, we employ a 7-layer GraphSAGE GNN to gather the167

information flowing through the whole network. Working with deep GNNs168

may cause oversmoothing (Zhao and Akoglu, 2020), which consists in the169

degradation of the model’s performance as the number of layers increases.170

To guarantee that this does not occur in our case, we tested different171

architectures with different depths, obtaining the best performance with172

7 GraphSAGE layers (the results of the competitive study are available173

in the supplementary material). We trained the model using the Adam174

optimizer (Kingma and Ba, 2015) with learning rate set to 1e − 3 and175

weight decay to 5e − 4 for a maximum of 40,000 epochs, employing an176

early stopping procedure when the loss reaches a plateau. To train the177

model, we split the dataset into training (70%), validation (15%), and test178

sets (15%), maintaining the balance of the classes between the sets. The179

performances of the GNN on the test set are summarized in Table 1.180

Table 1. Average results with standard deviation over the ten diseases for the GNN
model.

label precision recall F1 score

P 0.956 ± 0.033 0.962 ± 0.064 0.958 ± 0.04
LP 0.876 ± 0.082 0.911 ± 0.077 0.888 ± 0.046
WN 0.861 ± 0.068 0.815 ± 0.11 0.831 ± 0.059
LN 0.868 ± 0.046 0.835 ± 0.066 0.85 ± 0.044
RN 0.858 ± 0.055 0.886 ± 0.06 0.871 ± 0.047
macro avg 0.884 ± 0.027 0.882 ± 0.026 0.879 ± 0.028
weighted avg 0.869 ± 0.031 0.863 ± 0.034 0.862 ± 0.035
accuracy 0.863 ± 0.034

3.3 Explainability Phase181

The next step, after the training of the model, is to explain its predictions.182

For that, we have tested several XAI techniques on top of XGDAG. These183

methods output a subgraph of the original graph, the explanation subgraph,184

which contains the most influential nodes for the prediction. Our method185

applies one explainability technique to the positive genes P. For each186

explained node n, we thus obtain the explanation subgraph Gn. Every187

node in Gn has an importance score assigned (which depends on the188

XAI method used). Gn may contain nodes belonging to different pseudo-189

classes. To enhance the accuracy of the results, we filter Gn by keeping190

only the genes that the GNN predicted to be LP, which are more likely to191

be associated genes according to the NIAPU labeling. We thus obtain a192

reduced explanation subgraph, the candidate subgraph GLP
n . We repeat193

this process for every node in P. If a node i appears in more candidate194

subgraphs, it is more likely to be associated with the disease, as per the195

connectivity significance property (Ghiassian et al., 2015). We take this196

into account as follows: we keep track of the number Mi of subgraphs in197

which node i appears and of its cumulative importance score Si, obtained198

by summing all the importance scores sij that node i has in the prediction199

of each node j—we assume that sij = 0 if i is not in Gj . Every gene i is200

then assigned a tuple (Mi, Si). Finally, we obtain a ranking of candidate201

genes by sorting all the genes in the explanation subgraphs according202
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Fig. 2: Graphical representations of the XGDAG prioritization mechanism. The output graph from the GNN is fed into an XAI method. For each P gene, we generate an
explanation subgraph. This contains the nodes that were influential for the prediction of the node as P. We pool the subgraph by filtering out non-LP nodes, obtaining a final
candidate subgraph. sij is the importance score assigned by a given explanation method to i for the prediction of node j. Assuming the cumulative importance score for node
C to be greater than the one of node A (SC > SA), we obtain the gene raking in the picture, with G as the top-ranked node because it appears in two candidate subgraphs.

to (Mi, Si). A graphical representation of the XGDAG prioritization203

mechanism is shown in Figure 2.204

Explainability methods for graph neural networks. In our study, we made205

use of three XAI methods for GNNs. Each one of them relies on a206

different rationale to obtain explanation subgraphs. The first method207

is GNNExplainer (Ying et al., 2019), which established itself as the208

first explanation methodology for GNNs and it is still among the most209

used strategies for explaining graph neural network predictions. It works210

by learning a mask on the adjacency matrix by maximizing mutual211

information. Its output is a subgraph of nodes that are relevant for the212

prediction (along with a subset of node features). Its predictions are edge-213

oriented. Another method we used is GraphSVX (Duval and Malliaros,214

2021). It relies on a linear approximation of the concept of Shapley values215

(Shapley, 1953) from game theory, which here are used as a proxy for216

node importance contribution. The use of Shapley values puts GraphSVX217

explanations on a solid and robust theoretical background. It delivers node-218

centric explanations. Finally, the third strategy is called SubgraphX (Yuan219

et al., 2021). It is the first methods to be focused on the research of220

explanation subgraphs only in terms of connected graphs, evaluating the221

importance that each of them has on the prediction. It exploits a Monte222

Carlo tree search to look for promising coalitions of connected nodes223

and computes a Shapley value approximation for each subgraph. The224

selected one is the subgraph associated to the highest Shapley value. The225

three methods explain the predictions leveraging the three different key226

components of a graph; edges, nodes, and subgraphs, respectively. This227

allows us to have comprehensive explanations of the GNN predictions.228

To use XAI methods as independent tools for prioritization, we employ229

them in a PU learning setting. Indeed, we use them to explain models230

trained on binary PU data, devoid of any prior label propagation. As a231

result, they lack the assistance provided by the classes generated during232

the label propagation phase, which can be considered as a preliminary233

prioritization. Without the assistance of the LP class, the entire explanation234

subgraph is considered for prioritization without any node pooling. This235

introduces noise into the results and reduces the accuracy of the final236

ranking, as shown in Section 4 when comparing XGDAG-based variants237

with standalone XAI tools. In more detail, for any node n, the GLP
n set238

is absent in standalone XAI-based prioritization; instead, we use the set239

GU
n , which includes genes that are present in the explanation subgraph240

and that were predicted as unlabeled (U) by the GNN trained in the binary241

PU setting. Then, we proceed with the scoring and ranking criteria as242

proposed in Section 3.3. As mentioned earlier, using the entire set of genes243

predicted as unlabeled for prioritization introduces noise, as it may result in244

prioritizing genes that are highly unlikely to be associated with the disease,245

specifically the genes that would be predicted as RN by the GNN trained on246

the propagated labels. Conversely, the incorporation of label propagation247

in XGDAG brings additional value by facilitating the learning through248

pseudo-classes and assisting in the discovery of candidates through LP249

genes.250

4 Results251

To validate the obtained results, we performed both a numerical evaluation252

and an enrichment analysis. With the former, we compared, in terms of253

F1 score, the retrieval effectiveness of XGDAG with other methodologies254

for gene discovery; we compute the F1 score taking into consideration255

the number of associated genes in the set of all associations that each256

method is able to detect. Seed genes present in the curated set are not257

considered for this purpose—they were used as positive genes for the258

training. This validation setting allows us to test whether our model is259

able to retrieve genes that had been discovered by previous research. In260

enrichment analysis, we inspected whether the set of genes prioritized261

by XGDAG was connected with the diseases under examination, namely262

whether the genes were enriched in pathways, gene ontologies, or other263

diseases associated with the considered ones.264

4.1 Numerical Evaluation265

First, in Figure 3, we compare the performance of XGDAG against the266

single XAI methods on which it is based, used as standalone tools (here267

we show the F1 score—more comparison metrics are available in the268
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Fig. 3: F1 score (y-axis) comparison for selected diseases (the remaining ones can be found in the supplementary material). The metrics are reported at increasing numbers
of retrieved genes (x-axis). Dashed lines indicate the standalone XAI method and solid lines the XGDAG version. We notice that using explainability techniques on top of a
PU learning prioritization strategy improves significantly the retrieval accuracy of the methods.

supplementary material). Notice that the PU learning-based XAI approach269

achieves higher performances with respect to its plain-explainability270

counterpart. Indeed, the use of the pre-prioritization, obtained with the271

LP set from the label propagation phase, helps in the identification of the272

pool of possible new candidate genes.273

We thus selected the best performing XGDAG variants in terms of274

overall F1 score. Given their at-par performance, we chose the GraphSVX-275

and the GNNExplainer-based approaches. We compared them against276

state-of-the-art methodologies for gene prioritization, namely NIAPU,277

DIAMOnD, MCL, RWR, two variants of GUILD (fFlow and NetCombo),278

and ToppGene. The plots in Figure 4 show that XGDAG is more effective279

and robust than the other strategies. As we increase the number of retrieved280

genes, it is able to keep high the number of associated genes retrieved. On281

the contrary, methodologies such as DIAMOnD may be more effective in282

the retrieval when a small number of candidates are searched. However,283

they lose their reliability when higher numbers of candidate genes are284

considered, as also pointed out by DIAMOnD’s designers (Ghiassian et al.,285

2015). In this, XGDAG proved to be the best solution even when looking286

for larger sets of candidate genes.287

4.1.1 Results on a High-Quality Curated Dataset288

By inspecting the results, we noticed the very high accuracy of DIAMOnD289

on small sets of candidate genes. The dataset we used, even in its curated290

version, contains a relatively high number of associated genes, some of291

them not present in other manually curated datasets. We were interested292

in exploring whether training on datasets with a higher level of curation293

and smaller numbers of associated genes would change these results.294

We performed this additional experiment using the highly curated295

dataset by Ghiassian et al., 2015. This is the dataset on which DIAMOnD296

was trained and evaluated in the original publication. The PPI network used297

here was built considering physical interactions validated experimentally298

and gathered from different sources, as by Menche et al. (2015). The299

GDAs were retrieved from OMIM (Online Mendelian Inheritance in Man)300

(Hamosh et al., 2005) and Genome-Wide Association Studies (GWAS)301

from PheGenI (Ramos et al., 2014). Because of the high-quality level of302

curation of these gene–disease associations and PPI network, they were303

used in several gene prioritization experiments (Petti et al., 2021; De Luca304

et al., 2022; Gentili et al., 2022).305

We used the PPI and the GDAs of the aforementioned dataset, which we306

call OMIM+PheGenI dataset, to train the algorithms. We then validated307

the models on the GDAs from the all associations DisGeNET dataset.308
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(d) Depressive disorder

Fig. 4: F1 score comparison for selected diseases for the two best-performing XGDAG variants (GNNExplainer and GraphSVX) with known gene discovery methodologies.
We notice that when the number of retrieved genes is small the various approaches perform comparably. However, as the number of genes increases, XGDAG remains the most
stable and robust method, whereas most of the compared strategies tend to become less accurate in the retrieval. More diseases can be found in the supplementary material,
together with additional visualizations.
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(a) Malignant neoplasm of breast
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(b) Colorectal carcinoma
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(c) Liver chirrosis

Fig. 5: F1 score comparison for the OMIM+PheGenI dataset (dashed line) and the DisGeNET dataset (solid line). Even for a small number of genes, in this experiment
XGDAG is competitive against DIAMOnD. The performance on the OMIM+PheGenI dataset are far superior than the DisGeNET ones.

The goal was to first train the algorithms on high-quality and unbiased309

data and then test them on an external dataset. For this task, we considered310

the diseases in common between the two datasets: malignant neoplasm of311

breast (C0006142), colorectal carcinoma (C0009402), and liver chirrosis312

(C0023893). A comparative analysis of the F1 score is shown in Figure 5—313

additional metrics can be found in the supplementary material.314

The inspection of the results indicates that training on smaller but better315

curated datasets is beneficial for XGDAG, whereas DIAMOnD suffers316

from training on smaller sets of seed genes. This further highlights the317
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robustness of XGDAG whose results are accurate even when the number318

of seed genes is small. However, the different results obtained when using319

different datasets demonstrate that data quality plays a major role in gene320

discovery and prioritization tasks and that a particular focus should be put321

on the definition of high-quality GDAs and less biased interaction networks322

(Lazareva et al., 2021).323

4.2 Enrichment Analysis324

As a further analysis to enhance the validity of our methodology, we325

checked whether the candidate genes retrieved from XGDAG were326

enriched in biological pathways, gene ontologies (GOs) (Ashburner et al.,327

2000), or other diseases related to the diseases of interest. We provide this328

analysis for the genes of the DisGeNET dataset prioritized by XGDAG-329

GNNExplainer. We considered the top 200 genes in our ranking as a330

reasonable cutoff. We performed the analysis using the Enrichr (Chen331

et al., 2013; Kuleshov et al., 2016; Xie et al., 2021) web tool and selecting332

the most statistically significant results according to Fisher’s exact test.333

For disease C0006142 (malignant neoplasm of breast) several significant334

gene ontologies and pathways were found. Figure 6 shows the ten most335

significant GOs for the biological process domain. Indeed, among the most336

significant GOs retrieved, protein modification was found to be a potential337

biomarker in breast cancer (Jin and Zangar, 2009). Moreover, dysregulated338

programs in DNA transcription are related to certain behaviors in cancer339

cells (Bradner et al., 2017). Furthermore, apoptotic process regulation340

plays an important role in cancer progression and therapies (Reed, 2003;341

Plati et al., 2011; Pfeffer and Singh, 2018). Enrichment analysis proved342

genes retrieved by XGDAG to have meaningful associations to the disease.343

Summarized results for the ten studied diseases providing the most344

enriched pathway, ontology, or associated disease and reference papers345

confirming the findings can be found in the supplementary material.346

Fig. 6: Top 10 significant gene ontologies for disease C0006142 (malignant
neoplasm of breast) in the GO Biological Process 2021 database found with Enrichr.
Breast cancer-related GOs are retrieved, further proving the effectiveness of XGDAG.
Each item is reported with its p-value.

5 Discussion and Conclusions347

In this work, we propose a new methodology, XGDAG, which relies348

on PU learning, GNNs, and explainability to detect novel gene–disease349

associations by providing a prioritization of candidates. XGDAG uses a350

set of effective features defined in previous work (Stolfi et al., 2023) to351

enable PU learning by assigning pseudo-classes to unlabeled instances.352

This information is then leveraged by our GNN, which is able to353

generate network topology-aware embeddings that allow for high accuracy354

predictions. In this context, accurate but black-box models do not provide355

any additional information than what we already know about gene356

associations. Thus, given that the reliability of the explanations will depend357

on the quality of the model itself, an accurate model is the base from which358

we start our explanation phase. The application of several XAI techniques359

(among which GNNExplainer and GraphSVX are the most effective) opens360

the black box on the GNN by determining the most influential nodes for the361

prediction. Some of these nodes are present in the set of genes predicted362

as LP: these nodes are selected as new candidate genes.363

This is a novel use of XAI. Generally, the main goal of explainability364

is to gain insights into the decision process of a model. Diversely, in our365

approach, we exploit XAI methods to draw the final ranking of candidate366

genes, with the added value of having an interpretable output. This is a367

novelty that presents XAI not only as a tool that opens the black box of deep368

neural networks but also as an analysis component directly incorporated369

into the GDA discovery pipeline tasked with producing the final output.370

The method outperforms state-of-the-art methodologies for gene371

discovery demonstrating the effective synergy of PU learning and372

explainability on GNN models. The XGDAG results are stable and robust,373

even considering large numbers of candidate genes.374

It is interesting to point out that by using datasets with an in-depth level375

of manual curation, such as the one by Ghiassian et al. (2015), the retrieval376

performance of XGDAG increases, demonstrating both the robustness of377

the approach and the importance of curated data.378

Additionally, enrichment analysis uncovers associated pathways,379

ontologies, and traits linked to the selected diseases, backing up the380

accuracy of the gene ranking obtained with XGDAG and further proving381

its effectiveness as a gene discovery strategy.382

Our approach is based on the analysis of general graph-structured data,383

so it can be applied in various settings based on network modeling. Future384

directions can concentrate on the application of XGDAG on multiplex385

networks (Halu et al., 2019) and multi-omics data (Krassowski et al.,386

2020). Notably, datasets such as the Omics Discovery Index (Perez-387

Riverol et al., 2017, 2019) and the ConsensusPathDB (Kamburov et al.,388

2009, 2013; Kamburov and Herwig, 2022) combine information from389

proteomics, metabolomics, genomics, and other interaction networks;390

expanding the study to encompass this type of data can further enhance391

the insights acquired through our methodology.392

Finally, our study suggests that efforts can be put into the development393

of PU learning and XAI techniques devoted to GNNs for gene discovery394

purposes, giving the rewarding results that can be obtained by the joint use395

of such methods. The main limitation, as we observed in Section 4.1, is the396

requirement of high-quality data (Lazareva et al., 2021). This is of course397

shared by all data-based computational approaches; however, as more398

genes are discovered and validated, the results will be more trustworthy.399
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