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Abstract. The Unsplittable Flow Problem on a Path (UFPP) is a core
problem in many important settings such as network flows, bandwidth
allocation, resource constraint scheduling, and interval packing. We are
given a path with capacities on the edges and a set of tasks, each task
having a demand, a profit, a source and a destination vertex on the path.
The goal is to compute a subset of tasks of maximum profit that does
not violate the edge capacities.

In practical applications generic approaches such as integer program-
ming (IP) methods are desirable. Unfortunately, no IP-formulation is
known for the problem whose LP-relaxation has an integrality gap that
is provably constant. For the unweighted case, we show that adding a
few constraints to the standard LP of the problem is sufficient to make
the integrality gap drop from Ω(n) to O(1). This positively answers an
open question in [Chekuri et al., APPROX 2009].

For the general (weighted) case, we present an extended formulation
with integrality gap bounded by 7 + ε. This matches the best known
approximation factor for the problem [Bonsma et al., FOCS 2011]. This
result exploits crucially a technique for embedding dynamic programs
into linear programs. We believe that this method could be useful to
strengthen LP-formulations for other problems as well and might even-
tually speed up computations due to stronger problem formulations.

1 Introduction

In the Unsplittable Flow Problem on a Path (UFPP) we are given a set of n
tasks T and a path G = (V,E) on m edges. For each edge e denote by ue its
capacity. Each task Ti ∈ T is specified by a start vertex si ∈ V , a destination
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vertex ti ∈ V , a demand di and a weight (or profit) wi. For each edge e ∈ E
denote by Te all tasks Ti such that the (unique) path from si to ti uses e. Also,
we abuse slightly notation and we denote by Ti the set of edges in the path from
si to ti. For each task Ti we define its bottleneck capacity bi := min{ue : e ∈ Ti}.
For a value δ ∈ (0, 1) we say that a task Ti is δ-large if di > δ · bi and δ-small
otherwise. The goal is to select a subset of the tasks T ′ ⊆ T with maximum
total weight w(T ′) :=

∑
Ti∈T ′ wi such that

∑
Ti∈Te∩T ′ di ≤ ue for all edges e. In

the unweighted case, all weights are 1.
This problem occurs in various settings and important applications. As the

name suggests, it is a special case of multi-commodity demand flow, with one
task associated to each commodity. This problem clearly generalizes well known
problems such as knapsack and maximum independent set in interval graphs. It
can be used to model the availability over time of a resource of varying capacity,
with each task demanding a specific amount of the resource within a fixed time
interval. Despite their fundamental nature, the combinatorial structure and the
polynomial-time approximability of this problem are not yet well understood.
UFPP is strongly NP-hard [5,12] and the best known approximation results are
a quasi-PTAS [1] and a polynomial time (7 + ε)-approximation algorithm [5].

When solving optimization problems in practice, a common method is to
formulate the problem as an integer linear program (ILP) and use an Integer
Programming (IP) solver such as CPLEX or Gurobi. However, for many prob-
lems there are several possible ILP formulations which perform very differently
in practice. One desired property of a good ILP formulation is that the resulting
LP relaxation has a small integrality gap. This is helpful since in branch-and-cut
algorithms LP relaxations are used to derive good lower bounds, which allow one
to neglect certain subtrees and thus speed up the computation. Most of previous
LP based approaches for UFPP refer to the following natural LP formulation:

LPUFPP = {max
n∑

i=1

wi · xi :
∑

Ti∈Te

di · xi ≤ ue,∀e ∈ E; 0 ≤ xi ≤ 1, i = 1, . . . , n.}

Unfortunately, LPUFPP suffers from an integrality gap Ω(n) [7]. Chekuri et
al. [10] presented an LP formulation with integrality gap of at most O(log2 n)
obtained by adding an exponential number of constraints to the above LP, which
can be approximately separated in polynomial time. (Recently they showed how
to obtain a polynomial-size formulation and improved the integrality gap to
O(log n) [9].)

1.1 Our Contribution

In this paper we address the open problem of designing LP relaxations for UFPP
with small (namely constant) integrality gap. Our main contributions are as
follows:

Unweighted UFPP. We present the first LP relaxation for unweighted UFPP
with provably constant integrality gap (see Section 2). Even though the canonical
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Fig. 1. Examples of some of the notions

LP-relaxation LPUFPP has a very large integrality gap of Ω(n), we show that
by adding only O(n2) constraints it drops to O(1), independently of the input
size. We show that up to constant factors our integrality gap is bounded by the
worst-case integrality gap of the canonical LP for the Maximum Independent
Set of Rectangles problem (MISR) for instances that stem from 1/2-large tasks
in the sense described in [5]. Intuitively, we construct a rectangle with base
along the subpath of Ti and height equal to its demand di, and then push it as
high as possible while remaining below the curve induced by the capacities (see
Figure 1(a)).

Bounding the integrality gap of the canonical MISR formulation has been a
challenging open problem for a long time. We show that for unweighted instances
stemming from UFPP the worst-case integrality gap is O(1). Even more, we
provide a purely combinatorial algorithm whose profit is by at most a constant
factor smaller than the optimal LP value on those rectangles. Given that the
general case of that problem is hard to tackle (no constant factor approximation
algorithms are known, whereas the best known lower bound is just NP-hardness)
we hope that our result helps understanding this important problem better.

The authors of [10] consider a relaxation of UFPP with an exponential number
of additional constraints, and show that it has an O(log2 n) integrality gap. Our
reasoning implies that in the unweighted case already a polynomial size subset of
those constraints yields a formulation with O(1)-integrality gap, thus answering
an open question posed in [10].

Weighted UFPP. In [16] Martin et al. show a generic method to formulate dy-
namic programs as linear programs. Roughly speaking, they show that for any
(well-behaved) DP one can construct a linear program whose extreme points
correspond to the possible outputs of the DP, given suitable weights to the
items (jobs). in the input. In the course of our research, and unaware of the
result in [16], we developed a slightly different approach for embedding a DP
into an LP. It turns out that our approach is somewhat simpler and marginally
more general (their approach requires αC

i = 1—see Section 3, whereas a simple
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extension gives a pseudopolynomial number of variables), so we include it for
completeness.

We combine this DP-embedding theorem with dynamic programs [5] for sub-
cases of UFPP for which the canonical LP has a large integrality gap. By embed-
ding the DP for 1/2-large tasks from [5] we obtain an extended LP relaxation for
weighted UFPP with a constant integrality gap (see Section 4). No relaxation
with a constant integrality gap was known before. By embedding additionally
the DPs for the tasks that are δ-large and 1/2-small, we obtain a formulation
whose integrality gap is bounded by 7+ ε, together with a matching polynomial-
time rounding procedure. This improves slightly the result in [5], where the same
approximation factor is proved w.r.t. the integral optimal profit only.

To the best of our knowledge, this is the first time that the structural insight
of [16] is used to strengthen a linear programming formulation, especially to
this magnitude (from Ω(n) to 7 + ε). We believe that this technique could be
useful for improving the IP-formulations of other problems as well. Eventually,
this might lead to better running times of IP-solvers in practice due to stronger
formulations.

1.2 Preliminaries and Related Work

UFPP is weakly NP-hard for the special case of a single edge since then it is
equivalent to the knapsack problem. It admits a PTAS for constant number of
edges since it reduces to multi-dimensional knapsack [14]. For an arbitrary num-
ber of edges the problem is strongly NP-hard [5,12], thus excluding an FPTAS
if P �= NP. In terms of approximation algorithms, the first nontrivial result for
UFPP was given by Bansal et al. [2] who gave an O(log n) approximation algo-
rithm. In a previous paper, Bansal et al. [1] gave a QPTAS for the problem, which
requires a quasi-polynomial bound on the edge-capacities and demands. Moti-
vated by the work of [2], Chekuri et al. [10] presented an LP formulation with
integrality gap O(log2 n), obtained by adding a super-polynomial number of con-
straints to the natural LP formulation given above. The separation routine given
in [10] loses an O(1) factor. The algorithms for UFPP usually distinguish be-
tween small and large tasks. In a recent result, Bonsma et al. [5] gave a first O(1)
approximation (7 + ε) for general UFPP, by designing a dynamic-programming
algorithm for MISR and using the solution for UFPP.

A well-studied special case of UFPP is given by the no-bottleneck assumption
(NBA), which requires that maxi{di} ≤ mine{ue}. For UFPP-NBA, dynamic
programming exploits the fact that on each edge any solution can have at most
2�1/δ2� tasks that are δ-large [7]. (Unfortunately, this property does not hold
in the general case). Together with an LP rounding procedure for the remaining
tasks this yields the best known approximation algorithm for UFPP-NBA, hav-
ing a ratio of 2+ ε [11]. Previously, a similar approximation result was obtained,
after a sequence of improvements, for the special case of the resource-allocation
problem (RAP), which is given by the constraint that all the edges have equal
capacity [3,6,13]. The natural LP formulation of UFPP has an O(1) integrality
gap for UFPP-NBA [7,11]. The integrality gap is however not less than 2.5 [11],
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that is, larger than the best known approximation ratio. In [7] it is left open to
find an LP relaxation with constant integrality gap for general UFPP on large
tasks even for the unweighted case where all tasks have equal profit.

As we mentioned, the authors of [5] established a connection between UFPP
and MISR. For the latter problem, the best known approximation ratio is
O(log logn) [8] (and O(log n) in the weighted case, see for example, [4,15]).
It is still open to find an O(1) approximation algorithm for MISR, even only
for the unweighted case. In particular, the exact integrality gap of the standard
LP formulation for the problem is not known. The best known lower and upper
bounds for it (in the unweighted case) are 3/2 and O(log logn) [8], respectively.

2 Constant Integrality Gap for Unweighted UFPP

In this section we show how to strengthen the canonical linear program LPUFPP

for unsplittable flow to make its integrality gap drop from Ω(n) to O(1). Let
us focus for a moment on 1/2-large tasks Tlarge only (which we next call large
for brevity). For those, in [5] the following geometrical interpretation was in-
troduced: for each task Ti draw a rectangle Ti specified by the upper left point
(si, bi) and the lower right point (ti, �i) where �i := bi − di, where we interpret
the vertices of the path as integers. In [5] the authors show that any feasible in-
tegral solution T ′ consisting of only large tasks has the property that any point
in the plane can be covered by (i.e., is contained in the interior of) at most four
rectangles in T ′ [5, Lemma 13]. Due to the geometry of the rectangles, to check
the above property it is sufficient to consider a proper subset P of only O(n2)
points.

Our main idea is to add the corresponding set of feasible constraints to the
standard LP for unweighted UFPP, therefore obtaining the following refined LP:

LP+
UFPP := {max

∑

Ti∈T

xi s.t.
∑

Ti∈Te

xi · di ≤ ue, ∀e ∈ E;

∑

Ti∈Tlarge: p∈Ti

xi ≤ 4, ∀p ∈ P ; xi ≥ 0, ∀Ti ∈ T }

By the above reasoning any integral solution satisfies the added constraints.
We recall that for any δ ∈ (0, 1) (hence, in particular, for δ = 1/2), the

canonical LP has already a constant integrality gap for instances with only (1−
δ)-small tasks. Therefore, it is sufficient to bound the integrality gap for large
tasks only. Observe that, given a feasible solution x to LP+

UFPP, the vector yi :=
xi/4, Ti ∈ Tlarge, yields a feasible solution for the following linear program:

LPMISR := {max
∑

Ti∈Tlarge

yi s.t.
∑

Ti∈Tlarge: p∈Ti

yi ≤ 1,∀p ∈ P ; yi ≥ 0, ∀Ti ∈ Tlarge}

The above LP is the canonical LP for MISR on rectangles Tlarge. By the definition
of the heights of the rectangles, it is easy to see that any independent set of
rectangles T ′ ⊆ Tlarge induces a feasible UFPP-solution. This yields the following
lemma.
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Lemma 1. Assume that LPMISR has an integrality gap of α for instances that
stem from UFPP instances and that LPUFPP has an integrality gap of β for
instances with only 1/2-small tasks. Then LP+

UFPP has an integrality gap of at
most 4α+ β.

2.1 A Combinatorial Algorithm for Large Tasks

It remains to show that LPMISR has an integrality gap of α = O(1). To this
aim, we describe a combinatorial algorithm that computes an independent set
of rectangles whose cardinality is at most by a constant factor smaller than the
value of the optimal LP solution. Suppose we are given a set of rectangles T
stemming from (the large tasks of) a UFPP instance. Our algorithm runs in
phases where in each phase k we either compute a maximal set Tk+1 based on
the set Tk computed in the previous iteration such that |Tk+1| > |Tk| or assert
that |Tk| is large in comparison with the LP optimum. Because the optimal
solution can contain at most n rectangles, there can be at most n phases. We
start with any maximal independent set of rectangles T0 ⊆ T , which can be
trivially computed (say, using a greedy algorithm). Now suppose that we have
computed a set Tk. For each rectangle Ti ∈ Tk we identify at most ten points Qi

in the plane (see Figure 1(b)). The first four points in Qi are the four corners of
Ti (points C in Figure 1(b)). The other six points are obtained as follows:

– Take the bottom-left (the bottom-right) corner and move down until you hit
the boundary of another rectangle in Tk (points T in Figure 1(b)), if any.

– The points (points L in Figure 1(b)) which are defined by the following
process: Start from the top-right (also bottom-right) corner; call this point
(x, y). Iteratively execute the following step until you hit the boundary of
another rectangle in Tk, if any: If y ≤ u{x,x+1} then set (x, y) ← (x + 1, y).
Otherwise, set (x, y)← (x, y − 1).

– Similarly, going leftwards starting from the top-left and bottom-left points
(points R in Figure 1(b)).

We denote by Tpoints ⊆ T all rectangles in the instance that overlap some point
in Q :=

⋃
Ti∈Tk

Qi. We show later in Lemma 4 that those tasks have bounded
LP-weight. Consider the remaining rectangles T \ Tpoints. First observe that
because Tk is maximal, every rectangle in T \ Tpoints must intersect a rectangle
of Tk. We classify T \ Tpoints as top-intersecting rectangles Ttop, left-intersecting
rectangles Tleft, and right-intersecting rectangles Tright. We call a rectangle Ti

top intersecting if there exists a rectangle Tj ∈ Tk such that sj < si < ti < tj ,
and �i < bj < bi. We call a rectangle Ti left (resp., right) intersecting if there
exists a rectangle Tj ∈ Tk such that �j < �i < bi < bj , and si < sj < ti (resp.,
si < tj < ti) (see Figure 1(a)). We can then prove the following lemma:

Lemma 2. All the rectangles in T \ Tpoints are either top-intersecting, left-
intersecting, or right-intersecting.

In our algorithm we now take each set Ttop, Tleft, and Tright separately and com-
pute an optimal solution for it. The crucial observation is now that this problem
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is equivalent to the maximum independent set problem in interval graphs. To
this end, construct a graph Gtop = (Vtop, Etop) where Vtop consists of one vertex
vj for each rectangle Tj ∈ Ttop and an edge {vj , v′j} exists if and only if Tj and
Tj′ overlap. Define the graphs Gleft and Gright similarly.

Lemma 3. The graphs Gtop, Gleft, and Gright are interval graphs.

The proof is very technical, so we only provide an intuition for the top-intersecting
rectangles—the argument for the other two cases is similar albeit somewhat more
complicated. It relies highly on the definition of the points Q. Consider two top-
intersecting rectangles T1 and T4 (see Figure 1(a)). To each of them corresponds
an interval I1 and I4, defined by the intersection of the rectangle with the rect-
angle to which they intersect. Note that I1 and I4 intersect if and only if T1 and
T4 overlap. To compute a maximum independent set, it suffices to preorder the
rectangles according to their values ti and at iteration k, for each interval, select
rectangles greedily by increasing values of ti [17].

Denote by OPTtop, OPTleft, and OPTright the optimal independent sets for
Gtop, Gleft, and Gright, respectively. Now there are two cases. If |OPTtop| ≤
|Tk| and |OPTleft| ≤ |Tk| and |OPTright| ≤ |Tk|, then we output Tk and halt.
Otherwise we define Tk+1 to be the set of maximum cardinality among OPTtop,
OPTleft, and OPTright, and we proceed with the next iteration.

Suppose now that our algorithm runs for k iterations and finally outputs the
set Tk. We want to bound its cardinality in comparison with the optimal frac-
tional solution to LPMISR. By Lemma 2 the union of the sets Tpoints, Ttop, Tleft,
Tright equals T . We bound the LP profit for each of these sets separately. Note
that the next lemma is the only part of our reasoning where we use that the
rectangles are unweighted.

Lemma 4. In any feasible solution y to LPMISR the profit of the rectangles in
Tpoints is bounded by

∑
p∈Q

∑
Ti: p∈Ti

yi ≤ 10 · |Tk|.

Proof (sketch). Let QTL ⊆ Q be the set of top-left corners of all the rectangles in
Tk. Notice that |QTL| = |Tk|. We have

∑
p∈QTL

∑
Ti: p∈Ti

yi ≤
∑

p∈QTL
1 ≤ |Tk|,

where the first inequality follows from the constraints of LPMISR. By performing
the same approach for all the 10 families of points that constitute the set Q, we
obtain the lemma.

Lemma 5. For any feasible solution y to LPMISR and any set T ′ ∈ {Ttop, Tleft,
Tright} it holds that

∑
Ti: T ′ yi ≤ OPT(T ′), where OPT(T ′) stands for OPTtop,

OPTleft, or OPTright.

Proof. By Lemma 3 the graphs Gtop, Gleft, and Gright are interval graphs and
hence in particular perfect graphs. Therefore, for the maximum independent set
problem the following LP formulation is exact: introduce a variable xv ≥ 0 for
every vertex v ∈ V and the clique inequality

∑
v∈C xv ≤ 1 for all maximal cliques

C ⊆ V (see, for example, [17]). In MISR, for every maximal clique C ⊆ T we
can find a point in the plane that is covered by all the rectangles in C. Hence,
LPMISR contains a clique inequality for each maximal clique in the graphs Gtop,
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Gleft, and Gright. Thus, LPMISR cannot gain more profit than the respective
optimal integral solution for these subproblems.

Theorem 1. Consider the set of rectangles T in the plane that stem from a
UFPP-instance. There is a polynomial-time algorithm that computes a set T ′ ⊆
T such that

∑
Ti∈T yi ≤ 13 · |T ′| for any feasible solution y of LPMISR.

Proof. By Lemma 4 and 5 we have
∑

Ti∈T yi =
∑

Ti∈Tpoints
yi +

∑
Ti∈Ttop

yi +∑
Ti∈Tleft

yi+
∑

Ti∈Tright
yi ≤ 10·|Tk|+|OPTtop|+|OPTleft|+|OPTright| ≤ 13·|Tk|.

Combining this theorem with Lemma 1, we obtain the following theorem.

Theorem 2. The integrality gap of LP+
UFPP for unweighted UFPP is constant.

Finally, observe that if we define a task to be in Tlarge if it is 3/4-large, then
the resulting LP still has constant integrality gap by the same reasoning. In
particular, then our added constraints would be a proper (polynomial size) subset
of the (exponentially many) rank constraints introduced in [10]: for each edge e
and for each subset T ′ of large tasks using e, there is a rank constraint bounding
the maximum number of tasks in T ′ which can be in a feasible solution. In [10]
it was left as an open question whether the integrality gap of the standard LP
together with these constraints is O(1), and an upper bound of O(log2 n) was
shown. Hence, we answered this question affirmatively for the unweighted case.

3 Embedding Dynamic Programs into Linear Programs

Let us start with a formal definition of a standard dynamic program DP , which
seems to capture most natural dynamic programs. For the sake of simplicity,
let us focus on maximization problems, the case of minimization problems be-
ing symmetric. Consider some instance of the problem. This instance induces a
polynomial-size set of possible states S. The dynamic program fills in a table
t(·), indexed by the states. There is a collection Sbase ⊆ S of base states, whose
profits can be computed with some trivial procedure (for example, they have
profit zero). The remaining table entries t(S), S /∈ Sbase, are filled in as follows.
There is a set CS of possible choices associated to S. We let C := ∪S∈S,C∈CS{C}
be the set of all the possible choices. For notational convenience, we assume
that choices of distinct states are distinct, and we let SC denote the (only) state
associated to C. Each choice C ∈ CS is characterized by a profit wC and by a
collection of distinct states SC

1 , . . . , SC
kC . If CS = ∅, we set t(S) = −∞. Other-

wise t(S) is computed by exploiting the following type of recurrence, for proper
coefficients αC

i > 0 (which can be assumed to be integral w.l.o.g.)1:

t(S) := max
C∈CS

{wC +
kC
∑

i=1

αC
i · t(SC

i )}.

1 Often in practice all αC
i are 1 and kC is a small number like 1 or 2.
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Each state SC
i must be a predecessor of S according to a proper partial order de-

fined on the states (where the minimal states are the base ones). This partial order
guarantees that t(·) can be filled in a bottom up fashion (without cycling). At the
end of the process t(Sstart) contains the value of the desired solution, for a proper
special state Sstart. By keeping track of the choices C which give the maximum in
each recurrence, one also obtains the corresponding solution. For notational con-
venience we next assume that t(S) = 0 for everyS ∈ Sbase. This can be enforced by
introducing a dummy choice node C′ with weight t(S), and an associated dummy
child state node S′ with t(S′) = 0. This way the profit can be expressed as the sum
of the weights of the selected choices. We will use I to denote the input instance,
excluding the part which is needed to define the weights wC in the recurrences.
In particular, I defines the states, the feasible choices for each state, the states
associated to each choice, and the corresponding coefficients.

Next we describe an LP whose basic solutions describe the execution of DP
on a given I for all the possible weights wC . In particular, the weights will not
appear in the set of constraints. Let us define a digraph G = (V,E), with state
nodes S and choice nodes C. For every C ∈ C, we add edges (SC , C) and (C, SC

i )
for all 1 ≤ i ≤ kC . Observe that G is a DAG (i.e., there are no directed cycles)
due to the partial order on the states. W.lo.g. we can assume that Sstart has no
ancestors. We let δin(v) and δout(v) denote the set of edges ending and starting
at v, respectively. We associate a variable ye to each edge e. The value of ye in
a fractional solution will be interpreted as a directed flow crossing e. For each
state node S ∈ Sint := S − (Sbase ∪ {Sstart}), we introduce a flow conservation
constraint:

∑
δin(S) ye =

∑
δout(S) ye. We remark that it might be δout(S) = ∅,

in which case we assume that the corresponding sum has value zero. Recall that,
in this case, t(S) = −∞. We also force Sstart to be the source of one unit of
flow:

∑
δout(Sstart)

ye = 1. This flow will end in nodes of Sbase. For each choice
node C ∈ C, we add a flow duplication constraint which guarantees that the
flow entering C from its only ingoing edge e = (SC , C) is duplicated on all its
outgoing edges according to the integral coefficients αC

i : x(C,SC
i ) = αC

i · x(SC ,C)

for all 1 ≤ i ≤ kC . We remark that, due to flow duplication, the flow entering
a given node might be larger than 1. For a state node S this means that t(S)
contributes multiple times to the objective function. Altogether, the LP is defined
as follows:

LPDP,I = {max
∑

C∈C
wC · y(SC ,C) s.t.

∑

δin(S)

ye =
∑

δout(S)

ye, ∀S ∈ Sint;

∑

δout(Sstart)

ye = 1;

y(C,SC
i ) = αC

i · y(SC ,C), ∀C ∈ C, 1 ≤ i ≤ kC ;

ye ≥ 0, ∀e ∈ E}

Let CLPDP,I = CLPDP,I(y) be the set of constraints of LPDP,I . Let also
CHDP,I denote the collection of set of choices made by DP on any feasible
input I for any possible choice of the weights wC .
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Theorem 3. (DP-embedding) The vertices of CLPDP,I are integral and in
one to one correspondence with CHDP,I. Furthermore, t(Sstart) is −∞ iff
CLPDP,I is infeasible, and in all the other cases t(Sstart) equals the optimal
value of LPDP,I (for a given choice of the weights).

4 Constant Integrality Gap for Weighted UFPP

In this section we present an extended LP formulations for UFPP with constant
integrality gap. For reasons of space, we present here a weaker LP with O(1)
integrality gap. For the claimed LP with integrality gap 7+ ε we refer to the full
version of this paper.

Recall that Ti denotes either a task or the corresponding rectangle. For brevity
we call large (resp., small) the tasks that are 1/2-large (resp., 1/2-small), and
denote the corresponding set by Tlarge (resp., Tsmall). W.l.o.g., we can assume
that Tlarge is given by the first n′ tasks. We will crucially need the following two
lemmas.

Lemma 6 ([5]). Let T ′ ⊆ Tlarge be a feasible solution to UFPP. There exists a
partition of T ′ into 4 (disjoint) subsets, where each subset is an independent set
of rectangles.

Lemma 7 ([5]). There is a dynamic program DP ′ which computes a maximum
weight independent set of rectangles in Tlarge.
Maximum weight independent set of rectangles is a subset problem, where we are
given a collection of n items {1, . . . , n} where item i has profit wi, and we need to
select a maximum profit subset of items satisfying given constraints. A solution
to these problems can be defined as a binary vector z = (z1, . . . , zn) ∈ {0, 1}n,
where zi = 1 iff item i (task Ti in our case) is selected. We remark that each
choice of the dynamic program DP ′ from the previous lemma corresponds to
selecting one or more items, and the structure of DP ′ guarantees that no item
is selected more than once. Let Ci denote the choices of DP ′ that select item i.
Consider the following LP:

EXTDP′,I := {max

n∑

i=1

wi · zi s.t. CLPDP′,I(y); zi =
∑

C∈Ci

y(SC ,C), i = 1, . . . , n}.

By Theorem 3, if we project the basic solutions of EXTDP′,I on variables zi
we obtain the set of solutions that DP ′ might compute on instance I for some
choice of the weights wi. In other terms, EXTDP′,I is an integral extended LP
formulation of the problem solved by DP ′ on instance I ′ for given weights. Also
in this case we let CEXTDP′,I = CEXTDP′,I(z) denote the set of constraints
of EXTDP′,I .

We remark that there exists a choice of (possibly negative2) weights of the
tasks that forces DP ′ to compute any given feasible solution T ′: we need this
property for technical reasons.
2 Non-negative weights are sufficient, provided that ties in the computation of the

maxima are broken in a proper way.
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We consider the following LP formulation for UFPP:

LP+
UFPP := {max

n∑

i=1

wi · xi s.t. CEXTDP′,Tlarge
(zj), j = 1, 2, 3, 4;

xi ≤ z1i + z2i + z3i + z4i , i = 1, . . . , n′;
∑

Ti∈Te

di · xi ≤ ue, ∀e ∈ E;

0 ≤ xi ≤ 1, i = 1, . . . , n}

Let us argue that every feasible solution T ′ induces a feasible integral solution
(x̃, z̃) (of the same profit) to LP+

UFPP. Set x̃i = 1 if Ti ∈ T ′, and x̃i = 0 otherwise.
Let T ′

large := T ′ ∩ Tlarge, and (T 1, T 2, T 3, T 4) be the partition of T ′
large given by

Lemma 6. Fix z̃ji = 1 if Ti ∈ T j and z̃ji = 0 otherwise. The resulting integral
solution trivially satisfies the last three constraints. For the first constraint, we
observe that T j is a feasible independent set of rectangles: consequently, there is
a choice of the weights that forces DP ′ to compute that solution. Thus z̃j must
be a feasible (indeed basic) solution of EXTDP′,Tlarge

(zj).
Consider the standard linear program LPUFPP. Even though LPUFPP has

unbounded integrality gap in general, its integrality gap is bounded when there
are only small tasks.

Lemma 8 ([10]). Let δ > 0. For instances of UFPP with only (1 − δ)-small
tasks, the integrality gap of LPUFPP is bounded by O(log(1/δ)/δ3).

We are ready to bound the integrality gap of LP+
UFPP.

Theorem 4. The integrality gap of LP+
UFPP is in O(1).

We can strengthen the linear program presented here even further such that its
integrality gap is bounded by 7+ε, matching the ratio of the best known approx-
imation algorithm for UFPP [5]. The latter algorithm works as follows: for the
1/2-large tasks it uses the DP described in the previous section. For δ-small tasks
(for a sufficiently small value of δ depending on ε) it uses LP-based methods to-
gether with a framework to combine solutions for suitable subproblems. (In fact,
already in [11, Corollary 3.4] it was shown that in that setting LPUFPP has an in-
tegrality gap of only 1+ε, if δ is sufficiently small.) For the remaining tasks, that
is, tasks that are δ-large but 1/2-small, the algorithm in [5] employs O(n) dy-
namic programs for suitably chosen subproblems. We can embed these dynamic
programs into LP+

UFPP. Using similar ideas as for the (7 + ε)-approximation al-
gorithm in [5] one can show that the resulting LP has an integrality gap of at
most 7 + ε. We leave the details to the full version of this paper.

Theorem 5. For every ε > 0 there is a linear programming formulation of
UFPP with an integrality gap of at most 7+ ε whose complexity is bounded by a
polynomial in the input.
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