
Finding “Who Is Talking to Whom” in VoIP Networks
via Progressive Stream Clustering

Olivier Verscheure† Michail Vlachos† Aris Anagnostopoulos‡

Pascal Frossard? Eric Bouillet † Philip S. Yu†

† IBM T.J. Watson Research Center
‡ Yahoo! Research

? EPFL

Abstract

Technologies that use the Internet network to deliver
voice communications have the potential to reduce costs
and improve access to communications services around the
world. However, these new technologies pose several chal-
lenges in terms of confidentiality of the conversations and
anonymity of the conversing parties. Call authentication
and encryption techniques provide a way to protect con-
fidentiality, while anonymity is typically preserved by an
anonymizing service (anonymous call).

This work studies the feasibility of revealing pairs of
anonymous and encrypted conversing parties (caller/callee
pair of streams) by exploiting the vulnerabilities inherent
to VoIP systems. In particular, by exploiting the aperiodic
inter-departure time of VoIP packets, we can trivialize each
VoIP stream into a binary time-series. We first define a sim-
ple yet intuitive metric to gauge the correlation between two
VoIP binary streams. Then we propose an effective tech-
nique that progressively pairs conversing parties with high
accuracy and in a limited amount of time. Our metric and
method are justified analytically and validated by experi-
ments on a very large standard corpus of conversational
speech. We obtain impressively high pairing accuracy that
reaches 97% after 5 minutes of voice conversations.

1 Introduction

The International Telecommunications industry is in the
early stages of a migration to Voice over Internet Proto-
col (VoIP). VoIP is a technology that enables the routing
of voice conversations over any IP-based networks such as
the public Internet. The voice data flows over a general-
purpose packet-switched network rather than over the tradi-
tional circuit-switched Public Switched Telephone Network
(PSTN). Market research firms including In-Stat and IDC
predict that 2005-2009 will be the consumer and small busi-
ness VoIP ramp-up period, and migration to VoIP will peak
in the 2010-2014 time frame. Research organization Gart-

ner Inc. recently reported that spending by U.S. companies
and public-sector organizations on VoIP systems is on track
to grow to $903 million in 2005 (up from the $686 million
in 2004). Gartner expects that by 2007,97% of new phone
systems installed in North America to be VoIP or hybrids.

While the migration to VoIP seems inevitable, there are
security risks associated with this technology that are care-
fully being addressed. Eavesdropping is one of the most
common threats in a VoIP environment. Unauthorized in-
terception of audio streams and decoding of signaling mes-
sages can enable the eavesdropper to tap audio streams
in an unsecured VoIP environment. Call authentication
and encryption mechanisms [2, 15] are being deployed to
preserve customers’ confidentiality. Preserving customers’
anonymity is also crucial, which encompasses both the
identity of the people involved in a conversation and the re-
lationship caller/callee (pair of voice streams). Anonymiz-
ing overlay networks such as Onion Routing [7] and Find-
Not.com [16] aim at providing an answer to this problem
by concealing the IP addresses of the conversing parties. A
recent work [14] shows that tracking anonymous peer-to-
peer VoIP calls on the Internet is actually feasible. The key
idea consists in embedding a unique watermark into the en-
crypted VoIP flows of interest by minimally modifying the
departure time of selected packets. This technique trans-
parently compromises the identity of the conversing parties.
However, the authors rely on the strong assumption that one
has access to the customer’s communication device, so that
the watermark can be inserted before the streams of interest
reach the Internet.

This work studies the feasibility of revealing pairs of
anonymousconversing parties (caller/callee pair of streams)
by exploiting the vulnerabilities inherent in VoIP systems.
Using the methods provided in this work, we also note one
seemingly surprising result; that the proposed techniques
are applicable even when the voice packets are encrypted.
While the focus of this work is on VoIP data, the tech-
niques presented here are of independent interest and can
be used for pairing/clustering any type of binary streaming
data. The contributions of the paper function on different

1

0

1

A

B

F

Stream A

Stream F

…

…

Binary Streams

…

…

VAD

Voice Streams

Similarity
Measure

Pairing

Figure 1: Overview of the proposed methodology

levels:

1. We formulate the problem of pairing anonymous and
encrypted VoIP calls.

2. We present an elegant and fast solution for the con-
versation pairing problem, which exploits well estab-
lished notions of complementary speech patterns in
conversational dynamics.

3. Our solution is based on an efficient transformation of
the voice streams into binary sequences, followed by a
progressive clustering procedure.

4. Finally, we verify the accuracy of the proposed solu-
tion on the very large dataset of voice conversations.

The paper is organized as follows. Sections 2 - 5 present
our solution for pairing conversations over any medium
by mapping the problem into a complementary clustering
problem for binary streaming data. We introduce various
intuitive metrics to gauge the correlation between two bi-
nary voice streams and we present effective methods for
progressively pairing conversing parties with high accuracy
within a limited amount of time. Section 6 shows how the
presented solution can be adapted for a VoIP framework,
and demonstrates that encryption schemes do not hinder the
applicability of our approach. Section 7 validates the pre-
sented algorithm by experiments on a very large standard
corpus of conversational speech [8]. Finally, we provide
our concluding remarks in Section 8 and we also instigate
directions for future work.

2 Problem Overview and Methodology

We start with a generic description of the conversation
pairing problem, with the intention of highlighting the key
insights governing our solution. We will later clarify the
required changes so as the following model can be adapted
for the VoIP scenario.

2.1 Pairing Voice Conversations

Let us assume that we are monitoring a setS =
{S1, S2, . . . , Sk} of k voice streams (for now supposek
is even), comprising a total ofk/2 conversations1. Each

1In this paper we will not deal with multi-way conversations.

stream holds one-way of a two-way voice conversation, and
there exists also a homologue voice stream that holds the
other side of the conversation. Our objective is to efficiently
reveal the relationship oftwo-wayconversing parties. For
example, assumeS2 is actually involved in a conversation
with S5. We aim at finding all relationshipsSi ↔ Sj in-
cluding the exampleS2 ↔ S5, such that streamsSi and
Sj correspond to each one-way voice stream of the same
conversation. Our approach does not require an even num-
ber of voice streams and we also do not assume each voice
stream to have a matching pair. Any voice stream without
a corresponding counterpart is referenced to henceforth as
a singletonstream. At the end of the pairing process some
streams may remain unmatched. These will be the voice
streams for which the algorithm either does not have ad-
equate data to identify a match, or is not in a position to
discriminate with high confidence a conversational pair.

The key intuition behind our approach is that convers-
ing parties tend to follow a “complementary” speech pat-
tern. When one speaks, the other listens. This “turn-taking”
of conversation [13] represents a basic rule of communica-
tion, well-established in the fields of psycholinguistics,dis-
course analysis and conversation analysis, and it also mani-
fests under the term of speech “coordination” [4]. Needless
to say, one does not expect a conversation to follow strictly
the aforementioned rule. A conversational speech may well
include portions where both contributers speak or are silent.
Such situations are indeed expected, but in practice they do
not significantly “pollute” the results, since given conver-
sations of adequate length, coordinated speech patterns are
bound to dominate. We will show this more explicitly in
the experimental section, where the robustness of the pro-
posed measures are tested also under conditions of network
latency.

Using the above intuitions, we will follow the subsequent
steps for recognizing pairs of conversations:

1. First, voice streams are converted into binary streams,
indicating the presence of voice (1) and silence (0).

2. Second, we leverage the power of complementary sim-
ilarity measures, for quantifying the degree of coordi-
nation between pairs of streams.

3. Using the derived complementary similarity, we will
employ a progressive clustering approach for deducing
conversational pairs.

2

A schematic of the above steps is given in Figure 1. In
the following section we will first place our approach within
the context of related work.

2.2 Related Work

Recent work that studies certain VoIP vulnerabilities and
has attracted a lot of media attention has appeared in [14].
The authors present techniques for watermarking VoIP traf-
fic, with the purpose of tracking the marked VoIP packets.
For accomplishing that, however, initial access to a user’s
device or computer is required. In this work we achieve
a different goal; that of identifying conversational pairs,
however we do not assume any access to a user’s device.
The only requirement of our approach (more explanations
will be provided later) is the provision of a limited number
of networksniffers, which will capture the incoming (en-
crypted) VoIP traffic.

Relevant to our approach are also recent techniques for
clustering binary streams [11, 10]. These consider clus-
ters of objects and not pairs of streams, which is one of
the core requirements for the application that we examine.
The algorithm presented in this work has the additional ad-
vantage of beingprogressivein nature, returning identified
pairs of streams before the complete execution of the al-
gorithm. In [6], Cormode et al., study the use of binary
similarity measures for comparison streams, and focus on
sketch approximations of the Hamming Norm. This work
examines the use ofcomplementarybinary similarity mea-
sures between streaming data.

The methods presented in this work, exploit and adapt
data-mining techniques for depicting inherent vulnerabili-
ties in VoIP streams, which can potentially compromise the
users’ anonymity. It is interesting to note, that much of re-
cent work in data-mining [9, 5] has focused on how to em-
bed or maintain privacy for various data-mining techniques,
such as clustering, classification, and so on.

In the sections that follow we will provide a concise de-
scription of a Voice Activity Detector. We will also present
intuitivecoordinationmeasures for quantifying the comple-
mentary similarity between binary streams. We put forward
a lightweight pairing technique based on adaptive soft deci-
sions for reduce the pairing errors and avoiding the pairing
of singleton streams. Key requirements include lightweight
processing, quick and accurate identification of the relation-
ships, and resilience to both noise and latency.

3 Voice Activity Detection

The goal of a Voice Activity Detection (VAD) algorithm
is to discriminate between voiced versus unvoiced sections
of a speech stream. We provide only a high-level descrip-
tion of a typical VAD algorithm for reasons of complete-
ness, since it is not the focus of the current work. The
VAD process computes the energy of small overlapping

speech packets (also calledframes, with each frame be-
ing 20-30msec in length), and employs an adaptive energy
threshold that will differentiate the voiced from the un-
voiced frames. The threshold is typically deduced by esti-
mating the average energy of the unvoiced portions, taking
also into consideration a background noise model, based on
the characteristics of the data channel. The output of the
VAD algorithm will be “1” when there is speech detected
and “0” in the presence of silence. A simple schematic of
its operation is provided in Fig. 2.

Silence Speech Silence Speech Silence

0
1

Input

Output

Figure 2: A Voice Activity Detector can effectively recognize the
portions of silence or speech on a voice stream.

As will be explained later, the voice activity detection is
inherently provided by the VoIP protocol.

4 Coordination Measures

After voice activity detection is performed, each voice
streamSi is converted into a binary streamBi. The result-
ing binary stream only holds the necessary information that
indicates the speech/no-speech patterns. The objective now
is to quantify thecomplementary similarity(which we call
cimilarity) between two binary streams.

As already mentioned, the basic insight behind detect-
ing conversational pairs is to discern voice streams that ex-
hibit complementary speech behavior. That is, given a large
number of binary streamsB1, B2, . . . , BN , and a query
streamBq (which indicates the voice activity of userq), we
would like to identify the streamBj that is most comple-
mentary similar to streamBq, or in other words, has the
largest cimilarity.

We present different versions of cimilarity measures
(Cim) and we later quantify their performance in the ex-
perimental section. Let us consider two binary streams,Bi

andBj . By abstractingBi andBj as binary sets, an intu-
itive measure of coordination between usersi andj consists
in computing the intersection betweenBi and the binary
complement ofBj normalized by their union. We denote
by Cim-asym(i, j, T) this measure computed over streams
Bi andBj afterT units of time. One can readily verify that
it can be written as:

Cim-asym(i, j, T) =

∑T

t=1
Bi[t] ∧ ¬Bj [t]

∑T

t=1
Bi[t] ∨ ¬Bj [t]

. (1)

whereBk(t) ∈ {0, 1} is the binary value for userk at time
t, and the symbols∧, ∨, and¬ denote the binary AND, OR
and NOT operators, respectively.

3

Note that Equation 1 asymmetrically measures the
amount of coordination between speakersi and j. That
is, in general,Cim-asym(i, j, T) 6= Cim-asym(j, i, T) due
to the binary complement operator. This measure can be
seen as the asymmetric extension of the well-known Jac-
card coefficient [3]. Thus, we also refer to this measure as
Jaccard-Asymmetric.

Bi \ Bj 1 0
1 0 1
0 0 0

Bi \ Bj 1 0
1 1 1
0 0 1

Figure 3: Computation ofCim-asym, Left: Numerator,Right:
Denominator

ComputingCim-asym between two binary streams is
computationally very light. The computation lookup ta-
ble for the numerator and the denominator is provided in
Figure 3. The numerator is increased whenBi = 1 and
Bj = 0, while the denominator is not increased when
Bi = 0 andBj = 1. SoCim-asym(Bi, Bj) only rewards
the presence of non-speech of userj, when useri speaks.

Example: Given B1 = 11100110 andB2 = 00010001
thencim-asym(B1, B2) = 0.833 andcim-asym(B2, B1) =
0.6667.

TheCim-asym measure is also easily amenable to in-
cremental maintenance as timeT progresses. Indeed, let
V∧(i, j) andV∨(i, j) denote the running values of the nu-
merator and the denominator, respectively. The value of
Cim-asym(i, j, T) for any elapsed timeT is given by the ra-
tio V∧(i, j)/V∨(i, j). Therefore, givenn binary streams, in-
crementally computingCim-asymrequires keeping2 times
n(n− 1) values in memory. For example, when monitoring
n = 1000 streams and assuming each value is stored as an
int16, only 4 MBytes of memory are needed for tracking all
the required statistics.

We also consider a symmetric extension ofCim-asymde-
noted byCim-symand referred to asJaccard-Symmetric.
This intuitive extension is written as:

Cim-sym(i, j, T) =
T

∑

t=1

(Bi[t] ∧ ¬Bj [t]) ∨ (¬Bi[t] ∧ Bj [t]))

T

=

T
∑

t=1

XOR(Bi[t], Bj [t])

T
,

(2)

This metric is even simpler than its asymmetric ver-
sion. Moreover, givenn binary streams, incrementally
computingCim-symrequires keeping only

(

n
2

)

values in
memory thanks to its symmetric nature. Using the exam-
ple above, memory requirements drop to approximately 1
Mbytes given the same assumptions. TheCim-symis gen-
erally more aggressive than its asymmetric counterpart, be-
cause it also rewards the presence of speech patterns when

the user in question does not speak. However, our experi-
ments indicate that the most conservative asymmetric ver-
sion ultimately achieves the best detection accuracy.

Finally we consider theMutual Information(MI) as a
measure of coordination between conversing parties [1].
This is a measure of how much information can be obtained
about one random variableBi by observing anotherBj. Let
pi,j(x, y), pi(x), andpj(y) with x, y ∈ 0, 1 denote the joint
and marginal running averages for usersi andj afterT units
of time. For example,

pi,j(0, 1) =
1

T

T
∑

t=1

¬Bi[t] ∧ Bj [t].

The amount ofMutual Information(MI) between streams
Bi andBj is written as:

MI =
∑

x,y∈0,1

pi,j(x, y) log2

pi,j(x, y)

pi(x)pj(y) (3)

The mutual information measure requires higher pro-
cessing power but exhibits symmetry. Note that while at
first it seems that one needs to store 8 statistics for updat-
ing the Mutual Information, in fact only 3 statistics are re-
quired. For examplepi,j(0, 0), pi,j(0, 1) andpi,j(1, 0) are
sufficient to restore the remaining ones, since:

pi,j(1, 1) = 1 − pi,j(0, 0) − pi,j(0, 1) − pi,j(1, 0)

pi(0) = pi,j(0, 0) + pi,j(0, 1)

pj(0) = pi,j(0, 0) + pi,j(1, 0)

and so on.

So, givenn binary streams, it can be shown that incre-
mentally computingMI requires keeping3 times

(

n
2

)

values
in memory thanks to its symmetric nature. Thus, approx-
imately 3 MBytes of memory are required for the above
example.

In the following section, we illustrate how any of the
above metrics can be used in conjunction with a progres-
sive clustering algorithm for identifying conversing pairs.

5 Conversation Pairing/Clustering

In order to get insights about the pairing algorithm we
first plot how the complementary similarity of one voice
stream progresses over time against all other streams (Fig-
ure 4). Similar behavior is observed for the majority of
voice streams.

One can notice that voice pairing is extremely ambiva-
lent during the initial stages of a conversation, but the un-
certainty decreases as conversations progress. This is ob-
served, first, because most conversations in the beginning

4

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

C
im

ila
rit

y

True match
(stream 16)

t

Figure 4: Progression of complementary similarity (Jaccard-
Asymmetric) over time for stream 1, against all other voice
streams. The true match has the highest value after timet.

exhibit a customary dialog pattern (“hi,” “how are you,”
etc.). However, conversations are bound to evolve in differ-
ent conversational patterns, leading to a progressive decay
in the matching ambiguity. Second, some time is required to
elapse, so as the Law of Large Numbers can come to effect.

A simple solution for tackling the conversation pairing
problem would be to compute the pairwise similarity ma-
trix M after some timeT , where each entry provides the
complementary similarity between two streams:

M(i, j) = Cim(i, j, T),

where Cim is one of the cimilarity measures that we pre-
sented in Section 4.

Then we can pair usersi andj if we have

M(i, j) = max
`

{M(i, `)}

and
M(i, j) = max

`
{M(`, j)}.

We call this approachhard clustering, because at each
time instance it provides a rigid assignment of pairs, without
providing any hints about the confidence or ambiguity of the
matching.

There are several shortcomings that can be identified
with the above hard clustering approach:

• First, it provides no concrete indication when the pair-
ing should start. When are the sufficient statistics ro-
bust enough to indicate that pairing should commence?

• In order to achieve high accuracy, sufficient data need
to be collected. This penalizes the system responsive-
ness (no decision is made until then) and additionally
significant resources are wasted (memory and CPU).

• Different streams will converge at different rates to
their expected similarity value. Therefore, decisions
for different pairs of streams can (or cannot) be made
at different times, which is not exploited by the hard
clustering approach.

In the stream-pairing algorithm that we describe below,
we will address all the previous issues, allowing the early
pairing of streams, while imposing minimal impact on the
system resources.

Using as a guide the aforementioned behavior which
governs the progression of cimilarity, we construct the clus-
tering algorithm as anoutlier detection scheme. What we
have to examine is whether the closest match is “sufficiently
distant” from the majority of streams. Therefore, when
comparing a stream (e.g. stream 1) against all others, the
most likely matching candidate should not only hold the
maximum cimilarity, but also deviate sufficiently from the
cimilarity of the remaining streams.

1. Function matchStreams(S , f)
2. /* S contains all the streams[1 : N] */
3. for (t = 0, 1, 2, . . . , T)
4. /* T is an upper bound that will depend onn (Ideally,

T = Θ(ln n)) */
5. Update the pairwise similarity matrixM(·, ·)
6. foreach unmatched streamsi

7. compute max1, max2 of M(si, ·)
8. smi ← stream ID of max1
9. trimmedMsi ← k-trim of M(si, ·)
10. cMass← mean oftrimmedMsi
11. if (max1 −max2 > f · (max2 − cMass))
12. /* streamsi matches with stream smi */
13. remove rowssi, smi from M
14. remove columnssi, smi from M
15. if (all streams are paired)return

Figure 5: Progressive algorithm for matching streams.

Figure 5 contains a pseudocode of the pairing algorithm,
while Figure 6 depicts the steps behind its execution. We
maintain the same matrixM as in the hard-clustering ap-
proach, which is updated as time progresses. Then, at every
step of the algorithm, for every stream that has not been
matched, we perform the following actions. Suppose that at
any timeT we start with the binary streamB1:

1. We perform ak-Trim for removing thek most distant
andk closest matches (typicallyk = 2 . . . 5).

2. We compute the average cMass (center of mass) of the
remaining stream cimilarities.

3. We record the cimilarity of the two closest matches
to streamB1, which we denote as max1 and max2.
We consider the closest match “sufficiently separated”
from the remaining streams if the following holds:

max1 − max2 > f · (max2 − cMass),
where thef constant captures the assurance (confi-
dence) about the quality of our match (values off
range within0.5 . . . 2). Greater values off , signify
more separable best match compared to the remaining
streams, and hence more confident matching.

5

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

k-Trim: Remove top-k, low-k matches

From remaining
compute the center
of mass cMass

Is Best Match ‘sufficiently’ distant?

T T

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Max1

Max2

Is (Max1 - Max2) > f x (Max2 - cMass) ?

T

cMass

Figure 6: Pairing of voice conversations.

4. If the above criterion does not hold we cannot make
a decision about streamB1, otherwise we matchB1

with Bmax1 and we remove their corresponding rows
and columns from the pairwise cimilarity matrix (Fig-
ure 7)

Notice that theoutlier detection criterionadapts accord-
ing to the current similarity distribution, being more strict
in the initial phases (wider(max2 − cMass)) and becoming
more flexible as time passes.

Furthermore, the algorithm does not need to know a pri-
ori a bound on the required time steps for execution. As
soon as there is sufficient information, it makes use of it and
it identifies the likely pairs. In the next section we analyze
the performance of the algorithm.

5.1 Time and Space Complexity

Compared to the hard-clustering approach that needs to
recompute the pairwise similarity matrixM for every time
step, the progressive algorithm reduces the computational
cost by progressively removing from the distance computa-
tion the streams that have already been paired, although the
initial stages of the algorithm are somehow more expensive,
since in every iteration there are more operations performed
than just the update of the similarity matrixM .

So, let us analyze the time and space that our algorithm
requires. Initially there aren streams, so the size of ma-
trix M is n2, hence the space requirement isO(n2).

For the time complexity, assume that at time stept there
areSt streams available. Then the running time required to
execute thetth step isO(S2

t). To see that, notice that line 5,
where we update the cimilarity matrixM , requiresO(S2

t)
time steps. Theforeach loop at line 6, where we process
each stream, is executed at mostSt times and each of the
commands inside the loop can be computed in linear (inSt)
time. (The most involved is line 9 for computing thek-trim,
which can be done with a variation of a linear algorithm for
computing the median.) Therefore, the running time of ev-
ery time step of the algorithm isO(S2

t), in other words there
exists a constantκ such that the time per step is bounded by
κ · S2

t .

Therefore, ifTr is the total running time, we have

Tr ≤ κ ·

∞
∑

t=1

S2
t ,

whereκ is the constant hidden in the asymptotic notation.
It is therefore clear that in order to analyze the running time
we have to evaluate how the valuesSt decrease, and in par-
ticular whenSt becomes 0. Our experimental results, de-
picted in Figure 15, indicate that a candidate function forSt

is given by the sigmoidal function

St = n ·
e
−

t−c1 ln n

c2

1 + e−
t−c1 ln n

c2

,

for some constantsc1 and c2, which in our case we esti-
mated as15 and20, respectively. In Figure 8 we show the
sigmoidal function that matches the observed data.

Having this in mind, we can estimate

∞
∑

t=1

S2
t =

∞
∑

t=1

n2 ·
e
−

2(t−ln n)
c2

(

1 + e−
t−c1 ln n

c2

)2

=

c1 ln n
∑

t=1

n2 ·
e−

2(t−ln n)
c2

(

1 + e−
t−c1 ln n

c2

)2

+
∞
∑

t=c1 ln n+1

n2 ·
e−

2(t−ln n)
c2

(

1 + e
−

t−c1 ln n

c2

)2

≤ c1 · n
2 lnn + O(n2),

and, therefore,Tr ≤ c1 · κ · n2 lnn + O(n2). Notice that
we can obtain a similar bound (with worse constants) by
noticing (after some calculations) that after timet = (c1 +
c2) lnn we haveSt < 1, so we can bound the running time
by (c1 + c2)κ · n2 lnn.

Therefore, the algorithm is efficient, since it only intro-
duces anO(n log n) complexity per data stream by pro-
gressively removing paired matches. In Figure 9 we depict

6

D

Time T+ktTime T+tTime T

... ...

M

K

K

M

Stream K is paired
with stream M

More streams are
paired

Compute distance of
remaining streams

Figure 7: The similarity/dissimilarity matrix does not have to be
completed fully, for all time instances. Matching pairs canbe re-
moved from computation.

the lifecycle of various streams for an experiment with 280
voice streams. Each line represents a voice stream and is
extended only up to the point that the stream is paired.

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Time

N
um

be
r

of
 S

tr
ea

m
s

Paired Streams

Remaining Streams S
t

Figure 8: A sigmoidal function that models the results in Fig-
ure 15.

Note that this analysis is based on our observed data.
A more rigorous approach can consider some underly-
ing probability space to model the streams generations.
Then Tr and St are random variables and we can study
quantities such as the expected running time and variance,
or give large-deviation bounds. For example, for the ex-
pected running time of the algorithm, we have

E[Tr] ≤ E

[

κ ·

∞
∑

t=1

S2
t

]

= κ ·

∞
∑

t=1

E
[

S2
t

]

,

since theSt’s are nonnegative. This gives the interesting
conclusion that the expected running time depends on the
variance of the number of streams that remain unpaired
throughout the execution of the algorithm.

6 Extending to a VoIP network

We explain how the previous model of pairing voice con-
versations can be extended to work on a voice-over-IP net-
work. In what follows we describe the structure and trans-
mission protocol of a typical VoIP network and we illustrate

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

S
im

ila
rit

y

Remaining Streams over Time

280 222 74 22

Figure 9: We show the number of remaining streams at each time
instance on an experiment with 280 streams. The darker stream
indicates the actual best match which is identified after 240sec-
onds.

the steps for reconstructing the binary voice activity stream
from a sequence of VoIP packets.

We consider the framework depicted in Figure 10.N
VoIP subscribers are connected to the Internet either di-
rectly via their ISP providers, or behind VoIP gateways on
traditional PSTN networks. Those VoIP subscribers may
use a low-latency anonymizing service composed of a set of
overlay network nodes. Each VoIP stream traverses a possi-
bly distinct set of IP routers, a subset of which are assumed
to have VoIP sniffing capabilities. Each sniffer preprocesses
the incoming VoIP traffic and forwards the resulting data to
a central processing unit.

PSTN

PSTN

VoIP

gateway

VoIP

gateway

IP Network

ISP

ISP

Central
Processing

Unit

Figure 10: VoIP Framework. A set of customers (triangles) with
direct access to the IP network or behind a PSTN network. A set
of IP routers (white circles), a subset of which are VoIP sniffers
(black circles) that forward preprocessed VoIP data to a Central
Processing Unit. An anonymizing network composed of a set of
overlay nodes (light-shaded squares).

A voice signal captured by a communication device goes
through a series of steps in preparation for streaming. Fig-

7

ure 11 summarizes some of the following concepts. A voice
signal is continually captured by the microphone of a com-
munication device. The digital signal is segmented and fed
to a Voice Activity Detection (VAD) unit. This feature al-
lows VoIP devices to detect whether the user is currently
speaking or not by analyzing voice activity. Whenever the
voice activity is below a certain adaptive threshold, the cur-
rent segment is dropped. Note that if the VAD algorithm is
not sophisticated enough, actual voiced segments may get
wrongly filtered out [12]. The filtered signal is then passed
through a voice codec unit (e.g., G.729.1 or GSM) that com-
presses the input voice segments to an average bit rate of
approximately10 Kbps. Those compressed segments are
encrypted using 256-bit AES [2] and packetized using the
Real-time Transport Protocol (RTP). Each RTP packet con-
sists of a 12-byte header followed by20ms worth of en-
crypted and compressed voice. It is important to note that
all RTP headers are in the clear [2]. Various RTP header
fields are of great interest for our purpose. In particular,
the Payload Type (PT) field enables easy spotting of VoIP
streams, the Synchronization Source (SSRC) field uniquely
identifies the stream of packets, and the Timestamp field
reflects the sampling instant of the first byte in the RTP
payload. Finally, each RTP packet is written to a network
socket.

time

Speech Speech
Silence Silence Silence

Microphone

VAD output

RTP packets Header
Compressed and

encrypted payload

20 ms

Figure 11: A voice signal captured by a communication device
goes through various steps in preparation for streaming.

6.1 Separating the voice streams

For recasting the problem into the scenario that we previ-
ously studied, we need first to reconstruct the binary streams
indicating the voice activity of each one-way communica-
tion. Given the above transmission protocol a VoIP sniffer
that gathers incoming internet traffic can identify and sepa-
rate the different voice streams and also convert them into
binary streams that indicate periods of activity or silenceas
follows:

1. The RTP PT field is used to segregate VoIP packets
from different data traffic (see Figure 12)

2. Each different voice stream can be tracked by its
unique RTP SSRC field.

Payload Type SSRC TimeStamp

RTP protocol

Compressed and encrypted voice data… …Sequence Number

Recognize VoIP data

Recognize Stream
Position into Stream

Figure 12: Fields of the RTP protocol that are used

3. Finally, the binary stream indicating the presence of
speech or silence, is inherently provided by the VoIP
protocol, given the presence or not of a voice packet.
Packets are only sent during speech activity which con-
stitutes an indirect way of constructing the binary voice
activity stream. For a given RTP SSRC value (stream
ID), a sniffer measures the difference of two consec-
utive Timestamp values (inter-departure time of pack-
ets) and generates a one (or a zero) if the difference
is equal to (or larger than) the segmentation interval
of 20ms. Thus, each binary stream results from the
aperiodic inter-departure time of VoIP packets derived
from the Voice Activity Detection (VAD), which is
performed within the customer’s communication de-
vice. In Figure 13 we visualize this process.

wall-clock

time

20 m
sec

100 m
sec

120 m
sec

200 m
sec

220 m
sec

240 m
sec

After 20msec

After 120msec

After 140msec

After 200msec

After 260msec

After 280msec

Packet

RTP timestamp

packets

Figure 13: Usage of RTP Timestamp for reconstructing the binary
voice activity sequence

6.2 Advantages and Discussions

Several are the advantages of the presented approach:

• A very important first outcome of the presented ap-
proach is that it operates on the compressed data do-
main. Because we do not need to decompress the voice
data to perform any action, this immediately gives a
significant performance advantage to our approach.

• A surprising second observation, is that the presented
methodology is also valid even when the voice data is

8

encrypted! This is true because for performing voice
activity detection we merely exploit the presence of the
packet as an indication of speech. Note, that because
the data can still be encrypted, the privacy of the con-
versation content is not violated.

• Finally, the presented algorithm is very robust to jitter
and network latency. Jitter has no effect on the RTP
Timestamp values, which are assigned during the data
transmission and measure theinter-departurepacket
time. Network latency only affects the arrival of the
first packet, since synchronization of subsequent pack-
ets can be reconstructed by the corresponding RTP
timestamps. In our experiments we do not assume
a zero-latency network. Instead we show that our
method is indeed resilient to latency.

Lastly, we briefly elaborate on certain issues or questions
that may arise given the dynamic nature of the system:

a) We do not assume that the network sniffers are able to
track all voice streams. Singleton streams can be present.
This does not pose a problem for our algorithm since we do
not enforce pairing of all streams.

b) The cardinality of voice conversations captured by the
sniffer changes over time as calls start and/or terminate.
Therefore, one should pair streams that commence at ap-
proximately the same time (within twice the assumed worse
network latency). This gives rise to multiple cimilarity ar-
rays formed by voice streams with similar arrival times. In
the experiments we do not consider this scenario, but we
experiment withk voice streams that begin simultaneously
for illustrating better the scalability and accuracy of ourap-
proach under the maximum possible load.

c) Finally, it is worth noting that the RTP Sequence Num-
ber field together with the Timestamp values help avoid
blindly concluding a packet has been filtered out by the
VAD unit while, in fact, it has been dropped by the network.
However losses are seldom in commercial VoIP networks
and in this work we do assume a lossless VoIP framework.

7 Experiments

As our experimental testbed we used real telephony con-
versations from switchboard data [8], which contained 500
pairs of conversations for a total of 1000 voice streams and
consisted of multiple pairs of users conversing on diverse
topics. Such datasets are typically used in many speech
recognition contests for quantifying the quality of differ-
ent speech-to-text processes. The specific dataset that we
used, consisted actually of quite noisy conversational data
and the length of each conversation is 300 sec. The original
voice data have been converted to VoIP packets (using the
protocol described in the VoIP section), then fed onto a lo-
cal network using our custom made workload generator and
recaptured by the data sniffers.

7.1 Comparison of Cimilarity Measures

In this initial experiment we compare the pairing accu-
racy of the three presented complementary similarity mea-
sures. We utilize the hard clustering approach which does
not leave any unassigned pairs, therefore it introduces a
larger amount of incorrectly classified pairs. However, since
the hard clustering follows a more aggressive pairing strat-
egy, this experiment essentially showcases the best possible
convergence rate of the various similarity measures.

Figure 14 presents the pairing accuracy of the Mutual In-
formation (MI), Jaccard Asymmetric and Jaccard Symmet-
ric measures. Every 10 seconds we calculate the recogni-
tion accuracy by pairing each of the voice streams with the
stream that depicts the maximum complementary similarity.
Notice than in this way we do not necessarily impose a 1-
to-1 mapping of the streams (hence, a stream may be paired
with more than one streams). We report the results using
the 1-to-n mapping, since we discovered that it consistently
achieves more accurate results than the 1-to-1 mapping.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(sec)

A
cc

ur
ac

y

Mutual Information
Jaccard−Sym
Jaccard−Asym

Figure 14: Pairing accuracy between 3 measures.

On the figure we can observe that the Asymmetric-
Jaccard measure is the best overall performer. It achieves
faster convergence rate than the Mutual Information (90%
accuracy after 120sec, instead of 150sec for the MI) and
also a larger amount of correctly classified pairs at the end
of the experiment. The Symmetric-Jaccard measure appears
to be quite aggressive in its pairing decisions in the be-
ginning, but flattens out fairly quickly, therefore it cannot
compete in terms of accuracy with the other two measures.
Since different measures appear to exhibit diverse conver-
gence rates, as possible future work it would be interesting
to explore the possibility of alternating use for the various
measures at different stages of the execution, in order to
achieve even faster pairing decisions.

In general, the results of this first experiment are very en-
couraging, since they indicate that the use of simple match-
ing measures (like the Asymmetric Jaccard) can achieve
comparable or better pairing accuracy than more complex
measures (such as the Mutual Information). For the remain-
der of the experiments we will focus on the Asymmetric-
Jaccard measure, and specifically on its performance using
the progressive pairing algorithm.

9

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Time(sec)

A
cc

ur
ac

y

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Correct
Incorrect
Undecided

Figure 15: Progressive pairing for Asymmetric Jaccard. Left: f = 1/2, Middle: f = 2/3, Right: f = 1

7.2 Progressive Clustering Accuracy

The progressive algorithm presented in the paper has two
distinct advantages over the hard clustering approach:

1. It avoids the continuous pairwise distance computa-
tion by leveraging the progressive removal of already
paired streams.

2. It eliminates almost completely the incorrect stream
pairings.

The second goal is achieved by reducing the aggressive-
ness of the pairing protocol, which in practice will have
a small impact on the convergence rate (compared to the
hard clustering approach). Recall that the progressive al-
gorithm classifies the stream with the maximum cimilarity
value (max1) as a match, if

max1 − max2 > f · (max2 − cMass).

The valuef essentially tunes the algorithm’s conver-
gence rate. Smaller values off mean that the algorithm is
more elastic in its pairing decisions, hence achieving faster
convergence, but possibly introducing a larger amount of in-
correctly classified pairs. By imposing largerf values, we
restrict the algorithm in taking more conservative decisions.
This way fewer mistakes are made, at the expense of more
prolonged convergence times.

In Figure 15 we present the accuracy of the Asymmetric-
Jaccard using values off = 1/2, 2/3, 1. The darker part
of the graph indicates the correctly classified pairs, the
medium gray the incorrect pairing, and the white part are
the remaining streams for which no decision has yet been
made. From the graph, one can observe that for the ex-
amined datasetf = 2/3 represents the best compromise
between convergence rate and false pairing rate. The final
pairing results after 300sec are: correctly paired= 972,
incorrectly paired = 6, undecided= 24. Contrasting
this with the hard clustering results at 300sec (correctly
paired= 982, incorrectly paired= 18), we see that we can
achieve fewer false assignments, while being quite competi-
tive on the correct assignments and at the same time accom-
plishing a progressive clustering that is computationallyless
demanding.

7.3 Resilience to Latency

We conduct experiments which indicate that the match-
ing quality is not compromised by potential end-to-end net-
work delay. For simplicity of exposition we assume an end-
to-end delay for each stream that remains constant as time
passes (even though on a real network delay will vary over
time).

For this experiment we assume that each stream expe-
riences a different global latency, drawn randomly from a
uniform distribution within the range[0, 2δ], whereδ is the
observed one-way network latency. We conduct 4 sets of
experiments with valuesδ = 40, 80, 160, 240msec, there-
fore the maximum possible synchronization gap between 2
pairing streams can be up to2δ.

Figure 16 displays the pairing accuracy using the two
clustering parameters that produce the least amount of mis-
classifications,f = 2/3 andf = 1. The 3D areas indi-
cate the number of correctly paired streams, while on top
of the surface we also indicate in parenthesis the number
of incorrect pairings. We report the exact arithmetic val-
ues for the mid-point of the experiment (150sec) and at the
end of the experiment (300sec). Generally, we observe that
the clustering approach is robust even for large end-to-end
latency. The accuracy of the pairing technique is not com-
promised, since the number of misclassified pairs does not
increase. For latency of 40–80msec the correctly classified
pairs still remain approximately around970/1000. This
number drops slightly to960/1000 for 240msec of latency,
but still the number of misclassified pairs does not change.
Therefore, latency affects primarily theconvergence rate,
since ambiguity is increased, however accuracy is not com-
promised.

One can explain these results by noting that comple-
mentary similarity is most dominantly affected by the long
speech and silence segments (and not by the very short
ones). The long speech and non-speech patterns between
conversing users are not radically misaligned by typical net-
work end-to-end latencies, therefore the stream similarities
in practice do not deviate significantly from their expected
values.

Summarizing the experiments, we have shown that the
progressive algorithm can achieve pairing accuracy that
reaches 96–97%, while it can be tuned for faster conver-

10

50
100

150
200

250
300

240

160

80

40

0

200

400

600

800

1000

Time(sec)

Maximum Latency per stream (msec)

C
or

re
ct

ly
 P

ai
re

d

960 (6)

966 (6)

970 (8)

972 (6)

840 (4)

832 (4)

822 (2)

818 (4)

50
100

150
200

250
300

240

160

80

40

0

200

400

600

800

1000

Time(sec)

956 (0)

956 (0)

926 (0)

926 (0)

506 (0)

504 (0)

476 (0)

440 (0)

C
or

re
ct

ly
 P

ai
re

d

Maximum Latency per stream (msec)

Figure 16: Accuracy of progressive pairing under conditions of end-to-end network delay. The graph depicts the correctly paired streams,
while in the parenthesis we provide the number of incorrectly paired ones. Left:f = 2/3, Right: f = 1

gence or minimization of false classifications. More sig-
nificantly, we have demonstrated that the clustering perfor-
mance is not affected by the network latency, since latency
does not significantly affect the dominant temporal dynam-
ics between conversational patterns.

8 Conclusions

We have presented results indicating that intercepted
VoIP data can potentially reveal private information such
as pairs of conversing parties. Careful analysis of the voice
packets coupled with an effective complementary pairing
of voice activities can achieve high accuracy rates. We
have also demonstrated that data encryption schemes can-
not throttle the pairing of conversations. While we have
attempted to examine the current problem from multiple as-
pects, many avenues are still open for investigation. Areas
that that we are currently exploring are the provision for
distributed execution of our pairing algorithm, as well as
the fusion of multiple distance measures at different execu-
tion stages of the algorithm. The ultimate objective of such
efforts are to provide a pairing algorithm that exhibits fast
convergence, in addition to being robust and accurate. We
believe that our algorithms and pairing models could be of
independent interest, for general pairing of binary streaming
data. Closing, we would like to point out that the main ob-
jective of this paper was not to suggest ways of intercepting
VoIP traffic for malicious reasons, but merely to raise the
awareness that privacy on Internet telephony can be easily
compromised.

References

[1] S. Basu. Conversational Scene Analysis. PhD thesis, Mas-
sachusetts Institute of Technology, 2002.

[2] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and
K. Norrman. The secure real-time transport protocol (srtp).
In IETF RFC 3711, March 2004.

[3] A. Z. Broder. On the resemblance and containment of doc-
uments. InSEQUENCES ’97: Proceedings of the Compres-
sion and Complexity of Sequences, 1997.

[4] H. Clark and S. Brennan. Grounding in Communication. In
L. B. Resnick, J. Levine, & S. D. Teasley (Eds.), Perspectives
on socially shared cognition, pages 127–149, 1991.

[5] C. Clifton, M. Kantarcioglu, A. Doan, G. Schadow,
J. Vaidya, A. K. Elmagarmid, and D. Suciu. Privacy-
preserving data integration and sharing. InDMKD, pages
19–26, 2004.

[6] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan.
Comparing Data Streams Using Hamming Norms. InIEEE
Trans. Knowl. Data Eng. 15(3): 529-540, 2003.

[7] D. Goldschlag, M. Reed, and P. Syverson. Onion routing for
anonymous and private internet connections. InCommuni-
cations of the ACM, volume 42, February 1999.

[8] D. Graff, K. Walker, and A. Canavan. Switchboard-2 phase
ii. LDC 99S79 – http://www.ldc.upenn.edu/Catalog/, 1999.

[9] M. Kantarcioglu, J. Jin, and C. Clifton. When do data mining
results violate privacy? InSIGKDD, pages 599–604, 2004.

[10] T. Li. A General Model for Clustering Binary Data. InACM
SIGKDD, 2005.

[11] C. Ordonez. Clustering Binary Data Streams with K-means.
In 8th ACM SIGMOD workshop on Research issues in data
mining and knowledge discovery, pages 12 – 19, 2003.

[12] R. V. Prasad, A. Sangwan, H. Jamadagni, C. M.C, R. Sah,
and V. Gaurav. Comparison of voice activity detection algo-
rithms for voip. InProc. of the 7th International Symposium
on Computers and Communications (ISCC02), 2002.

[13] H. Sacks, E. Schegloff, and G. Jefferson. A simplest system-
atics for the organization of turn-taking in conversation.In
Language, 50, pages 696–735, 1974.

[14] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous peer-
to-peer voip calls on the internet. InACM Conference on
Computer and Communications Security (CCS), 2005.

[15] P. Zimmermann. Zfone –
http://www.philzimmermann.com/zfone, March 2006.

[16] Findnot –http://www.findnot.com.

11

