A Mazing 2+& Approximation for Unsplittable Flow on a Path

Aris Anagnostopoulos®

Abstract

We study the unsplittable flow on a path problem
(UFP), which arises naturally in many applications such
as bandwidth allocation, job scheduling, and caching.
Here we are given a path with nonnegative edge capac-
ities and a set of tasks, which are characterized by a
subpath, a demand, and a profit. The goal is to find
the most profitable subset of tasks whose total demand
does not violate the edge capacities. Not surprisingly,
this problem has received a lot of attention in the re-
search community.

If the demand of each task is at most a small
enough fraction § of the capacity along its subpath
(6-small tasks), then it has been known for a long
time [Chekuri et al., ICALP 2003] how to compute a
solution of value arbitrarily close to the optimum via
LP rounding. However, much remains unknown for
the complementary case, that is, when the demand
of each task is at least some fraction § > 0 of the
smallest capacity of its subpath (§-large tasks). For this
setting a constant factor approximation, improving on
an earlier logarithmic approximation, was found only
recently [Bonsma et al., FOCS 2011].

In this paper we present a PTAS for §-large tasks,
for any constant § > 0. Key to this result is a complex
geometrically inspired dynamic program. KEach task
is represented as a segment underneath the capacity
curve, and we identify a proper maze-like structure
so that each corridor of the maze is crossed by only
O(1) tasks in the optimal solution. The maze has a
tree topology, which guides our dynamic program. Our
result implies a 2 + ¢ approximation for UFP, for any
constant € > 0, improving on the previously best 7 + ¢
approximation by Bonsma et al. We remark that our
improved approximation algorithm matches the best

" *Sapienza University of Rome,
{aris,leonardi}@dis.uniromal.it. Partially supported by
the EU FET project MULTIPLEX 317532 and the ERC StG
project PAAIl no. 259515.

fIDSIA, University of Lugano, fabrizio@idsia.ch. Partially
supported by the ERC Starting Grant NEWNET 279352.

fMax-Planck-Institut fiir Informatik, Saarbriicken, Germany,
awiese@mpi-inf.mpg.de. Partially supported by a fellowship
within the Postdoc-Programme of the German Academic Ex-
change Service (DAAD).

Fabrizio Grandonit

Stefano Leonardi* Andreas Wieset

known approximation ratio for the considerably easier
special case of uniform edge capacities.

1 Introduction

In the unsplittable flow on a path problem (UFP) we
are given a set of n tasks T' and an undirected path
G = (V,E). Each edge e has a capacity u, € NT. Each
task ¢ € T is specified by a subpath P(i) between the
start (i.e. leftmost) vertex s(i) € V and the end (i.e.
rightmost) vertex ¢(i) € V, a demand d(i) € N*, and
a profit (or weight) w(i) > 0. For each edge e € FE,
denote by T, all tasks i using e, such that e € P(i). For
any subset of tasks 7", we define w(T") := >, w(i)
and d(T") :=) ;. d(i). The goal is to select a
subset of tasks 7”7 with maximum profit w(7”) such that
d(T' NT.) < ue, for each edge e.

We can make the following simplifying assumptions
w.lo.g.: (i) For each task ¢, we assume that d(i) <
mingecpy{uec} (otherwise task i can be discarded);
(ii) The edge capacities are all distinct (this can be
achieved by slight perturbations and scaling, see [9]);
(iii) Each node is either the start node or the end node
of precisely one task, so that the number of nodes of
the path is 2n (this can be enforced by duplicating and
contracting edges in a proper way, similar to [4]).

UFP and variations of it are motivated by several
applications in settings such as bandwidth allocation [8,
15, 20], caching [16], multicommodity demand flow [14],
scheduling [2], or resource allocation [6, 10, 17, 21]. For
example, edge capacities might model a given resource
whose supply varies over a time horizon. Here, tasks
correspond to jobs with given start and end times and
each job has a fixed demand for the mentioned resource.
The goal is then to select the most profitable subset of
jobs whose total demand at any time can be satisfied
with the available resources.

When studying the problem algorithmically, a nat-
ural classification of the tasks is the following. For each
task ¢ define its bottleneck capacity as the smallest ca-
pacity b(i) := min{u, : e € P(i)} of any edge of P(i).
Let also the bottleneck edge e(i) of i be the edge of i
with capacity b(7). For any value ¢ € (0,1] we say that
a task ¢ is 0-large if d(i) > §-b(i) and §-small otherwise.

If all tasks are d-small (0-small instances), then the

problem is well understood. As shown by Chekuri et
al. [14, Corollary 3.4], for 6 small enough, one can obtain
an arbitrarily good approximation with LP-rounding
techniques.

THEOREM 1. ([14]) For any § € (0, 3*2\/5), there is a

(1 + O(V9))-approzimation algorithm for §-small in-
stances of UFP.

However, much remains unclear for the complemen-
tary case where all tasks are §-large (d-large instances),
even if § is very close to 1. A straightforward dynamic
programming approach (where for each edge e one enu-
merates all possible subsets of tasks using e in an op-
timal solution) is doomed to fail: there are instances
where in the optimal solution one edge of the path is
used by all the tasks in the input. Also, for §-large
instances the canonical LP has an integrality gap of
Q(n) [11] (see Section 1.2 for the description of the
canonical LP). The best known approximation factor
proven by Bonsma et al. [9] for this setting is 2k, where
k € N such that 6 > 1 (and in particular k& > 2). They
reduce the problem to an instance of maximum indepen-
dent set of rectangles and this approach inherently loses
a factor of 2k > 4 in the approximation ratio. In partic-
ular, their approximation ratio increases unboundedly
if § — 0. The best known (6 4 ¢)-approximation algo-
rithm for J-large instances, for any J > 0, combines the
approach above (with k& = 2) with another algorithm,
which is 2 4 ¢ approximate for instances that are 1/2-
small and d-large at the same time. Combining this
(6 +) approximation with the result from Theorem 1,
they obtain the currently best (7 + ¢)-approximation
algorithm for UFP [9] (for general instances).

1.1 Our Results and Techniques. In this paper,
we present a polynomial-time approximation scheme
(PTAS) for é-large instances of UFP (for any constant
4 > 0), improving on the previously best 6 + £ approx-
imation for the same case [9]. In combination with the
algorithm from Theorem 1, our PTAS implies a 2+¢ ap-
proximation for arbitrary UFP instances, without any
further assumptions (such as the common no-bottleneck-
assumption max;{d(i)} < min.{u.} or restrictions on
edge capacities). This improves on the previously best
7 + € approximation for the problem [9], and matches
the best known approximation ratio for the much sim-
pler case of uniform edge capacities [10]. We remark
that, given our result, any further improvement of the
approximation factor for UFP requires to consider d-
small and §-large tasks at the same time.

Our PTAS for é-large instances is based on a dy-
namic program (DP) and exploits the following geomet-
rical viewpoint, inspired by [9] (but different in spirit

and, as it turns out, more powerful). Let us represent
edge capacities with a closed curve on the 2D plane
(the capacity curve) as follows: We label nodes with in-
tegers from 1 to 2n going from left to right. For each
edge e = (v,v + 1), we draw a horizontal line segment
(or segment for short) [v,v + 1] X {ue}. Then we add
a horizontal segment at the bottom, and vertical seg-
ments in a natural way to obtain a closed curve (see
Figure 1). We represent each task i as a horizontal seg-
ment (s(i),¢(¢)) x {b(i)}. In particular, this segment lies
underneath the capacity curve, and touches the horizon-
tal segment corresponding to its bottleneck edge e(i)
(see Figure 1). (For comparison, our segments corre-
spond to the upper sides of the rectangles from [9].)
Note that, because all tasks are J-large, the segment
representation is sufficient to provide a rough estimate
of task demands. At the same time, this notation turns
out to be very convenient for the design of our DP and
for its analysis.

The basic idea behind our approach is to sacrifice
some tasks of the optimal solution, which we replace
by profitless maze tasks (or m-tasks for short), that
structure the area within the capacity curve into a maze.
This maze has a tree topology: our DP traverses this
tree from the leaves to the root, where the root is placed
conventionally in the bottom-left corner of the capacity
curve (it can be thought as the exit of the maze). We
enforce the property that between any two consecutive
(in a top—bottom ordering) m-tasks there are at most
k= O(1/e+1/6) tasks above every edge e (see Figure 1).
We will refer to this property as k-thinness later. This
way, the DP is able to guess the tasks crossing any given
corridor in an optimal solution.

One still remaining difficulty is that, when the DP
computes a solution for some arising subproblem, we
cannot afford to remember precisely which tasks were
selected previously (this would result in too many DP-
cells). To this end, the maze tasks have a second
function: We use them to make it affordable to forget
some decisions as we move from the leaves to the root.
In particular, consider any edge e and let m be the
m-task using e with highest bottleneck capacity b(m).
When we check the capacity constraint on edge e, we
ignore all the subcritical tasks, which are tasks whose
bottleneck capacity is below $b(m). If the total capacity
of all the tasks in the solution that use each edge
e, ignoring the subcritical tasks, satisfies the capacity
constraint of e, then we call the solution weakly feasible.
We will show that a weakly feasible solution becomes
feasible (in the usual sense) if we remove all maze tasks.
The reason is that the capacity of the m-task with
highest bottleneck capacity using edge e exceeds the
total capacity of the subcritical tasks that use e, which

Figure 1: An example of capacity curve and the maze, with segments associated to some tasks 7" (dashed) and

m-tasks M’ (bold). Note that (7", M’) is 2-thin.

we ignored in the definition of weak feasibility.

Therefore, our DP computes a weakly feasible k-
thin pair (77, M’) where T' C T is a set of tasks and
M’ is a set of m-tasks; in fact it computes the optimal
weakly feasible solution among all pairs (7", M), which
is the solution that maximizes w(T"). The final output
consists only of T”, whose weight we seek to maximize.
Because at the end we will remove the maze tasks of
a computed solution we need to ensure that there is in
fact a solution (77, M') where the weight of 7" is almost
the weight of the optimum 7. We prove this by a
nontrivial sequence of reductions where, eventually, the
tasks of T are mapped into directed paths of a properly
defined tree. On those paths we define a min-cost flow
LP where each integral solution induces a k-thin pair
(T, M) where the tasks T™* are (essentially) partitioned
into 77 and M’. The objective is to minimize w(M’).
The claim then follows by showing that there exists a
cheap fractional solution of weight at most ¢ - w(T™),
and that the LP matrix is totally unimodular.

The actual DP computing the optimal weakly feasi-
ble k-thin pair (77, M’) is rather involved and technical.
We next give an intuitive description, which highlights
the key ideas. For the sake of simplicity, let us pre-
tend that M’ is given to us (whereas our DP will have
to guess it along the way). Together with the capacity
curve, the tasks in M’ structure the plane into a maze.
The maze induces a tree (see Figure 2), which guides
our DP. In the maze tree, there is a node v for each
horizontal corridor in the maze, which is characterized
by an edge e and two consecutive m-tasks m,,my using
e (at the top or the bottom of the capacity curve m or

m4+ may be undefined and then the corridor goes all the
way to the bottom or to the top). We define the node
on the bottom left corridor to be the root of the tree.
For each node v we define an area A,: draw a vertical
segment connecting m and m¢ above the midpoint of e.
This segment partitions the maze into two disconnected
regions. We define A, to be the region not containing
the bottom-left corner; see Figure 2. Then we place an
edge (v,w) if A,, C A, and there is no other node u so
that A, C A, C A,. Due to the way we preprocessed
the input instance, each node in the tree has at most
two children: this helps to simplify the DP.

In the DP table there is a cell for each combination
of a tree node v and a set of tasks 7. This set T
contains a subset of boundary tasks ¢ using the corridor
of v (formally, e € P(i) and b(my) < b(i) < b(m4)).
Furthermore, T contains a subset of critical tasks for
my and my; those are tasks that share some edge with
P(my) (resp., P(ms)) and whose bottleneck capacity
is in the range [$b(m,), b(m,)) (vesp., [$b(m4), b(my))).
Observe that only those are the tasks underneath m,
(resp., m4) that are being considered when checking for
weak feasibility—the rest are subcritial tasks, which, as
we mentioned previously, are being ignored.

We show that, to obtain a good approximation,
it is sufficient to consider subsets of at most k =
O(1/e + 1/§) boundary tasks, and subsets of at most
O(1/6?) critical tasks. This implies that the DP table
has polynomial size. The value of each DP cell (v,T)
is the weight of the optimal solution to the following
subproblem: select some tasks 7" that lie completely in
A, such that (T UT', M') is weakly feasible and w(T")

rqot

corridor of u

Figure 2: An example of a maze and the corresponding tree topology, in which tree nodes are represented by

squares.

is maximized. We prove that the value of a DP cell
(v,T) can be derived from the value of two DP cells
(v1,T1), (v2,Ty) associated to the children vy, vy of v
(or possibly only one cell, if v has only one child) that
are compatible with (v,T) and with each other. Hence,
for computing the optimal solution of a cell (v, T), we
guess all possibilities for cells (vy,T}), (va, T2), compute
their optimal solutions, and select the best combination.
The notion of compatibility then ensures locally that
each such combination yields a feasible solution for the
subproblem encoded in (v, T). Leaf nodes form the base
cases of the DP, and a suitable DP-cell associated to the
root node gives the final solution.

1.2 Related Work. The -currently best known
polynomial-time approximation algorithm for UFP
achieves an approximation factor of 7 + ¢ [9]. This
result improves on the previously best known polyno-
mial time O(logn)-approximation algorithm designed
by Bansal et al. [5]. Bansal et al. [4] present a QP-
TAS for UFP assuming a quasi-polynomial bound on
capacities and demands of the input instance. In terms
of lower bounds, the problem is strongly NP-hard, even
in the case of uniform edge capacities and unit profits
[9, 16, 17].

Because of the difficulty of the general problem, re-
searchers have studied special cases of UFP. The re-
source allocation problem (RAP) is the special case
of UFP with uniform capacities. A 6-approximation
for RAP is given by Phillips et al. [22]. The ap-
proximation ratio was later improved to 4 by Bar-
Noy et al. [7], and finally to 2 4+ ¢ by Calinescu et
al. [10]. The no-bottleneck assumption (NBA) requires
that max;{d(i)} < mine{u.}. Chekuri, Mydlarz, and
Shepherd [14] give the currently best known (2 + ¢)-

approximation algorithm for UFP under the NBA. Ob-
serve that this generalizes the result in [10] since UFP
instances with uniform capacities satisfy the NBA.

Several researchers addressed the problem of finding
good LPs for UFP. The canonical LP for UFP has a
variable z; € [0, 1] for each task ¢ and takes the following
form:

Unfortunately, this LP has an integrality gap of
Q(n) [11]. Adding further constraints, Chekuri, Ene,
and Korula give an LP relaxation with an integrality
gap of only O(log? n) [13], which was recently improved
to O(logn) [12]. Recently, Anagnostopoulos et al. [1]
described a compact LP for the unweighted case of UFP
with constant integrality gap. They also present an ex-
tended (i.e., containing extra variables besides the z;’s)
compact LP for weighted UFP with constant integrality
gap.

The problem of unsplittable flow on a tree (UFT)
is the generalization of UFP where the input graph is
a tree rather than a path. UFT is APX-hard, even
for unit demands, edge capacities being either 1 or
2, and trees with depth 3 [18]. The currently best
known approximation algorithm for UFT has a ratio of
O(log? n) [13]. Chekuri et al. [13] give a O(log(1/7)/7%)-
approximation algorithm for UFT in the case that all
tasks are (1 — -)-small. Under the NBA, Chekuri et
al. [14] design a 48-approximation algorithm for UFT.

The unsplittable flow problem (UF) is a further

generalization of UFP. Here the input graph G = (V, E)
is arbitrary, and the paths P(:) are not specified in
the input. A solution consists of a subset of selected
tasks 77, and a path P(i) between s(i) and (7) for each
i € T'. Azar and Regev [3] show that UF is NP-hard
to approximate within a factor better than O(|E|'~%).
They also present a O(\/E) approximation under the
NBA. This generalizes a similar approximation for the
Edge Disjoint Path Problem (EDP) by Kleinberg [19].

2 Definitions and Methodology

In this section we describe our methodology, which re-
sults in a polynomial-time (1 4 ¢)-approximation algo-
rithm for d-large UFP instances (for any two given con-
stants £,0 > 0). Recall that, in polynomial time, we
can reduce the input instance so that each vertex is ei-
ther the start or the end vertex of exactly one task in
T (similarly to [4]). Thus, the number of nodes in the
graph is 2n.

Now we define the maze tasks, or m-tasks for short,
which we use to structure our solution. For each
pair of tasks i and j that share the same bottleneck
edge e (possibly ¢ = j), we define an m-task m with
P(m) = P(i) U P(j). Analogously to regular tasks,
we set b(m) = wu, and e(m) = e. Furthermore, we
define d(m) = 6 - u. and w(m) = 0. We remark that
d(i),d(j) > d(m). Let M. be the m-tasks m with
e € P(m). Note that because of the preprocessing
described in Section 1, no two m-tasks with different
bottleneck capacities share the same endpoint.

Our goal is to search for solutions in the form of
maze pairs (T', M') € 2T x2M | where we require for any
two different m-tasks m, m’ € M’ that b(m’) # b(m”).
Let k = k(e,0) be an integer constant to be defined
later. We restrict our attention to maze pairs that are
k-thin and weakly feasible, as defined below.

Intuitively, a maze pair (7", M) is k-thin if, for any
edge e, between two consecutive segments (in a top—
bottom ordering) associated to m-tasks from M’ N M,
there are at most k segments associated to tasks in
T' NT, (see Figure 1).

DEFINITION 2. (k-THINNESS) A maze pair (T',M') is
k-thin if for every edge e and every set T" C T' NT,
with |T"| > k there is an m-task m € M'N M, such that
min;er{b(i)} < b(m) < max;er~{b(7)}.

In Section 3 we prove that, for large enough k, there
exists a k-thin maze pair (T, M) so that T is a good
approximation to the optimum 7™ and TUM is feasible
(i.e., d(TNT,) +d(M N M.,) < u, on each edge e).

LEMMA 3. For any €,6 > 0 there is a k € N with
k = O(1/e + 1/6), such that for any §-large instance

of UFP, there erists a k-thin maze pair (T, M) such
that w(T) > (1 — e)w(T*) and T U M is feasible.

However, we are not able to compute the most
profitable k-thin magze pair in polynomial time. For
this reason we relax the notion of feasibility of a maze
pair (7", M’) so that T U M’ might not be feasible,
but still 7" alone is feasible (which is sufficient for our
purposes). We need some definitions first. For every m-
task m € M and any subset of tasks T’, we partition the
set T7(m) :={i € T : P(i) N P(m) # 0} of tasks of 7"
sharing some edge with m into three (disjoint) subsets:

e (above tasks) abv(m,T’) := {i € T'(m) : b(i) >

b(m)}-

e (critical tasks) crit(m,T")

b(m) > b(i) > 3b(m)}.

e (subcritical tasks) subc(m,T’) := {i € T'(m) :

b(i) < $b(m)}.

We also define abve(m,T") := abv(m,T’) N T, and we
define analogously crit.(m,T’) and subc.(m,T").

= {i € T'(m)

DEFINITION 4. (WEAK FEASIBILITY) A maze pair
(T',M') is weakly feasible if for every edge e it holds
that d(abve(me,T")) + d(crite(me, T")) + d(me) < U,
where m, is the m-task in M’ N M, of largest bottleneck
capacity, or d(T' NT,) < ue, if M' N M, = (.

Next we show that weak feasibility of a maze pair
(T', M’) implies feasibility of T”. The key argument
is that for each edge e the task m. compensates for the
tasks in subce(m., T') that were ignored in the definition
of weak feasibility.

LEMMA 5. Let (T', M) be a weakly feasible maze pair.
Then T' is feasible.

Proof. Let eq,...,e, be the edges in nondecreasing
order of capacity. We prove by induction on j that
d(T" N Te;) < we; for all j. Consider first e;. If
there is no m-task using e;, then the claim is true by
definition. Otherwise let m; = m,, be the (only) m-
task in M’ N M,,. All tasks i € T/ N T, must have
b(i) = ue, (in particular, they are critical for mq). Thus
d(T'NT,) < d(T'NT,) + d(my) = d(abve, (m1,T")) +
d(crite, (m1,T")) + d(m1) < ue.

Now suppose by induction that there is a value j €
N'such that d(T"NTe,,) < ue,, forall j' € {1,...,j —1}.
Consider the edge e;. Once again if there is no m-
task using e;, then the claim is true by definition.
Otherwise, let m; := me,;. Consider the subcritical
tasks SC := subc,; (m;,T"). By definition, e; is not the
bottleneck edge of any task in SC. We partition SC
into the sets SC, and SCg, containing the tasks with

bottleneck edge on the left of e; and on the right of e;,
respectively. Consider the set SCp. Let i, € SCf, be a
task with maximum bottleneck capacity in SCp, and let
ey, be its bottleneck edge. By the definition of SC, and
ir, all tasks in SC, use er, and u., = b(ir) < g-b(mj).
Using the induction hypothesis on ej, we obtain that
d(SCL) = d(SCL.NT.,) < d(T'NT.,) < ue, < §-b(m;).
Similarly, we obtain that d(SCgr) < % - b(m;). Since
d(m;) = § - b(m;) the m-task m compensates for all
tasks in SC, that is,

d(subce, (my;,T")) = d(SC) = d(SCL) + d(SCRr)
< 6 -b(my) = d(m;).

Hence

d(T' NTe,) = d(abve, (m;, T")) + d(crite, (m;,T"))
+ d(subce,; (m;,T"))
< d(abve, (my;,T")) + d(crite, (m;, T"))

where the last inequality follows from the weak feasibil-
ity of (T", M"). O

Note that the maze pair (T,M) obtained in
Lemma 3 is feasible so, by definition, it is also weakly
feasible. In Section 4 we present a polynomial-time dy-
namic program that computes the weakly feasible k-thin
maze pair with highest profit.

LEMMA 6. For any constants 6 € (0,1] and k €
N*, there is a dynamic program with running time
nOk+1/8%) that computes a weakly feasible k-thin maze
pair (T', M'") of largest profit w(T") for §-large instances
of UFP.

A crucial property that we exploit in the design
of our dynamic program is that for each m-task in a
weakly feasible maze pair the number of critical tasks is
bounded by a constant depending only on 4.

LEMMA 7. Let (T',M') be a weakly feasible maze pair
and m € M'. It holds that |crit(m,T")| < nerit(d) =
4,1
52 T3

Proof. First recall that, by Lemma 5, T” is a feasible
solution. Consider the tasks i € crit(m,T") with b(i) =
b(m). Because all tasks are d-large, there can be at most
1/6 such tasks. The remaining tasks i € crit(m,T”)
have b(i) < b(m) and must use the leftmost edge er,
of P(m) or the rightmost edge er of P(m) (or both).
Consider the tasks Cp, of the first type: we will show
that |Cr| < 2/6%. A symmetric argument holds for the

remaining tasks Cg, hence giving the claim. Consider
the task iy, € Cp that has the largest b(ir). By the
definition of Cy, and iy, all tasks in C, must use e(ir,)
and b(ir,) < b(m). Each task i € Cp is critical for
m and thus b(i) > gb(m). Also, i is d-large and so
d(i) > ob(i) > %b(m). Therefore, there can be at most
b(ir)/(%b(m)) < Z such tasks. O

By combining Lemmas 3, 5 and 6 we obtain the
main theorem of this paper.

THEOREM 8. For any constant § > 0, there is a PTAS
for 6-large instances of UFP.

Combining Theorem 8 with Theorem 1, we obtain the
following corollary.

COROLLARY 9. For any constant € > 0, there is a
polynomial-time (2 + €) approzimation algorithm for
UFP.

3 A Thin Profitable Maze Pair

In this section we prove Lemma 3, that is, we show
that for any instance there is a k-thin maze pair (7', M)
such that w(T) > (1 — &)OPT and T U M is feasible.
Recall that, by assumption, the vertices of the graph are
labeled by 1,...,2n from left to right. Let £(i) denote
the segment (s(),t(7)) x {b(i)} associated to each task
i € T*. Define L := {£(i) : i € T*} and w(£(7)) := w(i).
We say that a segment (a,b) x {y} contains an edge
e=(v,v+1)if (v,v+1)C (a,b).

We want to select a subset L’ C L such that
w(L') =3 yiyer wl(i)) is at most e - w(T™) and any
vertical segment {x} x (yp,y:) intersecting more than
k segments in L intersects at least one segment in L'.
We call a set L' with the latter property k-thin for
L. As we will show, for proving Lemma 3 it suffices
to find a k-thin set L’ for L because of the following
transformation of L’ into a maze-pair (T(L'), M(L')).
We define T(L’) := {i : (i) € L'\ L'}. For constructing
M(L") we group the segments in L’ according to the
bottleneck edges of their corresponding tasks. For each
edge e, we define L. := {{(i) € L' : e(i) = e}. Now for
each edge e with L/ # () we add to M (L) the m-task
m. € M with path P(m) = Uyuer, P(i). Note that
P(m) = P(iy)UP(ig) for the task i;, € L with leftmost
start vertex and the task ip € L, with rightmost end
vertex (in a sense, we glue iy, and ig together to form
an m-task). Hence m, is a well-defined m-task. Observe
that, as required in the definition of a maze pair, we have
b(m’) # b(m") for any two distinct m’,m” € M(L').
LEMMA 10. If a set L' C L is k-thin for L, then
the maze pair (T(L'),M(L")) is (k + 1/6)-thin and
T(L'YU M(L') is feasible.

Proof. The proof is based on the similarity of the
definitions of k-thinness for segments and for maze
pairs. Some extra work is required because some line
segments may share the same bottleneck edge and
then overlap. Consider any edge e = (u,u + 1), and
any set of Kk + 1/6 + 1 tasks 77 C T* N T,. We
define {i1,42,...,9k+1} C T’ to be k + 1 of them with
lowest bottleneck capacity, in nondecreasing order of
bottleneck capacity. Let by, := max;er{b(i)}. Since
T* is feasible, and since the tasks in 7% are J-large,
there cannot be more than 1/§ tasks in 7" of bottleneck
capacity equal to by,qy. It follows that b(i;) < bpqs for
all 1 <j<k+1.

Consider a vertical segment ¢/ with z-coordinate
u + 3 that intersects €(iy),...,0(ig41). Since L' is
k-thin, ¢ must intersect some segment ¢(i*) € L'
Segment £(i*) corresponds to a task ¢*; in turn, to this
task corresponds an m-task m € M(L’) with b(i;) <
b(m) = b(i*) < b(ig+1) < bmaz- Hence (T(L'), M(L"))
is (k + 1/6)-thin.

To show the feasibility of T'(L") U M (L’) recall that
T* is feasible and all tasks in T are d-large. Further-
more, each m-task has capacity d - b(m). Therefore, on
every edge e each m-task m, uses at most as much ca-
pacity as the tasks from 7% whose segments are in L]
(the latter tasks in a sense were replaced by m.). O

Next we reduce the problem of finding a k-thin set L’
with low weight to the case that each segment £(i) starts
at e(i) and either goes only to the right or only to the
left. See Figures 3(a) and 3(b). Formally, we split
each segment £(i) into two segments £ (i) and ¢r(7)
such that £ (i) contains the edges of P(i) between s(7)
and the right vertex of the bottleneck edge e(i) and
symmetrically for g (7). So £1(i) and £g(i) overlap on
e(i). We set w(lr(i)) = w(lgr(i)) = w(i). We define
Ly :={lr(i) : £(i) € L} and Lg := {¢r(3) : £(i) € L}.
The next lemma shows that it suffices to find low weight
k-thin sets for Ly and Lg.

LEMMA 11. Given k-thin sets L for Ly and L'y for
Lg, there is a 2k-thin set L' for L with w(L') <
w(L}) +w(LYy).

Proof. We add a segment £(i) to L’ if and only if
lp(i) € L} or Lp(i) € L. It follows directly that
w(L') < w(L})+ w(Ly). Now any vertical segment
¢ crossing at least 2k + 1 segments in L’ must either
cross k + 1 segments from Ly or k + 1 segments from
L. Thus, ¢ crosses a segment in L, or a segment in
L', and hence ¢’ crosses a segment in L'. O

Consider now only the segments Lp (a symmetric
argument holds for Lp). The next step is to reduce

the problem to the case where, intuitively speaking, the
edge capacities are strictly increasing and all segments
contain the leftmost edge of the graph (we shift up
segments and then extend them to the left). To simplify
the description of the next step, we also enforce that new
segments have different y-coordinates. Formally, let us
assume that task labels i are integers between 1 and n
(in any order). For each £g(7) = (v,u) x {b(i)} € Lg, we
construct a segment (1, u) x {b(¢)+M -v+¢e-i}, which we

denote by lr(i). Here M := 1 +max,{u.} and ¢ = %ﬂ

(so that € -4 < 1). Define Lp = {lgr(i) : i € T*} and
w(lr(7)) = w(i). (See Figure 3(c).)

LEMMA 12. Given a k-thin set f/}% for L, there is a k-
thin set L'y for Lp with w(Ly) = w(Ly). A symmetric
claim holds for Ly, and Ly,.

Proof. We prove the first claim only, the proof of the
second one being symmetric. Let L, := {{g(i) € Ly :
(r(i) € Ly}, Clearly w(L’y) = w(L). Consider any
vertical segment {x} x (ys,y:) that intersects at least
k + 1 segments from Lp. Let ¢r(i1),...¢r(ik+1) be
k + 1 such segments of lowest capacity, breaking ties
according to the lowest label ¢ of the corresponding
tasks. To prove the lemma it suffices to show that at
least one such segment ¢ (i) belongs to L.

W.lo.g., assume that for any 1 < j < k, s(i;)
is equal to or to the left of s(ij41), and ¢; < ;41 if
5(4j) = s(ij41). Then by construction §; < ... < Jr41,
where g; is the y-coordinate of segment l r(i;). Consider
a vertical segment {z} X (J1 — &', k41 +¢€’). For e’ >0
small enough, we can assume that ¢’ intersects precisely
the segments (5 (i1), ..., r(ixs1). Hence lp(ij-) € L)y
for some 1 < j* < k+ 1. It follows from the definition
of L, that {g(i;-) € L', as required. O

It remains to prove that there is a k-thin set for
Lr whose weight is bounded by O(1/k)w(Lg). We
do this by reducing this problem to a min-cost flow
problem in a directed tree network. Assume w.l.o.g.
that k& € N is even (this assumption has the only
purpose to avoid ceilings and floors). We consider the
following hierarchical decomposition of the segments
in L R, which corresponds to a (directed) rooted out-
tree D (see Figures 3(d) and 3(e)). We construct D
iteratively, starting from the root. Each node w of D
is labelled with a triple (e, Iy, Ry), where e, is an
edge in E, I, C [0,00) is an interval, and R,, contains
all segments that contain e and whose y-coordinate is
in I, (the representative segments of w). Let e, € E
be the rightmost edge that is contained in at least
k — 1 segments. We let the root r» of D be labelled
with (e, [0,00), R,.). For any constructed node w, if
e 18 the leftmost edge of the graph, then w is a leaf.

10

(c) Line segments in Lp shifted up (distances distorted) and
extended to the left (in dashed).

(b) Splitting the segments to the ones in Ly (in bold) and
to Lz, (dashed).

12
N

10
N EEeSerr —_——ya
e
£> ,,,,,,,,,,,,,,,,,,,,,,,,,,, B
,?5 ,,,,,,,,,,,,,

1

B A

(d) Decomposition of the segments for k = 4. The dashed
lines indicates the values (yo in the text) where the respective
interval I, is split.

D(10)

(e) The tree created from the decomposition of (d) (for representation issues,
arc directions (all towards the left) are omitted, and some nodes of degree 2
are contracted). A and B indicate the nodes corresponding to the splittings

in (d).

Figure 3: Construction of the maze

Otherwise, consider the edge e’ to the left of e,, and
let R’ be the segments in I, that contain e’. Note
that, by the initial preprocessing of the instance, each
edge can be the rightmost edge of at most one segment
(task), hence |R'| < |Ry| + 1. If |R'| < k, we
append to w a child w’ (with a directed arc (w,w’))
with label (¢/,I,, R'). Otherwise (i.e., if |R'| = k),
we append to w two children w, and wg, which are
labelled as follows. Let £ (i1), ..., {r(ix) be the segments
in R/, sorted increasingly by y-coordinate (here we
exploit the fact that y-coordinates are all distinct). We
partition R’ into Ry = {{gr(i1),...,¢R(ix/2)} and R; =
{ZR(ik/QH),...,ER(ik)}. Let yo be a value such that
all segments in R; have a y-coordinate strictly smaller
than yo and all segments in R; have a y-coordinate
strictly greater than yo. We label w, and w; with
(¢/, I,N[0,y0), Rp) and (€', I,,N[yo, 00), R:), respectively.

Consider a given segment (r(i) € Lg, and the nodes
w of D that have ¢r(i) as one of their representative
segments R,,. Then the latter nodes induce a directed
path D(i) in D. To see this, observe that if {5 (i) € R,
then either w is a leaf or fg(i) € R, for exactly one
child w’ of w. Furthermore, each £g(i) belongs to Ry,
for some leaf w of D (i.e., no D(3) is empty).

We call a set of segments I~/R C Ly a segment cover
if for each node w of D it holds that R,, N L’ # 0.

LemmA 13. If DR C Ly is a segment cover, then DR is
2k-thin for Lr. A symmetric claim holds for Ly, .

Proof. We prove the first claim only, the proof of
the second one being symmetric. Consider any ver-
tical segment ¢ = {x} x (yp,y¢) crossing at least
2k 4+ 1 segments from Lp, and let L” be 2k + 1
such segments of lowest y-coordinate. Let also e =
(u,u + 1) be the edge such that z € (u,u + 1), and

Cr(i1),...,0g(in) be the segments containing edge e in
increasing order of y coordinate. Observe that segments
L induce a subsequence £g(i;), Cr(iji1), - -, Lr(ijron)
of lgr(i1),...,¢r(ix). Furthermore, the representa-
tive sets Ry of~ nodes w such that e, = e parti-
tion £g(i1),...,¢r(ix) into subsequences, each one con-
taining between k/2 and k — 1 segments. It follows
tllat there must be one nodg w’ such that R, C
{lr(i5),... ., Lr(ij+2r)}. Since Ly N R, # O by assump-
tion, it follows that ZR(ij*) € f/R for some j < j* <
J+ 2k. O

It remains to show that there is a segment cover
with small weight.

LEMMA~14. There gxists a segment cover i% - f/R
with w(Ly) < % -w(Lg) (where k is the parameter used
in the construction of D).

Proof. We can formulate the problem of finding a f/R
satisfying the claim as a flow problem. We augment D
by appending a dummy node w’ to each leaf node w with
a directed edge (w, w’) (so that all the original nodes are
internal) and extend the paths D(i) consequently (so
that each path contains exactly one new edge (w,w’)).
We define a min-cost flow problem, specified by a linear
program. For each directed path D(i) we define a
variable x; € [0,1]. Let A denote the set of all arcs
in D. For each arc a denote by T, all values ¢ such that
D(i) uses a. For arguing about the flow problem, we
consider the following linear program:

min Z w(i) - x;

i(i)eLr
s.t.ZxZ-Zl Va € A

i€T,

;>0 V(i) € Lg.

By the construction of D every arc is used by at least
k/2 paths. Hence, the linear program has a fractional
solution of weight Y, w(i) - 2 = 2 - w(Lg), which is
obtained by setting x; := 2/k for each i. Since the
underlying network D is a directed tree and all paths
follow the direction of the arcs, the resulting network
flow matrix is totally unimodular, see [23]. Therefore,
there exists also an integral solution with at most the
same weight. This integral solution induces the set Ix%.
O

Now the proof of Lemma 3 follows easily from the
previous reductions.

Proof of Lemma 3. Suppose we are given the
optimal solution 7. As described above, we construct
the sets L, Ly, Lg, iL, and Lr. We compute segment

covers I~/L for L;, and E’R for Lp as described in the proof
of Lemma 14. By Lemma 13 they are 2k-thin for Lz, and
Ly, respectively. By Lemma 12 we obtain 2k-thin sets
L} and L, for Ly, and Lp, respectively, with w(L}) =
w(L}) and w(Ly) = w(L’%). By Lemma 11 this yields
a 4k-thin set L' for L whose weight is bounded by
w(L}) +w(L%). Finally, set (T',M) := (T'(L"), M(L")).
This maze pair is feasible by definition. Furthermore, by
Lemma 10, it is (4k + %)-thin and its weight is bounded
by w(T) < w(Ly) +w(Ly) < - (w(Lr) +w(Lg)) <
£-w(L) = 7 -w(T*). By setting the parameter k in the
construction of D to be 4/e we obtain an O(1/e 4+ 1/§)-
thin maze pair, completing the proof of the lemma. [

4 The Dynamic Program

In this section we present a DP that computes the
weakly feasible k-thin maze pair (T, M) with maximum
weight w(T), and thus prove Lemma 6. Let k =
O(1/e +1/6) (as suggested by Lemma 3). To simplify
the description and analysis of our DP, we introduce
the following assumptions and notations. For technical
reasons, we add edges e; and er to the left and
right of the input graph, respectively, and set their
capacity to zero (those edges are used by no task). For
notational convenience, we also add to M two special
dummy m-tasks L and T. The paths of L and T
span all the edges of the graph, and they both have
demand zero. Furthermore, b(T) := +oo and b(L) :=
0. In particular, with these definitions we have that
abve (T, T") = crite(T,T") = 0, abv.(L,T") = T' NT,,
and crite(L,T") = 0. We let e(L) = eg, and we leave
e(T) unspecified. However, when talking about weak-
feasibility and k-thinness of a maze pair (77, M’) we will
ignore the dummy m-tasks, that is, we will implicitly
consider (T', M\ {L,T}).

For any e € E, T C T, and any two m-tasks m’
and m” with b(m’) < b(m”), the boundary tasks in T’
for the triple (e,m’,m”) are the tasks

bounde(m/,m", T") := {i € T'NT, : b(m') < b(i) < b(m")}.

Intuitively, boundary tasks ¢ are the tasks using edge e
such that the segment corresponding to ¢ is sandwiched
between the segments corresponding to m' and m”.

In our DP table we introduce a cell for each tuple
of the form ¢ = (e,m4,Cy, m;,C|, B) where:

e ¢ is an edge;
o m, € M, and my € M., b(my) < b(my);

e Cy C crit(my,T) and Cy C crit(my,T), with
|C+], |Cy | < merit(9);

e B C bound.(my, ms,T), with |B| < k.

Recall that ncrit(6) = 35 + % (see Lemma 7). In-
tuitively, C| (resp., Cy) are the critical tasks associated
to my (resp., my). Observe that C| and B are disjoint,
whereas Cy might overlap with both C'; and B. For such
a cell to exist we further impose the following consis-
tency property: we require that (BUC| UC, {m, m4})
is weakly feasible and that for 77 = B U C} U Cy,
one has crit(my,T") = Cy, crit(mqy,T') = C;, and
bound.(my, my,T') = B.

Given a DP cell ¢ = (e,m4,Cy,m;,C\|,B), as a
shorthand notation we use e(c) := e, ms(c) := my and
similarly for the other indices of the cell. We also define
ey = ey (c) == e(my) and ey = er(c) := e(my) (we set
et = e if my = T). The idea behind a cell ¢ is as
follows. We define E(c) as the set of edges between ey
(included) and e; (excluded) (if e = ey, we assume
E(c) = 0). We define T'(c) as the set of tasks 7 with
bottleneck edge in E(c) such that b(i) > b(m+) or P(i)
does not contain e. We define M (c¢) similarly w.r.t. m-
tasks. For a geometric intuition we can think of cell ¢
as defining an area such that T'(¢) and M (c) lie entirely
inside—see Figure 4.

Our goal is to compute the maze-pair (T, M,) with
T. C T(¢) and M, C M(c) with maximum weight
w(c) := w(T.) such that:

1. (T.UBUC UC}, M.U{m, my}) is weakly feasible;
2. (T.UB,M.U{my,mq}) is k-thin;
3. If i € crit(my, T,) then i € Cy (inclusion property).

We call maze-pairs fulfilling the above properties feasible
for ¢. From this definition it follows that the optimal
solution for the cell ¢* := (er, L,0, T,0,0) is the weakly
feasible k-thin maze pair (Tex, Mex) with maximum
weight w(Tex).

We define a partial order < for the cells and fill in
the DP table w.r.t. this order (breaking ties arbitrarily).
Intuitively speaking, we define < to ensure that ¢ < ¢”
if the area (within the capacity curve) corresponding to
¢ is contained in the area corresponding to ¢”’. The
following definition achieves this: for two edges ¢ and
e, we let |¢/ — €”| be the number of edges between e’
and e”, boundary included. We define that ¢ < ¢’ if (in
a lexicographic sense) (|er(c’) — e ()], le(d") — e (¢))])
<tea (ler() — ey ()], le(c”) — ey ("))

The base case cells are obtained when e = e|. In
this case one must have my = T, and hence e4 = e. Also
T(c) =0 = M(c). For those cells we set (T, M.) :=
(@,0) (hence w(c) = 0).

Consider a cell ¢ that is not a base case. For the
sake of presentation, assume that e is to the right of
e, the other case being symmetric. Let e, be the first
edge to the right of e (possibly e, = e;). We will com-
pute (T¢, M.) as a function of some pairs (T.r, M) with

¢ < ¢, considering the following three branching cases
(see Figure 5):

e (single branching) This case applies only when my
uses both e and e, (possibly m+ = T). Consider any fea-
sible DP-cell ¢ = (e,,my, C}, my, Cy, Bs) with the fol-
lowing extra compatibility property: for T' := C; UC;U
B U Bg, one has crit(my,T") = C|, crit(m4,T") = Cy,
bounde(my,my,T") = B, and bound. (my,m,T') =
B;. Set wgp(c) + max., {w(cs) +w(Bs \ B)}.

e (top—bottom branching) This case applies only
when m4 uses both e and e, (possibly m; =
™). Consider any m-task mg,;q # T that has
e, as its leftmost edge and such that b(m;) <
b(Mmia) < b(my). Consider any pair of fea-
sible entries ¢, = (er,my,C}, Mmia, Cmid, By) and
¢t = (er,Mmid; Cmid, My, Cy, By) with the follow-
ing extra compatibility property: for T' = C| U
C4 U Cig U B U By U By, one has crit(ms,T") =
Cy, crit(m,T") = Cy, crit(mmia,T) = Chid,
bounde(my,mqy, T") = B, bounde,(my, Mmia,T') =
By, and bounde, (Mumid, my, T') = By. Set wy(c)
08X 0y ey {w0(e2) + w(er) +w((By U By) \ B)}.

e (left—right branching) This branching applies

only to the case that e is the rightmost edge of
ms, and mqy # T. Consider any m-task mgp,
that uses both e, and e and with b(mgp,) >
b(mq) (possibly mg, = T). Consider the pairs
of feasible entries ¢; = (e, mq, Cy, Mabw, Capw, Bi) and
e = (er,my,CL,Mapy, Copw, Br) with the follow-
ing extra compatibility property: for T' = C| U
Cy U Cypy U B U By U B, one has crit(ms,T') =
Cy, critimy,T) = Cy, crit(mewe,T’) = Coqpy,
bounde(my,mq,T") = B, bounde, (my, My, T") = By,
and bound.(mq, Mapw, T') = B;. We set wy,(c)
max(cl,cr){w(cl) + ’U}(CT) + w((Bl U Br) \ B)}

Finally, we set w(c) := max{wsp(c), we(c), wi-(c)}.
Depending on the case attaining the maximum, we
define (T, M.): if the maximum is achieved in the
single-branching case for some c¢,, then we set T, +
T.. U (Bs \ B) and M, « M, . If the maximum
is achieved in the top—bottom branching for some ¢,
and ¢, we set T, « T., UT., U ((By U B) \ B) and
M, <+ M., U M., U{mmiq}. Similarly, if the maximum
is achieved in the left—right branching for some ¢; and
cr, we set T, < T, UT, U ((B;UB,)\ B) and
Mg+~ M., UM, U {mabv}.

Observe that, in the single branching case, one
has that |er(cs) — ey(cs)| = lep(c) — ey (c)| and that
le(cs) — ey(es)] < le(e) — ey(c)|. In the other cases
one has |er(¢/) —e ()] < |er(c) —ey(c)|, where ¢’ €
{ep,ct,c1,¢r . Hence cg,cp,ct,c,¢ < ¢ as required.

Figure 4: Tasks BU C| U Cy (dashed) and area associated to a DP cell ¢. Tasks in Cy (C}) use a common edge
with mq (my). Tasks (resp., m-tasks) that lie entirely within the shaded area are those that belong to T'(c) (resp.,

M{(c))-

Note also that ¢* is the only feasible DP-cell associated
to edge ey, and for any other DP-cell ¢ it holds that
¢ < ¢*. The DP outputs (T,+, M.+) and we return Te-
as the computed set of tasks.

LEMMA 15. The above dynamic program runs in time
nO(k+1/62)'

Proof. Let us first bound the number of DP
cells. Each DP cell is characterized by a tuple
(e,m4,C4y,m;,C,, B). By the preprocessing step there
are O(n) choices for e, and by the definition of the m-
tasks there are O(n?) choices for m; and m4. Since
|C],1Ct| < merit(d) and |B| < k by definition, there
are n°1/%%) choices for C| and C4, and O(n*) choices
for B. Next observe that in the DP, to compute the
value of a DP-cell, one needs to consider any choice of
at most two other DP-cells with certain restrictions, and
to perform a polynomial number of operations for each
such choice. The claim follows. |

Recall that by Lemma 3, to obtain a 1 + ¢ approxi-
mation for é-large tasks, we need to choose k = (1 +1)

which gives an overall running time of n©(/e+1/) for
our DP. Note also that, from Theorem 1, to get a
1+ ¢ approximation for §-small tasks, one has to choose
§ = O(g?). Therefore, our 2+ € approximation for UFP
runs in time n®1/¢"). For a comparison, the running
time of the 2+ ¢ approximation for UFP under the NBA
in [14] is also nO(/<"),

We next show the correctness of the dynamic pro-
gram. Consider any cell ¢. First observe that T, C T'(c)
and M. C M (c). Also, by an easy induction, any two

distinct m-tasks in M, have different bottleneck capac-
ity. In other terms, (T¢, M.) is a well-defined maze pair.
We next prove that w(T.) > w(T) for any feasible pair
(T, M) for c¢. To that aim, we prove that if a pair
(T7, M) is feasible for a cell ¢, then it can be decom-
posed into the feasible solution for a cell ¢; and the
tasks in B(cs) \ B or into feasible solutions for two cells
¢, ¢p (or ¢, ¢,) and the tasks in (B(c;) U B(ey)) \ B (or
(B(c;)UB(cr))\ B), depending on the applying branch-
ing case.

LEMMA 16. If (T., M) is a feasible maze-pair for cell
¢, then w(T!) < w(Te).

Proof. We show the claim by induction, following the
partial order < on cells. For the base cases, it is clear
that w(T!) = w(T,) = 0 and the claim follows.

Now consider a non-base-case cell ¢ and suppose the
claim is true for all cells ¢’ with ¢/ < ¢. W.l.o.g. assume
again that e lies on the right of e, and let e, be the first
edge to the right of e. We distinguish cases, depending
on which m-tasks use e,..

First suppose that there is no m-task m,.;q €
M. N M., with b(my) < b(mmia) < b(ms) using e,
and that m4 uses e,, where possibly my = T (single
branching case). Then consider the DP cell ¢ =
(er,my,Cy,my, Cy, Bs) with By = bound,, (m, mq, T/U
B). Since (T), M]) is feasible for ¢, ¢, is indeed a cell
in our DP table. In particular, observe that |By| < k
since (T), M) is k-thin. The consistency property
follows by the weak feasibility of (77, M!) and from
the compatibility property of the single branching. By
induction, we know that the DP computed the optimal

g

e ey

(a) single branching

ms

e e

(b) top—bottom branching

€l

eer

(c) left—right branching

Figure 5: The three branching cases. The area of the cell ¢ is the area of the subcell(s) ¢s, (ct,¢), and (¢, ¢),

respectively, in addition to the checkered pattern.

solution (T, , M.,) for ¢;. In particular, w(T.,) >
w(T!) — w(Bs \ B) since (T, \ (Bs \ B), M!) is feasible
for ¢s. By definition of the DP transition,

w(T,) > wep(c) > w(Te,) + w(Bs \ B)

s

> (w(T)) — w(Bs \ B)) + w(Bs \ B) = w(T}).

Next consider the case that there is an m-task
Mmid € Mé N Mer with b(mi) < b(mmid) < b(mT)
using e, Note that by our preprocessing then
mq uses e, where possibly my = T (top-bottom
branching). Also observe that there can be at most
one such task m,,;q by our preprocessing and us-
ing that any two m-tasks in a maze pair have dif-
ferent bottleneck capacities. Let us consider the
(bottom) cell ¢, = (er,my,Cy, Mmid, Crmia, By) and
the (top) cell ¢, = (er, Mmid; Cmid, M4, Cy, By) where
we define By := bounde,(my, mmia, T, U B), By =
bounde, (Mmid, m+, ToUB), and Chiq := crit(Mumig, ToU
B). Also in this case, the feasibility of (77, M) for ¢ im-
plies that ¢; and ¢, are in fact DP cells. In particular,
since (T, M) is weakly feasible, |Cpia| < nerit(d) by
Lemma 7. The pair (T.NT(cp), M.NM(cp)}) is feasible
for ¢, and the pair (77 N T(ct), M. N M(cp)) is feasi-
ble for ¢;. In this case T is partitioned by T N T'(cp),

T'NT(c), and (By U By) \ B. Hence,

w(T,) > wp(c) > w(cp) +w(er) + w((By U By) \ B)
T:NT(cp)) +w(T.NT(ct)) +w((ByUBy) \ B)

Finally, consider the case that there is no m-task
Mmia € M. N M., with b(my) < b(mmia) < b(m4) and
that m¢ does not use e, (left-right branching case). Let
Maby € M. N M, be the m-task minimizing b(mapy)
such that b(mapy) > b(my) (possibly mgep, = T). By the
preprocessing of the input tasks, if mqp, # T, then mgp,
must use e, as well (otherwise two m-tasks with different
bottleneck capacities would share one endpoint).

Consider now the DP cells ¢ =
(6, me, CT; Mabv, Cabva Bl) and Cr =
(er,my, CyyMaby, Cabw, Br) where we define By =
bounde (m+, Mapy, To U B), B, = bound..(my, Mapy, ThU
B), and Cupy, = crit(map, Th U B). Again, since
(T7, M) is feasible for ¢, ¢; and ¢, are in fact DP cells.

Also, the pair (T. NT(c;), M. N M(¢;)) is feasible
for ¢; and the pair (T, NT(c,), M. N M(c,)) is feasible
for ¢,. By induction, we know that the DP computed
the optimal solutions (T, M,,) and (T, , M.) for ¢

and ¢, respectively. Observe that T, is partitioned by
T'NT(a), T.NT(c), and (B; U B,) \ B. Hence,

w(Te) = wir(c) 2 w(a) +wley) + w((BiU By) \ B)
=w(T:NT(a)) +w(TiNT(c,)) +w((B,UB,)\ B)
= w(T7).

This concludes the proof. O

We next prove that the DP computes a feasible
solution (satisfying properties 1-3) for each DP cell
c. The proofs of the next three lemmas use a similar
inductive pattern. We show that whenever we extend
the solution for a cell ¢ or combine the solutions for two
cells ¢ ¢p or ¢, ¢; to a solution for some cell ¢ according
to the DP transition, then the new solution is k-thin
(has the inclusion property, is weakly feasible) assuming
that the original cells ¢s or ¢t ¢ or ¢, ¢, were k-thin
(have the inclusion property, are weakly feasible).

LEMMA 17. (k-THINNESS) For each DP-cell ¢ =
(e,my,Cy,ms,C4,B), we have that (T, U B, M. U
{my,ms}) is k-thin.

Proof. 1t is sufficient to show that, given any edge e
and any two m-tasks m’,m” € (M. U {m ,ms+}) N M,
with b(m') < b(m’) and such that there is no m"” €
(M. U {my,mqs}) N M, with b(m’) < b(m"") < b(m"),
then the number of tasks ¢ in (7. U B) N T, with
b(m') < b(i) < b(m') is at most k. In other terms,
|bound.(m’,m", T, U B)| < k.

We prove the latter claim by induction, following
the partial order < on the cells. For the base cases,
recall that for each DP cell ¢ we required that |B(c)| <
k. Hence, in that case (T, U B,M, U {m ,mq}) =
(B,{m;, mq}) and the claim is trivially true.

Now consider a non-base-case DP cell ¢ and suppose
the claim is true for all cells ¢’ with ¢/ < ¢. Assume
w.l.o.g. that e lies on the right of e. We distinguish the
three branching cases and show that in each case the
pair (T,, M.) is k-thin.

First suppose that the single branching case ap-
plies, that is, there is a cell ¢; such that T, = T, U
(B(cs) \ B) and M, = M,,. By induction (7., U
B(es), M., U {my,m+}) is k-thin. Hence, it suffices
to ensure that |bound.(my,mq,T.UB)| < k. How-
ever, the latter holds since |bound.(my, ms,T,. U B)| =
|bound.(m, m4, B)| = |B| by the compatibility prop-
erty of the branching, and |B| < k by the definition of
DP cells.

The same basic argument also works for the re-
maining two branching cases: it is sufficient to bound
|bound.(m, m4,T. U B)|, and an upper bound of k fol-
lows from the compatibility property of the considered
branching and by definition of DP cells. |

LEMMA 18. (INCLUSION PROPERTY) For each DP-cell
c = (e,my,Cy,my,Cy,B), if i € crit(my,T.) then
1€ CT'

Proof. We prove this claim by using the compatibility
properties of the branching procedures. The claim is
trivially true for base case cells ¢ since T, C T'(c) = (0.

Consider now a non-base-case cell ¢, and assume the
claim holds for any cell ¢/ < ¢. Assume w.l.o.g. that e
lies on the right of e. Suppose that T, = T, U (Bs \ B)
for some cell ¢s = (e,,my,Cy, my,Cy, Bg) in the single
branching case. If i € crit(mq, Bs \ B) then i € C4
by the compatibility property of the single branching
procedure. If i € crit(m4,T,,) then i € C;y by the
induction hypothesis.

Assume now that T, = T, UT,, U((B(ct)UB(cp))\B)
for two cells ¢, = (e,,my,Cy, Mmid, Crmid, Bp) and
¢t = (er,Mmid, Cmid, My, Cy, By) in the top-bottom
branching case. If i € crit(ms,Te,) then i € Ct by
the induction hypothesis. If i € crit(mq,Te,) then
i € crit(Mmmid, T,) and hence ¢ € Cypq by the induction
hypothesis. Now the compatibility property of the top—
bottom branching case implies that i € C4 (using that
i € crit(me,Ty,)). If i € erit(my, (B(c) U B(ep)) \ B)
then ¢ € C4 by the compatibility property of the top—
bottom branching case.

Finally, assume that 7. = 1, U T, U
((By U By) \ B) for two DP cells which are de-
fined as ¢ = (e,m4,Cr,Maby; Capw, B1) and ¢, =

(er,my, Cy, Mapy, Capw, Br) in the left-right branching
case. If ¢ € T, then b(i) > b(m4), so i is not critical for
m4 and there is nothing to show. If ¢ € crit(ms, Ty,)
then also + € B and the claim follows from the compati-
bility property of the left—right branching case. Finally,
if i € ((B;UB,)\ B then the claim also follows from the
compatibility property. O

LEMMA 19. (WEAK FEASIBILITY) For each DP-cell
¢ =(e,my,Cy,m4,C4, B), we have that (T, UBUC, U
Cy, M U {my, my}) is weakly feasible.

Proof. For any edge f, define my; := my(c) as
the highest bottleneck capacity m-task in M. U
{my(c),ms(c), L} \ {T} using edge f. Let also T¢*" :=
T. U C\(c) UCs(c) U B(c). With this notation, we need
to prove that for each edge f

d(abvy(my(c), Te™)) + d(erity(my(c), Te™)) + d(my(c))
S Ugf.

We prove the claim by induction, following the
partial order < on the cells. If ¢ is a base case cell
then T, C T(c) = 0, M., € M(c) = 0 and hence
Te** = C, U Cy U B. By the consistency property,
(Te*t {my, m4}) is weakly feasible.

For notation convenience, let us say that e’ < e” if
edge €’ is to the left of edge €” and e’ # ¢’. We define
analogously <, >, and >.

Suppose now that ¢ is not a base case cell. By
induction hypothesis, we know that the claim holds for
any cell ¢ < ¢. Assume w.l.o.g. that e < e;. Let e, be
the first edge to the right of e (possibly e, = ¢;). We
distinguish 3 cases, depending on the branching that
defines the maximum value of w(c).

a) (Single branching) Let ¢ be the cell achieving
the maximum. Recall that T. = T, U (B \ B) and
M, = M,.,. We have m; = my(c) = my(c,s) because
M, = M., . Let us assume ey < e, the case e} > e
being analogous. Consider any edge f. We distinguish
3 subcases depending on the relative position of f:

a.l) (f<ey or f>e) Here T(c) N Ty = M(c) N
My = 0, hence T¢** = C, UCy U B and M, U
{m;,mq} = {my,my}. The claim follows by the
consistency property.

a.2) (e< f<ey). In this range of edges we have
(B\ Bs) NTy = 0 by the compatibility property of the
single branching case. Hence

TN Ty = (T.UC, UC UB)N Ty
=(T.,,UBUB,UC UCy)NTy
= (TcS UC¢ @] CT @] BS) ﬂTf = Tceft ﬂTf.
As a consequence, abvy(my, TS*) = abvy(my, TS*) and

crity(myg, TE™) = critg(my, TE™). The claim follows by
induction hypothesis on c;.

a.3) (er < f < e) In this case b(mys) > b(mq). Since
any task ¢ € B has b(i) < b(m4), we have

abvf(mf,wat) = abvf(mf,Tcs UB;UBU C¢ U CT)
= abvy(my,T., UB; UC, UCY)
= abvy(my, TS™).
Also, any task ¢ € B that is critical for m; must
be contained in C; by the compatibility property of
the single branching, hence crity(my, B) € Cy N T}.
Therefore
crity(my, TE™) = erity(my, T., U Bs U BUC, UCy)
= crity(my, T, UBs UCp UCY)
= critf(mf,Tfft).

The claim then follows by induction hypothesis on c;.

b) (Top-bottom branching) Let ¢, and ¢; be the
cells achieving the maximum. Recall that M, = M., U
M., U{mmq} and T, = T, UT., U ((By U By) \ B). Let

emid = €(Mumiq). Note that e < emiq and er < epmig-
Let us assume ey < e, the case e; > e being analogous.
Consider any edge f. We distinguish 4 subcases:

b.1) (f <ejyor f>e;)Here T(c)NTy = M(c)NM; =
(). The claim follows by the same argument as in case
(a.1).

b.2) (emia < f < e}) Note that M (c;) "My =T(c)N
Ty = 0. We have my = my(c) = my(cp). Observe also
that ((BUBt)\Bb)ﬂTf = () and CTﬂTf - CmidﬁTf by
the compatibility property of the top—bottom branching
case. Altogether

TN Ty = (T, UT.,, UB,UB,UBUCUC|)NTy
Z(chUBbUCTUCQﬂTf
- (ch UBbUCmZ-dUCQ NTy = Tceb:rt NTy.
Then abvs(my, TE*) C

crity(myg, TE™) C critg(my, TE).
lows by induction hypothesis on c¢p.

abvy(my, TS and
The claim fol-

b.3) (er < f < emia) We have my = my(c) = my(c;)
and observe that b(mys) > b(muq). By the compatibil-
ity property of the top-bottom branching, if i € BNTY
and b(i) > b(Mmiq), then ¢ € By. Note also that for any
i € (CrmiaUC, UT,, UBy)NTy we have b(z) < b(momia)-
Altogether

my, TE™)

my, T, UT., UB,UB; UBUC, UCY)
Mf,Tct UBtUCT)

my,Te, UB U CpigUCy) = abvf(mf,Tfft).

abvy
=abvy
=abvy

~—~ Y~~~

=abvy

By the compatibility property of the top-bottom
branching, if ¢ € (B, UBUC|) N Ty is critical for my
(hence for my,iq), then i € Cyq. By Lemma 18, if
i € T,, N Ty is critical for my (hence for my,;q), then
i € Crnia. Altogether crits(my, TS = critg(my, Te, U
T, UB,UB,UBUC U CT) - cm'tf(mf,Tct U B U
Cy U Cpia) = critg(my, T*). The claim follows by
induction hypothesis on c¢;.

b.4) (er < f < er) We have my = my(c) = my(ct) and
observe that b(my) > b(m4). Note that T,, N Ty = 0.
Also, for any i € (BUB, UC| UChiqa) VTt we have that
b(i) < b(m4). Then

abvy(my, TE™)
:abvf(mf,ch ul, UB,UB,UBUC U CT)
:abvf(mf,Tct UB;U CT) = abvf(mf,Tci“).

By the compatibility property of the top—bottom
branching case, if i € (B, UB U C U Cpiq) N Ty is

critical for my, then ¢ € Cy. Thus

cm'tf(mf,Tc”t)
:CTitf(mf,TCb uT,, UB,UB,UBUC U CT)
=crity(myg,Te, U By U Cy U Cpia) = crity(my, Tf;xt).

The claim follows by induction hypothesis on ¢;.

c) (Left-right branching) Let ¢; and ¢, be the cells
achieving the maximum. Recall that M, = M, UM, U
{maw} and T, = T, UT, U ((B; U B,) \ B). Let
€abv = €(Mabw) (€aby := € if Mapy, = T). Let us assume
that eqp, > e, the case eq, < e, being analogous.
Consider any edge f. We distinguish 4 subcases:

cl) (f<er or f>e)) In this case T'(c) N Ty =
M (c)NMy = 0. The claim follows by the same argument
as in case (a.l).

c.2) (eabv < f < e}) In this case T'(¢;) N\ Ty = M(c;) N
M; = 0. As a consequence, my(c) = mys(c,). Also,
((BUBy)\ B,) NTy = 0 by the compatibility property
of the left-right branching. Furthermore, Cy NTy C
B, UC), and Copy NTy € B, UT, UC,. Then

' N Ty = (T, UT., UBUB,UBUC, UCy)NTy
= (Tc,‘ UB,U Ci) NTy
= (T., UB, UC, U Capy) N Ty = T" N Ty.
As a consequence abvg(mg(c),TE*) =
abvg(my(c,), T and crity(my(c), TE™)

crity(mg(c,), TE*). The claim follows by induc-
tion hypothesis on c,.

c.3) (er < f < eaby) We have my = my(c) = my(c)
and b(my) > b(mgpy). Note that any task ¢ € (T,,, UBU
B, UC\y UCapy) NTy has b(2) < b(mapy). Hence

abvy(my, TE™)
=abvy(my, T, UT, UB UB, UBUC| UCY)
:abvf(mf,Tcl UB U CT U Cabv) = ab’Uf(mf,TceLIt).
Furthermore, if a task i € (T, UBU B, UC|) N Ty

is critical for my, then i € Cqp, by the compatibility
property of the left—right branching. Consequently

crity(my, TS™)
=crity(my, T, UT,. UB;UB, UBUC| UCY%)
QCTitf(mf,Tcl U Cupp U CT U Bl) = critf(mf,Tci“).

The claim follows by induction hypothesis on ¢;.

c.4) (er < f < ey) In this case my = my(c) = mys(cr)
and b(my) > b(my). By the compatibility property of
the left-right branching, ((B, UB)\ B;)NTy = BNTy.

Observe that any task i € (BUC|)NTy has b(z) < b(ms+).
Also, T., N Ty C T(¢,;) UTy = (. Then

abvy(myg, TE)
=abvy(my, T, UT,, UB,UB, UBUC UCY)
=abvy(my, T, UB UCy)
gabvf(mf,Tcl U B U CT U Cabv) = abvf(mf,Tceft).
By the compatibility property of the left—right branch-

ing, any ¢ € (BUC}) N Ty that is critical for my must
belong to C;. Thus

crity(my, TE)
=crity(my,Te, UT,. UB;UB, UBUC| UCY)
=crity(my,Te, UB, UCY)
Cerity(my, T, U B U Cy U Copy) = cm'tf(mf,T;“).

The claim follows by induction hypothesis on ¢;. O

Now the proof of Lemma, 6 follows from Lemmas 15-
19, and the fact that the cell ¢* = (e*, L,0,T,0,0)
corresponds to the optimal weakly-feasible k-thin maze-
pair.

References

[1] A. Anagnostopoulos, F. Grandoni, S. Leonardi, and
A. Wiese. Constant integrality gap LP formulations
of unsplittable flow on a path. In IPCO, pages 25-36,
2013.

[2] E. M. Arkin and E. B. Silverberg. Scheduling jobs
with fixed start and end times. Discrete Applied
Mathematics, 18:1-8, 1987.

[3] Y. Azar and O. Regev. Combinatorial algorithms for
the unsplittable flow problem. Algorithmica, 44:49-66,

2006.
[4] N. Bansal, A. Chakrabarti, A. Epstein, and
B. Schieber. A quasi-PTAS for unsplittable flow on

line graphs. In STOC, pages 721-729, 2006.

[5] N. Bansal, Z. Friggstad, R. Khandekar, and
R. Salavatipour. A logarithmic approximation for un-
splittable flow on line graphs. In SODA, pages 702—
709, 2009.

[6] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
resource allocation and scheduling. In STOC, pages
735-744, 2000.

[7] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
resource allocation and scheduling. In STOC, pages
735-744, 2000.

[8] R. Bar-Yehuda, M. Beder, Y. Cohen, and D. Rawitz.
Resource allocation in bounded degree trees. In ESA,
pages 64-75, 2006.

(9]

(10]

(1]

(12]

(13]

(14]

(15]

P. Bonsma, J. Schulz, and A. Wiese. A constant
factor approximation algorithm for unsplittable flow on
paths. In FOCS, pages 47-56, 2011.

G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Ra-
bani. Improved approximation algorithms for resource
allocation. In IPCO, pages 401-414, 2002.

A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar.
Approximation algorithms for the unsplittable flow
problem. Algorithmica, 47(1):53-78, 2007.

C. Chekuri, A. Ene, and N. Korula. Unsplittable flow
in paths and trees and column-restricted packing inte-
ger programs. Unpublished. Available at http://web.
engr.illinois.edu/~enel/papers/ufp-full.pdf.

C. Chekuri, A. Ene, and N. Korula. Unsplittable
flow in paths and trees and column-restricted packing
integer programs. In APPROX-RANDOM, pages 42—
55, 2009.

C. Chekuri, M. Mydlarz, and F. Shepherd. Multicom-
modity demand flow in a tree and packing integer pro-
grams. ACM Transactions on Algorithms, 3, 2007.
An extended abstract appeared in the proceedings of
the 30th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2003).

B. Chen, R. Hassin, and M. Tzur. Allocation of
bandwidth and storage. IIE Transactions, 34:501-507,

(16]

(17]

(18]

(19]

[20]

(21]

22]

23]

2002.

M. Chrobak, G. Woeginger, K. Makino, and H. Xu.
Caching is hard, even in the fault model. In ESA,
pages 195-206, 2010.

A. Darmann, U. Pferschy, and J. Schauer. Resource
allocation with time intervals. Theoretical Computer
Science, 411:4217-4234, 2010.

N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-
dual approximation algorithms for integral flow and
multicut in trees. Algorithmica, 18(1):3-20, 1997.

J. M. Kleinberg. Approzimation Algorithms for Dis-
joint Paths Problems. PhD thesis, MIT, 1996.

S. Leonardi, A. Marchetti-Spaccamela, and A. Vi-
taletti. Approximation algorithms for bandwidth
and storage allocation problems under real time con-
straints. In FSTTCS, pages 409-420, 2000.

C. A. Phillips, R. N. Uma, and J. Wein. Off-line
admission control for general scheduling problems. In
SODA, pages 879-888, 2000.

C. A. Phillips, R. N. Uma, and J. Wein. Off-line
admission control for general scheduling problems. In
SODA, pages 879-888, 2000.

A. Schrijver. Combinatorial Optimization: Polyhedra
and Efficiency. Springer, Berlin, 2003.

