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ABSTRACT

Social media and messaging apps have become major com-
munication platforms. Multimedia contents promote im-
proved user engagement and have thus become a very impor-
tant communication tool. However, fake news and manipu-
lated content can easily go viral, so, being able to verify the
source of videos and images as well as to distinguish between
native and downloaded content becomes essential. Most of
the work performed so far on social media provenance has
concentrated on images; in this paper, we propose a CNN ar-
chitecture that analyzes video content to trace videos back to
their social network of origin. The experiments demonstrate
that stating platform provenance is possible for videos as well
as images with very good accuracy.

Index Terms— Social networks, video forensics, deep
learning, multitask learning, platform provenance analysis.

1. INTRODUCTION

In recent years multimedia content has become one of the
predominant ways for exchanging information. Every day
people watch over a billion hours of video on YouTube [1]
and share more than a billion stories on Facebook [2]. The ex-
pressiveness of visual content makes multimedia a powerful
means of communication. Therefore, it becomes increasingly
important to be able to verify the source of this information.

When uploaded and shared across social networks and
messaging apps, multimedia content undergoes a processing
step in which the platforms perform a set of operations on the
input. Indeed, to optimize transfer bandwidth as well as dis-
play quality, most platforms apply specific compression and
resizing methods. These methods, which tend to be unpub-
lished, differ among the different social platforms [3]. All
these operations inevitably leave some traces on the media
content itself [4, 5, 6]. The social media identification prob-
lem has been widely studied for image files with promising
results [3, 7, 8], employing machine learning classifiers. Re-
cently, Quan et al. [9] showed that by using convolutional
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methods it is possible to recognize Instagram filters and at-
tenuate the sensor pattern noise signal in images. Amerini
et al. [10] introduced a CNN for learning distinctive features
among social networks from the histogram of the discrete co-
sine transform (DCT) coefficients and the noise residual of
the images. Phan et al. [11] proposed a method to track mul-
tiple image sharing on social networks by using a CNN ar-
chitecture able to learn a combination of DCT and metadata
features. Nevertheless, the identification of the traces left by
social networks and messaging apps on video contents re-
mains an open problem. Recently, Iuliani et al. [12] presented
an approach that relies on the analysis of the container struc-
ture of a video through the use of unsupervised algorithms to
perform source-camera identification for shared media with
high performance; their method is strictly dependent on the
file structure, whereas in our work we are interested in ap-
proaches that are based on the content of a video, indepen-
dently of the file type. Kiegaing and Dirik [13] showed that
fingerprinting the I-frames of a flat content native video can
be used to accurately identify the source of YouTube videos.
Moreover, although the research community has treated video
and image forensics as separate problems, a recent work from
Iuliani et al. [14], demonstrates that it is possible to iden-
tify the source of a digital video by exploiting a reference
sensor pattern noise generated from still images taken by the
same device, suggesting that it could be possible to link social
media profiles containing images and videos captured by the
same sensor.

In this work, we propose a multistream neural network ar-
chitecture that can capture the double compression traces left
by social networks and messaging apps on videos. Accord-
ing to our knowledge, this is the first work that investigates
whether it is possible to recognize videos from different so-
cial networks by analyzing the traces of compression left by
these sites when loading content. The possibility of recon-
structing information on the sharing history of a certain object
is highly valuable in media forensics. In fact, it could help in
monitoring the visual information flow by tracing back the
initial uploads, thus aiding source identification by narrowing
down the search. This could be helpful in different appli-
cations such as, for example, cyberbullying, where we want
to be able to investigate who and where this individual has
shared a certain content. Similarly, this tool could be help-



ful to trace the sharing of videos of military propaganda or
other criminal activity back to the source, as well as for fact
checking and countering fake news.

The problem of classifying photos and videos from social
networks has been typically treated separately. To overcome
this limitation, here we investigate the possibility to test the
robustness of our implementation with respect to images once
the network is trained on videos. The rest of the paper is orga-
nized as follows: Section 2 describes our approach. Section
3 discusses different experimental results. Finally, Section 4
draws the conclusions of our work.

2. PROPOSED METHOD

In video coding, a video is represented as a sequence of
groups of pictures (GOP)s, each of which begins with an
I-frame. I-frames are not predicted from any other frame and
are independently encoded using a process similar to JPEG
compression. Apart from the I-frames, the rest of each GOP
consists of P-frames and B-frames. These frames are predic-
tively encoded using motion estimation and compensation.
Thus, these frames are derived from segments of an anchor
I-frame and represent lower quality frames. In this section we
describe the proposed architecture (see Figure 1) composed
by a two-stream network, inspired by the work by Nam et
al. [15]. However, the application of this particular network
to the problem that we study is novel and it requires some
important modifications to the method in [15]. First, we mod-
ified the third convolutional block of the Ind-Net removing a
stack of Convolutional, Batch Normalization, and ReLU op-
erations and we added one more convolutional block (Block
6) at the end of the CNN. This deeper configuration helps the
network to capture more subtle details in the input. Next, we
modified the Pred-Net by doubling the number of operations
in each block and increased the number of output channels of
each block in order to learn a richer representation. Finally,
we changed the dimensionality of the flattened feature maps
from 128 to 256 for the P-frames stream and from 16,384 to
4,096 for the IF-stream. This helps to limit the importance
of I-frames over the P-frames. We choose not to include
B-frames in our analysis because of the lower quality of these
kind of frames. Finally, we introduce a two-stream network
(MultiFrame-Net), which learns the inter-modal relationships
between features extracted from both types of frames. In the
rest of this section, we use the notation W ×H to denote the
resolution of a video v. Each video can also be represented by
N frames denoted as f0, . . . , fN−1, where fj ∈ Z3×W×H .
Moreover, we use the notation f

(v)
Ii and f

(v)
Pi to denote the ith

I-frame or P-frame, respectively, of a video v.

2.1. Ind-Net

In this section we propose a network that analyzes the I-
frames of a video. The network is depicted in the bottom

part of Figure 1. We designed a network that consists of six
convolutional blocks that act as a feature extractor and a fully
connected network that takes the input feature vector and
produces an output classification. The first tree convolutional
blocks made of (1) two consecutive stacks of convolution
(Conv2D), batch normalization (BatchNorm), and ReLU op-
erations, and (2) a final max pooling (MaxPool) layer. The
last three convolutional blocks are organized in three consecu-
tive stacks of (1) Conv2D, BatchNorm, and ReLU operations,
and (2) a final MaxPool layer. Apart from the first convolu-
tional layer, which has a 5× 5 kernel, all other convolutional
layers have a 3 × 3 kernel. The feature extracted by the
last MaxPool layer becomes eventually flattened and passed
through two stacks made by a 512-dimensional fully con-
nected layer and a ReLU, and a final 512-dimensional fully
connected layer followed by a softmax one. The network
outputs a |C|-dimensional vector, where |C| is the number of
output classes.

Before being fed into the network, the decompressed
I-frames are initially transformed through a preprocessing
module. To highlight the traces left by double compression,
we employ the high-pass filter introduced by Fridrich and
Kodovsky [16, operator S5a], and used in [15] and apply it
to the Y-channel of the input after RGB-to-YUV conversion.
Therefore, we denote as XIi = {f (v)

Ii } ∈ Z3×W×H the input
ith frame of video v and compute X ′Ii = {HPF (Y (f

(v)
Ii ))} ∈

ZW×H to obtain the preprocessed input of the network, where
HPF (·) indicates the high pass filter and Y (·) indicates the
Y-channel of the input frame. Because we assume that each
video could come from a single social media platform, we
train the model using a cross-entropy loss function, thus train-
ing the model to output a probability over the |C| classes for
each video.

2.2. Pred-Net

Now we present Pred-Net, a new network architecture that an-
alyzes the P-frames of a video to detect double compression
fingerprints. The network (depicted in the top of Figure 1) is
made of five convolutional blocks and a fully connected net-
work. All the convolutional blocks consist of two stacks of
(1) Conv2D, BatchNorm, and ReLU operations, and (2) a fi-
nal average pooling (AvgPool) layer. The AvgPool and Glob-
alAvgPool levels help to preserve the statistical properties of
feature maps that could otherwise be distorted with the Max-
Pool. All the Conv2D layers in the first two blocks have a 5×5
kernel, and the last three blocks have a a 3×3 kernel. Finally,
the feature maps extracted from the last convolutional block
are flattened and passed through a 256-dimensional fully con-
nected layer that outputs a |C|-dimensional vector and a soft-
max operation that calculates the output prediction.

Similarly to the Ind-Net, we add a preprocessing step
to the input frames in which a high-frequency–component
extraction operation is applied to eliminate the influence



Fig. 1. The proposed two-stream network (MultiFrame-Net) architecture. The network is constructed by concatenating the
feature maps of the Ind-Net and the Pred-Net. The I-frame and P-frame streams are trained separately. Next, we concatenate
the flattened output of the two-streams and train a fully connected classifier.

of diverse video contents. Further, because the P-frames
represent predicted low-quality frames, we compensate for
the loss of information by stacking consecutive frames. In
fact, given a stack of three consecutive P-frames denoted as
XPi = {f (v)

Pi−1, f
(v)
Pi , f

(v)
Pi+1} ∈ Z3×3×W×H , we compute

X ′Pi = {Y (f) − G(f)|f ∈ XPi} ∈ R3×W×H , where the
function G(·) denotes a Gaussian filter. Like the Ind-Net, the
network is trained with a cross-entropy loss function.

2.3. MultiFrame-Net

Multistream architectures have been successfully applied by
multimedia forensics researchers for both forgery detection
and source identification tasks [17, 18, 19, 10]. Therefore, we
combine the feature maps of both Ind-Net and Pred-Net to
feed the fully connected classifier with inter-modal relation-
ships between different types of frames. As shown in Fig-
ure 1, we concatenate the output features maps of the two
CNNs and feed them to the classifier. The concatenated fea-
tures vector is a 4, 352-dimensional vector obtained by inte-
grating the 4, 096-dimensional output vector of the Ind-Net
and the 256-dimensional output vector of the Pred-Net.

In our setting, we train the the Ind-Net and Pred-Net sepa-
rately and exploit the weights of the pretrained convolutional
blocks of these networks to train the fully connected classi-
fier. As for the Ind-Net and Pred-Net, we train the model
according to a cross-entropy loss function.

3. EXPERIMENTAL EVALUATION

This section describes the experimental setup and the tests
that have been carried out to evaluate the robustness of the
proposed approach. We begin describing the dataset and con-
figurations used for this work, then, in sections 3.1 and 3.2 we
discuss the results that we obtained on several tests.

All the experiments discussed in this section were con-
ducted on a Google Cloud Platform n1-standard-8 instance
with 8 vCPUs, 30GB of memory, and an NVIDIA Tesla
K80 GPU. The networks have been implemented using
Pytorch[20] v.1.6. We trained all the networks with the

learning rate set to 1e− 4, weight decay of the L2-regularizer
set to 5e − 5, and Adam optimizer with an adaptive learn-
ing rate. In our experiments we trained the networks for 80
epochs with batches of size 32 and early stopping set to 10.

To train our model and evaluate its performance, we relied
on the VISION dataset [21]. The dataset comprises of 34,427
images and 1,914 videos, both in the native format and in their
social media version (i.e., Facebook, YouTube, and What-
sApp), captured by 35 portable devices of 11 major brands.
The dataset has been collected recording 648 native single-
compressed (SC) videos, mainly registered in landscape mode
with mov format. For each device, the videos depict flat, in-
door, and outdoor scenarios and different acquisition modes.
The resolution varies from 640× 480 up to 1920× 1080 de-
pending on the device. Furthermore, the dataset contains 622
videos that were uploaded on YouTube (YT), and 644 shared
through WhatsApp (WA). Similarly to videos, the dataset also
contains images captured in multiple orientations and scenar-
ios and shared via Facebook and WhatsApp.

In our experiments, we previously process the dataset with
the ffprobe[22] analyzer from the FFmpeg software to extract
the I-frames and P-frames from a subset of 20 devices. Next,
we crop each frame into nonoverlapping patches of size H ×
W , where H = W = 256, obtaining 153,843 I-frame patches
and 209,916 P-frame patches. Finally, we balance all classes
and split the dataset for training, validation, and test with a
proportion of 70%, 15%, and 15%, respectively.

3.1. Results on Shared Videos

To estimate the performance of our method, we initially com-
pared the system with respect to a baseline model. Then, we
moved forward to assess the performance of our two-stream
architecture, namely to validate the increase in performance
obtained combing the Ind-Net and Pred-Net.

1) Baseline comparison: In our first set of experiments
we measured the performance of the single components of
MultiFrame-Net (the Ind-Net and Pred-Net streams) with re-
spect to the baseline model introduced by Nam et al. [15], for
their classification efficacy when using only I-Frames and P-



Frames, respectively. To limit model training time, we chose
to conduct these experiments on a subset of 10 devices from
the VISION dataset. In fact, in this test, we are not interested
in obtaining the absolute best performances, but we limit our-
selves to proving that there is a boost in performance com-
pared to the baseline. For these experiments we produce an
80%-10%-10% split of the dataset of the input patches for
training, validation, and test, respectively.

Input [15] Proposed method
I-Frame 67.71% 88.42% (Ind-Net)
P-Frame 67.23% 76.84% (Pred-Net)

Table 1. Accuracy on a subset of 10 devices from the VISION
[21] dataset. The proposed method is confirmed to be more
precise than the baseline at recognizing traces left by social
networks and apps on frames patches.

The results reported in Table 1 confirm the significantly
improved performance of our method respect to the base-
line. In fact, the deeper architectures help to distinguish with
higher accuracies (88.42% and 76.84% for the Ind-Net and
Pred-Net, respectively) between different types of double
compressions left by social media and messaging apps. In-
deed, the model must be able to distinguish not only between
single and double compression, but also between different
types of double-compression fingerprints. In this sense, a
deeper architecture is capable of extracting more complex
information.

2) MultiFrame-Net evaluation: In this test, we evalu-
ate whether and to what extent our two-stream architecture
(MultiFrame-Net) improves even more in terms of accuracy
compared to the single streams. For this experiment, we
trained and evaluated the models on a subset of 20 devices
with a dataset split of 70%, 15%, and 15% for training, vali-
dation, and test, respectively. First, we train the Ind-Net and
Pred-Net in an end-to-end fashion on a subset of 15 devices.
Next, applying transfer learning, we froze the convolutional
layers of both networks and retrained the fully connected
classifier on a subset of 5 devices that have not been used
on the previous training. We measure the performance of
each network with respect to its accuracy and its area under
the curve (AUC) score. Table 2 reports the results of these
experiments and Table 3 represents the confusion matrix of
MultiFrame-Net. The experiment confirms that by combin-
ing the classification of different types of frames, the model
achieves better performance, with the MultiFrame-Net gain-
ing up to 95.51% of accuracy and 96.44% of AUC score
on patches from SC, WA, and YT. Moreover, the confusion
matrix (see Table 3) of the MultiFrame-Net on 3,749 patches
from 234 unique videos from WA, YT, and SC suggests that
the errors are very small and slightly more numerous in the
case of SC patches.

Model Accuracy AUC
Ind-Net 92.32% 94.24%
Pred-Net 91.87% 93.12%
MultiFrame-Net 95.51% 96.44%

Table 2. Model accuracies and AUCs on a subset of 20 de-
vices from the VISION dataset [21]. The MultiFrame-Net
shows higher performance with respect to Ind-Net and Pred-
Net.

YT WA SC
YT 1238 (96.41%) 20(1.65%) 32(2.55%)
WA 31(2.41%) 1161 (95.79%) 49(3.91%)
SC 15(1.16%) 31(2.55%) 1172 (93.53%)

Table 3. Confusion matrix of the MultiFrame-Net over YT,
WA and SC patches from 234 unique videos of the VISION
dataset [21].

3.2. Results on Shared Images

In our last experiment, we measure the robustness of the Ind-
Net with respect to images. Specifically, we moved from
the intuition that I-frames are independently encoded using
a process similar to JPEG compression, such that it could
be possible to detect images as well as videos coming from
the same social media platform. For this reason we test the
Ind-Net trained on videos, on native and WhatsApp images
available on the VISION dataset. Unfortunately, the VISION
dataset contains images uploaded only on WA and Facebook.
Therefore, we can apply this test only on WA images. We
began the experiment by training the Ind-Net on native and
WA video patches obtaining 92.74% of accuracy. Next, by
applying transfer learning, we froze the convolutional blocks
of the network to act as feature extractors and retrained the
fully connected classifier on images from the same classes.
With minimal retraining of the classifier, it achieves 86.83%
of accuracy. This result suggests that a mixed method to trace
both kinds of media is actually possible. Therefore, we leave
this problem for future research and extensive experiments.

4. CONCLUSIONS

In this paper, we introduced a CNN architecture to detect
videos downloaded from social media and messaging apps,
based on their content. We evaluated the advantages of us-
ing a deep neural network architecture and inter-modal rela-
tionships between features extracted from different types of
frames. We also explored the possibility of applying multi-
task learning to quickly adapt the network from videos to im-
ages obtaining promising results. Future work will take into
consideration new datasets together with multimodal media
assets as well as multitask learning and meta-learning.
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