
55

A Mazing 2+ε Approximation for Unsplittable Flow

on a Path

ARIS ANAGNOSTOPOULOS, Sapienza University of Rome, Italy

FABRIZIO GRANDONI, IDSIA, University of Lugano, Switzerland

STEFANO LEONARDI, Sapienza University of Rome, Italy

ANDREAS WIESE, Department of Industrial Engineering and Center for Mathematical Modeling,

Universidad de Chile, Chile

We study the problem of unsplittable flow on a path (UFP), which arises naturally in many applications

such as bandwidth allocation, job scheduling, and caching. Here we are given a path with nonnegative edge

capacities and a set of tasks, which are characterized by a subpath, a demand, and a profit. The goal is to find

the most profitable subset of tasks whose total demand does not violate the edge capacities. Not surprisingly,

this problem has received a lot of attention in the research community.

If the demand of each task is at most a small-enough fraction δ of the capacity along its subpath (δ -small

tasks), then it has been known for a long time [Chekuri et al., ICALP 2003] how to compute a solution of value

arbitrarily close to the optimum via LP rounding. However, much remains unknown for the complementary

case, that is, when the demand of each task is at least some fraction δ > 0 of the smallest capacity of its

subpath (δ -large tasks). For this setting, a constant factor approximation is known, improving on an earlier

logarithmic approximation [Bonsma et al., FOCS 2011].

In this article, we present a polynomial-time approximation scheme (PTAS) for δ -large tasks, for any con-

stant δ > 0. Key to this result is a complex geometrically inspired dynamic program. Each task is represented

as a segment underneath the capacity curve, and we identify a proper maze-like structure so that each corridor

of the maze is crossed by only O (1) tasks in the optimal solution. The maze has a tree topology, which guides

our dynamic program. Our result implies a 2 + ε approximation for UFP, for any constant ε > 0, improving

on the previously best 7 + ε approximation by Bonsma et al. We remark that our improved approximation

algorithm matches the best known approximation ratio for the considerably easier special case of uniform

edge capacities.

CCS Concepts: • Theory of computation → Packing and covering problems;

Additional Key Words and Phrases: Approximation algorithms

An extended abstract of this article appeared in the Proceedings of the 25th annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2014) [3].

This work is partially supported by the EU FET project MULTIPLEX 317532 and the ERC StG project PAAl no. 259515,

by the ERC Starting Grant NEWNET 279352, and by the Postdoc-Programme of the German Academic Exchange Service

(DAAD).

Authors’ addresses: A. Anagnostopoulos, Department of Computer, Control, and Management Engineering, Sapienza Uni-

versity of Rome, Via Ariosto 25, 00185 Rome, Italy; email: aris@dis.uniroma1.it; F. Grandoni, SUPSI DTI, Building Galleria

2, via Cantonale 2c, 6928 Manno, Switzerland; email: fabrizio@idsia.ch; S. Leonardi, Department of Computer, Control

and Management Engineering Antonio Ruberti, Sapienza University of Rome, Via Ariosto 25, 00185 Roma, Italy; email:

leonardi@diag.uniroma1.it; A. Wiese, Departamento de Ingenieria Industrial, Facultad de Ciencias Fisicas y Matematicas,

Universidad de Chile, Beauchef 851 Of. 707 Piso 7, Santiago Centro, CHILE; email: awiese@dii.uchile.cl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1549-6325/2018/09-ART55 $15.00

https://doi.org/10.1145/3242769

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

mailto:permissions@acm.org
https://doi.org/10.1145/3242769

55:2 A. Anagnostopoulos et al.

ACM Reference format:

Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. 2018. A Mazing 2+ε Ap-

proximation for Unsplittable Flow on a Path. ACM Trans. Algorithms 14, 4, Article 55 (September 2018), 23

pages.

https://doi.org/10.1145/3242769

1 INTRODUCTION

In the problem of unsplittable flow on a path (UFP), we are given a set ofn tasksT and an undirected

path G = (V ,E). Each edge e has a capacity ue ∈ N+. Each task i ∈ T is specified by a subpath

P (i) between the start (i.e., leftmost) vertex s (i) ∈ V and the end (i.e., rightmost) vertex t (i) ∈ V , a

demand d (i) ∈ N+, and a profit (or weight)w (i) ≥ 0. For each edge e ∈ E, denote byTe the set of all

tasks i using e , that is, such that e ∈ P (i). For any subset of tasksT ′, we definew (T ′) :=
∑

i ∈T ′w (i)
and d (T ′) :=

∑
i ∈T ′ d (i). The goal is to select a subset of tasksT ′ with maximum profit w (T ′) such

that d (T ′ ∩Te) ≤ ue , for each edge e .

We can make the following simplifying assumptions w.l.o.g.: (i) For each task i , we assume that

d (i) ≤ mine ∈P (i) {ue } (otherwise, task i can be discarded). (ii) The edge capacities are all distinct

(this can be achieved by slight perturbations and scaling; see [11, Lemma 4.6]). (iii) Each node is

either the start node or the end node of precisely one task, so that the number of nodes of the path

is 2n (this can be enforced by duplicating and contracting edges in a proper way, similar to [6]).

UFP and variations of it are motivated by several applications in settings such as bandwidth

allocation [9, 17, 24], caching [18], multicommodity demand flow [16], scheduling [4], or resource

allocation [8, 12, 19, 25]. For example, edge capacities might model a given resource whose supply

varies over a time horizon. Here, tasks correspond to jobs with given start and end times and each

job has a fixed demand for the mentioned resource. The goal is then to select the most profitable

subset of jobs whose total demand at any time can be satisfied with the available resources.

When studying the problem algorithmically, a natural classification of the tasks is the following.

For each task i , define its bottleneck capacity as the smallest capacity b (i) := min{ue : e ∈ P (i)} of

any edge of P (i). Let also the bottleneck edge e (i) of i be the edge of i with capacity b (i). For any

value δ ∈ (0, 1], we say that a task i is δ -large if d (i) ≥ δ · b (i) and δ -small otherwise.

If all tasks are δ -small (δ -small instances), then the problem is well understood. As shown by

Chekuri et al. [16, Corollary 3.4], for δ small enough, one can obtain an arbitrarily good approxi-

mation with LP-rounding techniques.

Theorem 1 ([16]). For any δ ∈ (0, 3−
√

5
2), there is a (1 +O (

√
δ))-approximation algorithm for δ -

small instances of UFP in polynomial time (independent of δ).

However, much remains unclear for the complementary case where all tasks are δ -large (δ -large

instances), even if δ is very close to 1. A straightforward dynamic programming approach (where

for each edge e one enumerates all possible subsets of tasks using e in an optimal solution) is

doomed to fail: there are instances where in the optimal solution one edge of the path is used by

all the tasks in the input. Also, for δ -large instances the canonical LP has an integrality gap of

Ω(n) [13] (see Section 1.2 for the description of the canonical LP). The best known approximation

factor proven by Bonsma et al. [11] for this setting is 2k , where k ∈ N such that δ > 1
k

(and in

particular, k ≥ 2). They reduce the problem to an instance of maximum independent set of rectan-

gles and this approach inherently loses a factor of 2k ≥ 4 in the approximation ratio. In particular,

their approximation ratio increases unboundedly if δ → 0. The best known (6 + ε)-approximation

algorithm for δ -large instances, for any δ > 0, combines the approach above (with k = 2) with

another algorithm, which is 2 + ε approximate for instances that are 1/2-small and δ -large at the

same time. Combining this (6 + ε)-approximation with the result from Theorem 1, they obtain the

currently best (7 + ε)-approximation algorithm for UFP [11] (for general instances).

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

https://doi.org/10.1145/3242769

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:3

Fig. 1. An example of capacity curve and the maze, with segments associated to some tasksT ′ (dashed) and

m-tasks M ′ (bold). Note that (T ′,M ′) is 2-thin.

1.1 Our Results and Techniques

In this article, we present a polynomial-time approximation scheme (PTAS) for δ -large instances

of UFP (for any constant δ > 0), improving on the previously best 6 + ε approximation for the

same case [11]. In combination with the algorithm from Theorem 1, our PTAS implies a 2 + ε
approximation for arbitrary UFP instances, without any further assumptions (such as the common

no-bottleneck-assumption maxi {d (i)} ≤ mine {ue } or restrictions on edge capacities).

This improves on the previously best 7 + ε approximation for the problem [11], and matches

the best known approximation ratio for the much simpler case of uniform edge capacities [12].

We remark that, given our result, any further improvement of the approximation factor for UFP

requires to consider δ -small and δ -large tasks at the same time.

Our PTAS for δ -large instances is based on a dynamic program (DP) and exploits the following

geometrical viewpoint, inspired by [11] (but different in spirit and, as it turns out, more powerful).

Let us represent edge capacities with a closed curve on the 2D plane (the capacity curve) as follows

(see Figure 1): We label nodes with integers from 1 to 2n going from left to right. For each edge

e = (v,v + 1), we draw a horizontal line segment (or segment for short) [v,v + 1] × {ue }. Then

we add a horizontal segment at the bottom, and vertical segments in a natural way to obtain a

closed curve. We represent each task i as a horizontal segment (s (i), t (i)) × {b (i)} (the segments of

two different tasks might overlap). In particular, this segment lies underneath the capacity curve,

and touches the horizontal segment corresponding to its bottleneck edge e (i) (see Figure 1). (For

comparison, our segments correspond to the upper sides of the rectangles from [11].) Note that,

because all tasks are δ -large, the segment representation is sufficient to provide a rough estimate

of task demands. At the same time, this notation turns out to be very convenient for the design of

our DP and for its analysis.

The basic idea behind our approach is to sacrifice some tasks of the optimal solution, which we

replace by profitless maze tasks (or m-tasks for short); these maze tasks structure the area within

the capacity curve into a maze. This maze has a tree topology: our DP traverses this tree from the

leaves to the root, where the root is placed conventionally in the bottom-left corner of the capacity

curve (it can be thought as the exit of the maze). We enforce the property that between any two

consecutive (in a top–bottom ordering) m-tasks there are at most k = O (1/ϵ + 1/δ) tasks above

every edge e (see Figure 1). We will refer to this property as k-thinness later. This way, the DP is

able to guess the tasks crossing any given corridor in an optimal solution.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:4 A. Anagnostopoulos et al.

Fig. 2. An example of a maze and the corresponding tree topology, in which tree nodes are represented by

squares.

One still remaining difficulty is that, when the DP computes a solution for some arising sub-

problem, we cannot afford to remember precisely which tasks were selected previously (this would

result in too many DP-cells). To this end, the maze tasks have a second function: We use them to

make it affordable to forget some decisions as we move from the leaves to the root. In particular,

consider any edge e and letm be the m-task using e with highest bottleneck capacity b (m). When

we check the capacity constraint on edge e , we ignore all the subcritical tasks, which are tasks

whose bottleneck capacity is below δ
2b (m). If the total capacity of all the tasks in the solution that

use each edge e , ignoring the subcritical tasks, satisfies the capacity constraint of e , then we call

the solution weakly feasible. We will show that a weakly feasible solution becomes feasible (in the

usual sense) if we remove all maze tasks. The reason is that the capacity of the m-task with high-

est bottleneck capacity using edge e exceeds the total capacity of the subcritical tasks that use e ,

which we ignored in the definition of weak feasibility.

Therefore, our DP computes a weakly feasible k-thin pair (T ′,M ′) whereT ′ ⊆ T is a set of tasks

and M ′ is a set of m-tasks; in fact, it computes the optimal weakly feasible solution among all pairs

(T ′,M ′), which is the solution that maximizes w (T ′). The final output consists only of T ′, whose

weight we seek to maximize. Because at the end we will remove the maze tasks of a computed

solution, we need to ensure that there is in fact a solution (T ′,M ′) where the weight of T ′ is

almost the weight of the optimumT ∗. We prove this by a nontrivial sequence of reductions where,

eventually, the tasks ofT ∗ are mapped into directed paths of a properly defined tree. On those paths

we define a min-cost flow LP where each integral solution induces a k-thin pair (T ′,M ′) where the

tasksT ∗ are (essentially) partitioned intoT ′ and M ′. The objective is to minimizew (M ′). The claim

then follows by showing that there exists a cheap fractional solution of weight at most ε ·w (T ∗),
and that the LP matrix is totally unimodular.

The actual DP computing the optimal weakly feasible k-thin pair (T ′,M ′) is rather involved and

technical. We next give an intuitive description, which highlights the key ideas. For the sake of

simplicity, let us pretend thatM ′ is given to us (whereas our DP will have to guess it along the way).

Together with the capacity curve, the tasks inM ′ structure the plane into a maze. The maze induces

a tree (see Figure 2), which guides our DP. In the maze tree, there is a node v for each horizontal

corridor in the maze, which is characterized by an edge e and two consecutive m-tasksm↓,m↑ using

e (at the top or the bottom of the capacity curvem↓ orm↑ may be undefined and then the corridor

goes all the way to the bottom or to the top). We define the node on the bottom left corridor to be

the root of the tree. For each node v we define an area Av : draw a vertical segment connectingm↓
andm↑ above the midpoint of e . This segment partitions the maze into two disconnected regions.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:5

We define Av to be the region not containing the bottom-left corner (see Figure 2). Then we place

an edge (v,w) if Aw ⊂ Av and there is no other node u so thatAw ⊂ Au ⊂ Av . Because of the way

that we preprocessed the input instance, each node in the tree has at most two children: this helps

to simplify the DP.

In the DP table there is a cell for each combination of a tree node v and a set of tasks T̄ . This

set T̄ contains a subset of boundary tasks i using the corridor of v (formally, e ∈ P (i) and b (m↓) <
b (i) ≤ b (m↑)). Furthermore, T̄ contains a subset of critical tasks form↓ andm↑; those are tasks that

share some edge with P (m↓) (P (m↑), respectively) and whose bottleneck capacity is in the range

[δ
2b (m↓),b (m↓)) ([δ

2b (m↑),b (m↑)), respectively). Observe that only those are the tasks underneath

m↓ (m↑, respectively) that are being considered when checking for weak feasibility—the rest are

subcritial tasks, which, as we mentioned previously, are being ignored.

We show that, to obtain a good approximation, it is sufficient to consider subsets of at most

k = O (1/ε + 1/δ) boundary tasks, and subsets of at most O (1/δ 2) critical tasks. This implies that

the DP table has polynomial size. The value of each DP cell (v, T̄) is the weight of the optimal

solution to the following subproblem: select some tasks T ′ that lie completely in Av such that

(T̄ ∪T ′,M ′) is weakly feasible andw (T ′) is maximized. We prove that the value of a DP cell (v, T̄)
can be derived from the value of two DP cells (v1, T̄1), (v2, T̄2) associated to the children v1,v2 of

v (or possibly only one cell, if v has only one child) that are compatible with (v, T̄) and with each

other. Hence, for computing the optimal solution of a cell (v, T̄), we guess all possibilities for cells

(v1, T̄1), (v2, T̄2), compute their optimal solutions, and select the best combination. The notion of

compatibility then ensures locally that each such combination yields a feasible solution for the

subproblem encoded in (v, T̄). Leaf nodes form the base cases of the DP, and a suitable DP-cell

associated to the root node gives the final solution.

1.2 Related Work

The best known polynomial-time approximation algorithm for UFP prior to this work achieved an

approximation factor of 7 + ε [11]. This result improves on the previously best known polynomial

time O (logn)-approximation algorithm designed by Bansal et al. [7]. Bansal et al. [6] present a

QPTAS for UFP assuming a quasi-polynomial bound on capacities and demands of the input in-

stance. In terms of lower bounds, the problem is strongly NP-hard, even in the case of uniform

edge capacities and unit profits [11, 18, 19].

Because of the difficulty of the general problem, researchers have studied special cases of UFP.

The resource allocation problem (RAP) is the special case of UFP with uniform capacities. A 6-

approximation for RAP is given by Phillips et al. [25]. The approximation ratio was later improved

to 4 by Bar-Noy et al. [8], and finally to 2 + ε by Calinescu et al. [12]. The no-bottleneck assumption

(NBA) requires that maxi {d (i)} ≤ mine {ue }. Chekuri et al. [16] give a (2 + ε)-approximation algo-

rithm for UFP under the NBA. Observe that this generalizes the result in [12] since UFP instances

with uniform capacities satisfy the NBA.

Several researchers addressed the problem of finding good LPs for UFP. The canonical LP for

UFP has a variable xi ∈ [0, 1] for each task i and takes the following form:

max
∑

i

w (i)xi

s.t.
∑

i :e ∈P (i)

d (i)xi ≤ ue ∀e

xi ∈ [0, 1].

Unfortunately, this LP has an integrality gap of Ω(n) [13]. Adding further constraints, Chekuri,

et al. give an LP relaxation with an integrality gap of only O (log2 n) [15], which was improved

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:6 A. Anagnostopoulos et al.

to O (logn) [14]. Anagnostopoulos et al. [2] describe a compact LP for the unweighted case of

UFP with constant integrality gap. They also present an extended (i.e., containing extra variables

besides the xi ’s) compact LP for weighted UFP with constant integrality gap.

The problem of unsplittable flow on a tree (UFT) is the generalization of UFP where the input

graph is a tree rather than a path. UFT is APX-hard, even for unit demands, edge capacities being

either 1 or 2, and trees with depth 3 [20]. The currently best known approximation algorithm for

UFT has a ratio ofO (log2 n) [15]. This was refined and extended to a O (k logn)-approximation by

Adamaszek et al. [1] where k denotes the pathwidth of the given tree (always upper-bounded by

O (logn)) which works also if the objective function is given by a submodular function. Chekuri

et al. [15] give a O (log(1/γ)/γ 3)-approximation algorithm for UFT in the case that all tasks are

(1 − γ)-small. Under the NBA, Chekuri et al. [16] design a 48-approximation algorithm for UFT.

The unsplittable flow problem (UF) is a further generalization of UFP. Here the input graph

G = (V ,E) is arbitrary, and the paths P (i) are not specified in the input. A solution consists of a

subset of selected tasksT ′, and a path P (i) between s (i) and t (i) for each i ∈ T ′. Azar and Regev [5]

show that UF is NP-hard to approximate within a factor better than O (|E |1−ε). They also present

a O (
√
|E |) approximation under the NBA. This generalizes a similar approximation for the Edge

Disjoint Path Problem (EDP) by Kleinberg [23].

1.3 Follow-Up Results

After the publication of an extended abstract of this article [3], several new results on UFP were

found. Batra et al. [10] present a new quasi-polynomial time approximation scheme (QPTAS) for

the problem that does not require that the input data are quasi-polynomially bounded. In the same

paper, the authors present a PTAS for the special case that the weight of each task is proportional

to its demand, and a PTAS for a resource augmentation setting in which one is allowed to slightly

shorten the path of each task while the compared optimum does not have this privilege. On a high

level, the approach in that paper is similar as in our work: one proves that there is a near-optimal

solution which is well-structured, similarly as the pairs (T ′,M ′) in our approach. Then one derives

a dynamic program that computes a profitable solution with this property.

Extending this approach, Grandoni et al. [21] present PTASs for the special cases that there

is an edge that is used by all tasks, that there are no two tasks whose paths are contained in

each other, that one can select an arbitrary number of copies of each task, and that the profit

of each task is proportional to the product of its demand and the length of its path, that is, its

area in a geometric sense. Very recently, Grandoni et al. [22] found a polynomial time (5/3 + ϵ)-
approximation algorithm for UFP.

2 DEFINITIONS AND METHODOLOGY

In this section, we describe our methodology, which results in a polynomial-time (1 + ε)-
approximation algorithm for δ -large UFP instances (for any two given constants ε,δ > 0). Recall

that, in polynomial time, we can reduce the input instance so that each vertex is either the start

or the end vertex of exactly one task in T (similarly to [6]). Thus, we assume that the number of

nodes in the graph is 2n.

Now we define the maze tasks, or m-tasks for short, which we use to structure our solution.

For each pair of tasks i and j that share the same bottleneck edge e (possibly i = j), we define an

m-task m with P (m) = P (i) ∪ P (j). Analogously to regular tasks, we set b (m) = ue and e (m) = e .

Furthermore, we define d (m) = δ · ue and w (m) = 0. We remark that d (i),d (j) ≥ d (m). Let Me be

the m-tasks m with e ∈ P (m). Note that because of the preprocessing described in Section 1, no

two m-tasks with different bottleneck capacities share the same endpoint.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:7

Our goal is to search for solutions in the form of maze pairs (T ′,M ′) ∈ 2T × 2M , where we require

for any two different m-tasksm,m′ ∈ M ′ that b (m′) � b (m′′) (recall that we assumed that the edge

capacities are all distinct). Let k = k (ε,δ) be an integer constant to be defined later. We restrict our

attention to maze pairs that are k-thin and weakly feasible, as defined below.

Intuitively, a maze pair (T ′,M ′) is k-thin if, for any edge e , between two consecutive segments

(in a top–bottom ordering) associated to m-tasks from M ′ ∩Me there are at most k segments

associated to tasks in T ′ ∩Te (see Figure 1).

Definition 2 (k-thinness). A maze pair (T ′,M ′) is k-thin if for every edge e and every set

T ′′ ⊆ T ′ ∩Te with |T ′′ | > k there is an m-task m ∈ M ′ ∩Me such that mini ∈T ′′ {b (i)} ≤ b (m) <
maxi ∈T ′′ {b (i)}.

In Section 3, we prove that, for large enough k , there exists a k-thin maze pair (T̃ , M̃) so that T̃ is

a good approximation to the optimum T ∗ and T̃ ∪ M̃ is feasible (i.e., d (T̃ ∩Te) + d (M̃ ∩Me) ≤ ue

on each edge e).

Lemma 3. For any ε,δ > 0 there is a k ∈ N with k = O (1/ε + 1/δ), such that for any δ -large in-

stance of UFP, there exists a k-thin maze pair (T̃ , M̃) such that w (T̃) ≥ (1 − ε)w (T ∗) and T̃ ∪ M̃ is

feasible.

However, we are not able to compute the most profitable k-thin maze pair in polynomial time.

For this reason, we relax the notion of feasibility of a maze pair (T ′,M ′) so that T ′ ∪M ′ might

not be feasible, but still T ′ alone is feasible (which is sufficient for our purposes). We need some

definitions first. For every m-taskm ∈ M and any subset of tasksT ′, we partition the setT ′(m) :=

{i ∈ T ′ : P (i) ∩ P (m) � ∅} of tasks of T ′ sharing some edge withm into three (disjoint) subsets:

— (above tasks) abv (m,T ′) := {i ∈ T ′(m) : b (i) > b (m)}.
— (critical tasks) crit (m,T ′) := {i ∈ T ′(m) : b (m) ≥ b (i) ≥ δ

2b (m)}.
— (subcritical tasks) subc (m,T ′) := {i ∈ T ′(m) : b (i) < δ

2b (m)}.

We also define abve (m,T ′) := abv (m,T ′) ∩Te , and we define analogously crite (m,T ′) and

subce (m,T ′).

Definition 4 (Weak feasibility). A maze pair (T ′,M ′) is weakly feasible if for every edge e it holds

thatd (abve (me ,T
′)) + d (crite (me ,T

′)) + d (me) ≤ ue , whereme is the m-task inM ′ ∩Me of largest

bottleneck capacity, or d (T ′ ∩Te) ≤ ue , if M ′ ∩Me = ∅.
Next we show that weak feasibility of a maze pair (T ′,M ′) implies feasibility of T ′. The key

argument is that for each edge e the taskme compensates for the tasks in subce (me ,T
′) that were

ignored in the definition of weak feasibility.

Lemma 5. Let (T ′,M ′) be a weakly feasible maze pair. Then T ′ is feasible.

Proof. Let e1, . . . , em be the edges in nondecreasing order of capacity. We prove by induction on

j thatd (T ′ ∩Tej
) ≤ uej

for all j. Consider first e1. If there is no m-task using e1, then the claim is true

by definition. Otherwise, letm1 =me1 be the (only) m-task in M ′ ∩Me1 . All tasks i ∈ T ′ ∩Te1 must

have b (i) = ue1 (in particular, they are critical for m1). Thus, d (T ′ ∩Te) ≤ d (T ′ ∩Te) + d (m1) =
d (abve1 (m1,T

′)) + d (crite1 (m1,T
′)) + d (m1) ≤ ue .

Now suppose by induction that there is a value j ∈ N such that d (T ′ ∩Tej′) ≤ uej′ for all

j ′ ∈ {1, . . . , j − 1}. Consider the edge ej . Once again if there is no m-task using ej , then the claim

is true by definition. Otherwise, letmj :=mej
. Consider the subcritical tasks SC := subcej

(mj ,T
′).

By definition, ej is not the bottleneck edge of any task in SC . We partition SC into the sets

SCL and SCR , containing the tasks with bottleneck edge on the left of ej and on the right

of ej , respectively. Consider the set SCL . Let iL ∈ SCL be a task with maximum bottleneck

capacity in SCL and let eL be its bottleneck edge. By the definition of SCL and iL , all tasks in

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:8 A. Anagnostopoulos et al.

SCL use eL and ueL
= b (iL) < δ

2 · b (mj). Using the inductive hypothesis on eL , we obtain that

d (SCL) = d (SCL ∩TeL
) ≤ d (T ′ ∩TeL

) ≤ ueL
< δ

2 · b (mj). Similarly, we obtain that d (SCR) <
δ
2 · b (mj). Because d (mj) = δ · b (mj), the m-taskmj compensates for all tasks in SC , that is,

d (subcej
(mj ,T

′)) = d (SC) = d (SCL) + d (SCR)

< δ · b (mj) = d (mj).

Hence,

d (T ′ ∩Tej
) = d (abvej

(mj ,T
′)) + d (critej

(mj ,T
′))

+ d (subcej
(mj ,T

′))

≤ d (abvej
(mj ,T

′)) + d (critej
(mj ,T

′))

+ d (mj)

≤ uej
,

where the last inequality follows from the weak feasibility of (T ′,M ′). �

Note that the maze pair (T̃ , M̃) obtained in Lemma 3 is feasible so, by definition, it is also weakly

feasible. In Section 4, we present a polynomial-time dynamic program that computes the weakly

feasible k-thin maze pair with highest profit.

Lemma 6. For any constants δ ∈ (0, 1] and k ∈ N+, there is a dynamic program with running time

nO (k+1/δ 2) that computes a weakly feasiblek-thin maze pair (T ′,M ′) of largest profitw (T ′) for δ -large

instances of UFP.

A crucial property that we exploit in the design of our dynamic program is that for each m-task

in a weakly feasible maze pair the number of critical tasks is bounded by a constant depending

only on δ .

Lemma 7. Let (T ′,M ′) be a weakly feasible maze pair and m ∈ M ′. It holds that |crit (m,T ′) | ≤
ncrit (δ) := 4

δ 2 +
1
δ

.

Proof. First recall that, by Lemma 5,T ′ is a feasible solution. Consider the tasks i ∈ crit (m,T ′)
with b (i) = b (m). Because all tasks are δ -large, there can be at most 1/δ such tasks. The remaining

tasks i ∈ crit (m,T ′) have b (i) < b (m) and must have their bottleneck edge on the left or on the

right of e (m). Consider the tasks CL of the first type: we will show that |CL | ≤ 2/δ 2. A symmetric

argument holds for the remaining tasks CR , hence giving the claim. Consider the task iL ∈ CL

that has the rightmost e (iL). By the definition of CL and iL all tasks in CL must use e (iL) and

b (iL) < b (m). Each task i ∈ CL is critical for m and thus b (i) ≥ δ
2b (m). Also, i is δ -large and so

d (i) ≥ δb (i) ≥ δ 2

2 b (m). Therefore, there can be at most b (iL)/(δ 2

2 b (m)) ≤ 2
δ 2 such tasks. �

By combining Lemmas 3, 5, and 6 we obtain the main theorem of this article.

Theorem 8. For any constant δ > 0, there is a (1 + ϵ)-approximation algorithm for δ -large in-

stances of UFP with a running time of nO (1/ε+1/δ 2) .

Proof. By Lemma 3, for k = Θ(1/ε ′ + 1/δ) and a proper ε ′ = Θ(ε), there exists a k-thin maze

pair (T̃ , M̃) where T̃ is a 1 + ε approximate solution. By Lemma 5 (T̃ , M̃) is also weakly feasible.

Therefore, the algorithm from Lemma 6 will find a feasible solution T ′ of profit at least w (T̃) in

time nO (1/ε ′+1/δ+1/δ 2) = nO (1/ε+1/δ 2) . �

Combining Theorem 8 with Theorem 1, we obtain the following corollary.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:9

Corollary 9. For any constant ε > 0, there is a polynomial-time (2 + ε)-approximation algorithm

for UFP with a running time of nO (1/ε4) .

Proof. By Theorem 1, for δ = Θ(ϵ2) small enough, in time nO (1) we can compute a 1 + ε/2
approximation APXsmall of the optimum solution OPTsmall restricted to δ -small tasks. By

Theorem 8, for the same δ and a small enough ε̃ = Θ(ε), in time nO (1/ε̃+1/δ 2) = nO (1/ε4) we can

compute a 1 + ε/2 approximationAPXlarдe of the optimum solutionOPTlarдe restricted to δ -large

tasks. The best of these two approximate solutions has the desired approximation factor since the

profit of OPTsmall or OPTlarдe is at least one half of the profit of the optimum solution. �

3 A THIN PROFITABLE MAZE PAIR

In this section, we prove Lemma 3, that is, we show that for any instance there is a k-thin maze pair

(T̃ , M̃) such thatw (T̃) ≥ (1 − ε)OPT and T̃ ∪ M̃ is feasible. Recall that, by assumption, the vertices

of the graph are labeled by 1, . . . , 2n from left to right. Let �(i) denote the segment (s (i), t (i)) ×
{b (i)} associated to each task i ∈ T ∗. Define L := {�(i) : i ∈ T ∗} and w (�(i)) := w (i). We say that a

segment (a,b) × {y} contains an edge e = (v,v + 1) if (v,v + 1) ⊆ (a,b).
We want to select a subset L′ ⊆ L such that w (L′) :=

∑
�(i)∈L′w (�(i)) is at most ε ·w (T ∗) and

any vertical segment {x } × (yb ,yt) intersecting more than k segments in L intersects at least one

segment in L′. We call a set L′ with the latter property k-thin for L. As we will show, for proving

Lemma 3 it suffices to find a k-thin set L′ for L because of the following transformation of L′ into

a maze-pair (T (L′),M (L′)). We defineT (L′) := {i : �(i) ∈ L \ L′}. For constructing M (L′) we group

the segments in L′ according to the bottleneck edges of their corresponding tasks. For each edge e ,

we define L′e := {�(i) ∈ L′ : e (i) = e}. Now for each edge e with L′e � ∅we add to M (L′) the m-task

me ∈ M with path P (m) = ∪�(i)∈L′eP (i). Note that P (m) = P (iL) ∪ P (iR) for the task iL ∈ L′e with

leftmost start vertex and the task iR ∈ L′e with rightmost end vertex (in a sense, we glue iL and iR
together to form an m-task). Hence, me is a well-defined m-task. Observe that, as required in the

definition of a maze pair, we have b (m′) � b (m′′) for any two distinctm′,m′′ ∈ M (L′).

Lemma 10. If a set L′ ⊆ L is k-thin for L, then the maze pair (T (L′),M (L′)) is (k + 1/δ)-thin and

T (L′) ∪M (L′) is feasible.

Proof. The proof is based on the similarity of the definitions of k-thinness for segments and

for maze pairs. Some extra work is required because some line segments may share the same

bottleneck edge and then overlap. Consider any edge e = (u,u + 1), and any set of k + 1/δ + 1

tasks T ′ ⊆ T ∗ ∩Te . We define {i1, i2, . . . , ik+1} ⊆ T ′ to be k + 1 of them with lowest bottleneck

capacity, in nondecreasing order of bottleneck capacity. Let bmax := maxi ∈T ′ {b (i)}. Because T ∗ is

feasible, and because the tasks in T ∗ are δ -large, there cannot be more than 1/δ tasks in T ′ of

bottleneck capacity equal to bmax . It follows that b (i j) < bmax for all 1 ≤ j ≤ k + 1.

Consider a vertical segment �′ with x-coordinate u + 1
2 that intersects �(i1), . . . , �(ik+1). Since

L′ is k-thin, �′ must intersect some segment �(i∗) ∈ L′. Segment �(i∗) corresponds to a task i∗; in

turn, to this task corresponds an m-task m ∈ M (L′) with b (i1) ≤ b (m) = b (i∗) ≤ b (ik+1) < bmax .

Hence, (T (L′),M (L′)) is (k + 1/δ)-thin.

To show the feasibility ofT (L′) ∪M (L′), recall thatT ∗ is feasible and all tasks inT ∗ are δ -large.

Furthermore, each m-task has capacity δ · b (m). Therefore, on every edge e ′, each m-taskme uses

at most as much capacity as the tasks fromT ∗ whose segments are in L′e (the latter tasks in a sense

were replaced byme). �

Next, we reduce the problem of finding a k-thin set L′ with low weight to the case that each

segment �(i) starts at e (i) and either goes only to the right or only to the left. See Figures 3(a)

and 3(b). Formally, we split each segment �(i) into two segments �L (i) and �R (i) such that �L (i)

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:10 A. Anagnostopoulos et al.

Fig. 3. Construction of the maze.

contains the edges of P (i) between s (i) and the right vertex of the bottleneck edge e (i) and sym-

metrically for �R (i) (note that some of these segments might contain only a single edge). So �L (i)
and �R (i) overlap on e (i). We setw (�L (i)) = w (�R (i)) = w (i). We define LL := {�L (i) : �(i) ∈ L} and

LR := {�R (i) : �(i) ∈ L}. The next lemma shows that it suffices to find low weight k-thin sets for LL

and LR .

Lemma 11. Given k-thin sets L′L for LL and L′R for LR , there is a 2k-thin set L′ for L with w (L′) ≤
w (L′L) +w (L′R).

Proof. We add a segment �(i) to L′ if and only if �L (i) ∈ L′L or �R (i) ∈ L′R . It follows directly

that w (L′) ≤ w (L′L) +w (L′R). Now any vertical segment �′ crossing at least 2k + 1 segments in L′

must either cross k + 1 segments from LL or k + 1 segments from LR . Thus, �′ crosses a segment

in L′L or a segment in L′R , and hence �′ crosses a segment in L′. �

Consider now only the segments LR (a symmetric argument holds for LL). The next step is to

reduce the problem to the case where all segments contain the leftmost edge of the graph. In-

tuitively, we shift up some of the segments and then extend them to the left (see Figure 3 for

an example of our transformations). Note that to make sure that the constructed set is k-thin,

it is not sufficient to consider only the leftmost edge (even in this special case). To simplify the

description of the next step, we also enforce that new segments have different y-coordinates.

Formally, let us assume that task labels i are integers between 1 and n (in any order). For

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:11

each �R (i) = (v,u) × {b (i)} ∈ LR , we construct a segment (1,u) × {b (i) +M · v + μ · i}, which we

denote by �̃R (i). Here M := 1 +maxe {ue } and μ = 1
n+1 (so that μ · i < 1). Define L̃R := {�̃R (i) : i ∈

T ∗} and w (�̃R (i)) = w (i). (See Figure 3(c).)

Lemma 12. Given a k-thin set L̃′R for L̃R , there is a k-thin set L′R for LR with w (L̃′R) = w (L′R). A

symmetric claim holds for L̃L and LL .

Proof. We prove the first claim only, the proof of the second one being symmetric. Let L′R :=

{�R (i) ∈ LR : �̃R (i) ∈ L̃′R }. Clearly, w (L′R) = w (L̃′R). Consider any vertical segment {x } × (yb ,yt)
that intersects at least k + 1 segments from LR . Let �R (i1), . . . �R (ik+1) be k + 1 such segments of

lowest y-coordinate, breaking ties according to the smallest x-coordinate of the leftmost point of

the segment, and then according to the the lowest label i of the corresponding tasks. To prove the

lemma it suffices to show that at least one such segment �R (i j∗) belongs to L′R .

W.l.o.g., assume that for any 1 ≤ j ≤ k , s (i j) is equal to or to the left of s (i j+1), and i j < i j+1

if s (i j) = s (i j+1). Then by construction ỹ1 < · · · < ỹk+1, where ỹj is the y-coordinate of segment

�̃R (i j). Consider a vertical segment {x } × (ỹ1 − ε ′, ỹk+1 + ε
′). For ε ′ > 0 small enough, we can

assume that �′ intersects precisely the segments �̃R (i1), . . . , �̃R (ik+1): this follows from our tie-

breaking rule in the definition of �R (i1), . . . �R (ik+1) and the additive terms+M · v + μ · i in the def-

inition of they-coordinates of the line segments in L̃R . Hence, �̃R (i j∗) ∈ L̃′R for some 1 ≤ j∗ ≤ k + 1.

It follows from the definition of L′R that �R (i j∗) ∈ L′R as required. �

It remains to prove that there is ak-thin set for L̃R whose weight is bounded byO (1/k)w (L̃R). We

do this by reducing this problem to a min-cost flow problem in a directed tree network. Assume

w.l.o.g. that k ∈ N is even (this assumption has the only purpose to avoid ceilings and floors).

We consider the following hierarchical decomposition of the segments in L̃R , which corresponds

to a (directed) rooted out-tree D (see Figures 3(d) and 3(e)). We construct D iteratively, starting

from the root. Each node w of D is labeled with a triple (ew , Iw ,Rw), where ew is an edge in E,

Iw ⊆ [0,∞) is an interval, and Rw contains all segments that contain e and whose y-coordinate is

in Iw (the representative segments of w). Let er ∈ E be the rightmost edge that is contained in at

least k − 1 segments. We let the root r of D be labeled with (er , [0,∞),Rr). For any constructed

node w , if ew is the leftmost edge of the graph, then w is a leaf. Otherwise, consider the edge

e ′ to the left of ew , and let R′ be the segments in Iw that contain e ′. Note that, by the initial

preprocessing of the instance, each edge can be the rightmost edge of at most one segment (task),

hence |R′ | ≤ |Rw | + 1. If |R′ | < k , we append tow a childw ′ (with a directed arc (w,w ′)) with label

(e ′, Iw ,R
′). Otherwise (i.e., if |R′ | = k), we append tow two childrenwb andwt , which are labeled as

follows. Let �̃R (i1), . . . , �̃R (ik) be the segments in R′, sorted increasingly by y-coordinate (here we

exploit the fact that y-coordinates are all distinct). We partition R′ into Rb = {�̃R (i1), . . . , �̃R (ik/2)}
and Rt = {�̃R (ik/2+1), . . . , �̃R (ik)}. Lety0 be a value such that all segments in Rb have ay-coordinate

strictly smaller thany0 and all segments in Rt have ay-coordinate strictly greater thany0. We label

wb and wt with (e ′, Iw ∩ [0,y0),Rb) and (e ′, Iw ∩ [y0,∞),Rt), respectively.

Consider a given segment �̃R (i) ∈ L̃R , and the nodes w of D that have �̃R (i) as one of their

representative segments in Rw . Then the latter nodes induce a directed path D (i) in D. To see

this, observe that if �̃R (i) ∈ Rw , then either w is a leaf or �̃R (i) ∈ Rw ′ for exactly one child w ′ of w .

Furthermore, each �̃R (i) belongs to Rw for some leaf w of D (i.e., no D (i) is empty).

We call a set of segments L̃′R ⊆ L̃R a segment cover if for each nodew ofD it holds thatRw ∩ L̃′R �
∅.

Lemma 13. If L̃′R ⊆ L̃R is a segment cover, then L̃′R is 2k-thin for L̃R . A symmetric claim holds for

L̃L .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:12 A. Anagnostopoulos et al.

Proof. We prove the first claim only, the proof of the second one being symmetric. Consider any

vertical segment �′ = {x } × (yb ,yt) crossing at least 2k + 1 segments from L̃R , and let L̃′′ be 2k + 1

such segments of lowest y-coordinate. Let also e = (u,u + 1) be the edge such that x ∈ (u,u +

1), and �̃R (i1), . . . , �̃R (ih) be the segments containing edge e in increasing order of y coordinate.

Observe that segments L̃′′ induce a subsequence �̃R (i j), �̃R (i j+1), . . . , �̃R (i j+2k) of �̃R (i1), . . . , �̃R (ih).

Furthermore, the representative sets Rw of nodes w such that ew = e partition �̃R (i1), . . . , �̃R (ih)
into subsequences, each one containing between k/2 and k − 1 segments. It follows that there

must be one node w ′ such that Rw ′ ⊆ {�̃R (i j), . . . , �̃R (i j+2k)}. Since L̃′R ∩ Rw ′ � ∅ by assumption, it

follows that �̃R (i j∗) ∈ L̃′R for some j ≤ j∗ ≤ j + 2k . �

It remains to show that there is a segment cover with small weight.

Lemma 14. There exists a segment cover L̃′R ⊆ L̃R withw (L̃′R) ≤ 2
k
·w (L̃R) (where k is the param-

eter used in the construction of D).

Proof. We can formulate the problem of finding a L̃′R satisfying the claim as a flow problem.

We augment D by appending a dummy node w ′ to each leaf node w with a directed edge (w,w ′)
(so that all the original nodes are internal) and extend the paths D (i) consequently (so that each

path contains exactly one new edge (w,w ′)). We define a min-cost flow problem, specified by a

linear program. For each directed path D (i) we define a variable xi ∈ [0, 1]. Let A denote the set

of all arcs in D. For each arc a denote by Ta all values i such that D (i) uses a. For arguing about

the flow problem, we consider the following linear program:

min
∑

i :�(i)∈L̃R

w (i) · xi

s.t.
∑
i ∈Ta

xi ≥ 1 ∀a ∈ A

xi ≥ 0 ∀�(i) ∈ L̃R .

By the construction of D every arc is used by at least k/2 paths. Hence, the linear program has

a fractional solution of weight
∑

i w (i) · 2
k
= 2

k
·w (L̃R), which is obtained by setting xi := 2/k for

each i . Since the underlying network D is a directed tree and all paths follow the direction of the

arcs, the resulting network flow matrix is totally unimodular (see [26]). Therefore, there exists also

an integral solution with at most the same weight. This integral solution induces the set L̃′R . �

Now the proof of Lemma 3 follows easily from the previous reductions.

Proof of Lemma 3. Suppose we are given the optimal solution T ∗. As described above, we

construct the sets L, LL , LR , L̃L , and L̃R . We compute segment covers L̃′L for L̃L and L̃′R for L̃R as

described in the proof of Lemma 14. By Lemma 13 they are 2k-thin for L̃L and L̃R , respectively.

By Lemma 12 we obtain 2k-thin sets L′L and L′R for LL and LR , respectively, with w (L′L) = w (L̃′L)

and w (L′R) = w (L̃′R). By Lemma 11 this yields a 4k-thin set L′ for L whose weight is bounded

by w (L′L) +w (L′R). Finally, set (T̃ , M̃) := (T (L′),M (L′)). This maze pair is feasible by definition.

Furthermore, by Lemma 10, it is (4k + 1
δ

)-thin. Finally, the weight of M̃ is bounded by

w (M̃) ≤ w (L̃′L) +w (L̃′R)
Lem .14
≤ 2

k
· (w (L̃L) +w (L̃R)) ≤ 4

k
·w (L) =

4

k
·w (T ∗).

By setting the parameter k in the construction ofD to be 4/ε we obtain anO (1/ε + 1/δ)-thin maze

pair, completing the proof of the lemma.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:13

4 THE DYNAMIC PROGRAM

In this section, we present a DP that computes the weakly feasible k-thin maze pair (T̃ , M̃) with

maximum weightw (T̃), and thus prove Lemma 6. Let k = O (1/ε + 1/δ) (as suggested by Lemma 3).

To simplify the description and analysis of our DP, we introduce the following assumptions

and notations. For technical reasons, we add edges eL and eR to the left and right of the input

graph, respectively, and set their capacity to zero (those edges are used by no task). For nota-

tional convenience, we also add to M two special dummy m-tasks ⊥ and �. The paths of ⊥ and

� span all the edges of the graph, and they both have demand zero. Furthermore, b (�) := +∞
and b (⊥) := 0. In particular, with these definitions we have that abve (�,T ′) = crite (�,T ′) = ∅,
abve (⊥,T ′) = T ′ ∩Te , and crite (⊥,T ′) = ∅. We let e (⊥) = eR , and we leave e (�) unspecified. How-

ever, when talking about weak-feasibility and k-thinness of a maze pair (T ′,M ′) we will ignore

the dummy m-tasks, that is, we will implicitly consider (T ′,M ′ \ {⊥,�}).
For any e ∈ E,T ′ ⊆ T , and any two m-tasksm′ andm′′ with b (m′) < b (m′′), the boundary tasks

in T ′ for the triple (e,m′,m′′) are the tasks

bounde (m′,m′′,T ′) := {i ∈ T ′ ∩Te : b (m′) < b (i) ≤ b (m′′)}.
Intuitively, boundary tasks i are the tasks using edge e such that the segment corresponding to i
is sandwiched between the segments corresponding tom′ andm′′.

In our DP table we introduce a cell for each tuple of the form c = (e,m↑,C↑,m↓,C↓,B) where

—e is an edge;

—m↓ ∈ Me andm↑ ∈ Me , b (m↓) < b (m↑);
—C↓ ⊆ crit (m↓,T) and C↑ ⊆ crit (m↑,T), with �

�C↑�� , ��C↓�� ≤ ncrit (δ);
—B ⊆ bounde (m↓,m↑,T), with |B | ≤ k .

Recall that ncrit (δ) = 4
δ 2 +

1
δ

(see Lemma 7). Intuitively, C↓ (C↑, respectively) are the critical

tasks associated to m↓ (m↑, respectively). Observe that C↓ and B are disjoint, whereas C↑ might

overlap with both C↓ and B. For such a cell to exist, we further impose the following consistency

property: we require that (B ∪C↓ ∪C↑, {m↓,m↑}) is weakly feasible and that forT ′ = B ∪C↓ ∪C↑,
one has crit (m↓,T

′) = C↓, crit (m↑,T
′) = C↑, and bounde (m↓,m↑,T

′) = B.

Given a DP cell c = (e,m↑,C↑,m↓,C↓,B), as a shorthand notation we use e (c) := e ,m↑(c) :=m↑
and similarly for the other indices of the cell. We also define e↓ = e↓(c) := e (m↓) and e↑ = e↑(c) :=

e (m↑) (we set e↑ = e if m↑ = �). The idea behind a cell c is as follows. We define E (c) as the set

of edges on the path between e↑ (included) and e↓ (excluded) (if e↑ = e↓, we assume E (c) = ∅). We

define T (c) as the set of tasks i with bottleneck edge in E (c) such that b (i) > b (m↑) or P (i) does

not contain e . We define M (c) similarly w.r.t. m-tasks. For a geometric intuition, we can think of

cell c as defining an area such that T (c) and M (c) lie entirely inside (see Figure 4).

Our goal is to compute the maze-pair (Tc ,Mc) with Tc ⊆ T (c) and Mc ⊆ M (c) with maximum

weight w (c) := w (Tc) such that

(1) (Tc ∪ B ∪C↓ ∪C↑,Mc ∪ {m↓,m↑}) is weakly feasible;

(2) (Tc ∪ B,Mc ∪ {m↓,m↑}) is k-thin;

(3) if i ∈ crit (m↑,Tc), then i ∈ C↑ (inclusion property).

We call maze-pairs fulfilling the above properties feasible for c . From this definition it follows

that the optimal solution for the cell c∗ := (eL,⊥, ∅,�, ∅, ∅) is the weakly feasible k-thin maze pair

(Tc∗ ,Mc∗) with maximum weight w (Tc∗).
We define a partial order ≺ for the cells and fill in the DP table w.r.t. this order (breaking ties

arbitrarily). Intuitively speaking, we define ≺ to ensure that c ′ ≺ c ′′ if the area (within the ca-

pacity curve) corresponding to c ′ is contained in the area corresponding to c ′′. The following

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:14 A. Anagnostopoulos et al.

Fig. 4. Tasks B ∪C↓ ∪C↑ (dashed) and area associated to a DP cell c . Tasks in C↑ (C↓) use a common edge

with m↑ (m↓). Tasks (m-tasks, respectively) that lie entirely within the shaded area are those that belong to

T (c) (M (c), respectively).

Fig. 5. The three branching cases. The area of the cell c is the area of the subcell(s) cs , (ct , cb), and (cl , cr),
respectively, in addition to the dark-gray area.

definition achieves this: for two edges e ′ and e ′′, we let |e ′ − e ′′| be the number of edges

between e ′ and e ′′, boundary included. We define that c ′ ≺ c ′′ if (in a lexicographic sense)

(��e↑(c
′) − e↓(c ′)�� , ��e (c ′) − e↓(c ′)��) <lex (��e↑(c

′′) − e↓(c ′′)�� , ��e (c ′′) − e↓(c ′′)��).
The base case cells are obtained when e = e↓. In this case, one must have m↑ = �, and hence

e↑ = e . Also, T (c) = ∅ = M (c). For those cells we set (Tc ,Mc) := (∅, ∅) (hence w (c) = 0).

Consider a cell c that is not a base case. For the sake of presentation, assume that e↓ is to the right

of e , the other case being symmetric. Let er be the first edge to the right of e (possibly er = e↓). We

will compute (Tc ,Mc) as a function of some pairs (Tc ′,Mc ′) with c ′ ≺ c , considering the following

three branching cases (see Figure 5):

— (single branching). This case applies only whenm↑ uses both e and er (possiblym↑ = �).

Consider any feasible DP-cell cs = (er ,m↓,C↓,m↑,C↑,Bs) with the following extra com-

patibility property: forT ′ := C↓ ∪C↑ ∪ B ∪ Bs , one has crit (m↓,T
′) = C↓, crit (m↑,T

′) = C↑,
bounde (m↓,m↑,T

′) = B, and bounder
(m↓,m↑,T

′) = Bs . Set wsb (c) ← maxcs
{w (cs) +

w (Bs \ B)}.
— (top–bottom branching). This case applies only when m↑ uses both e and er

(possibly m↑ = �). Consider any m-task mmid � � that has er as its leftmost edge

and such that b (m↓) < b (mmid) < b (m↑). Consider any pair of feasible entries cb =

(er ,m↓,C↓,mmid ,Cmid ,Bb) and ct = (er ,mmid ,Cmid ,m↑,C↑,Bt) with the following extra

compatibility property: for T ′ := C↓ ∪C↑ ∪Cmid ∪ B ∪ Bb ∪ Bt , one has crit (m↑,T
′) = C↑,

crit (m↓,T
′) = C↓, crit (mmid ,T

′) = Cmid , bounde (m↓,m↑,T
′) = B, bounder

(m↓,mmid ,T
′) =

Bb , and finally bounder
(mmid ,m↑,T

′) = Bt . Set wtb (c) ← max(cb ,ct) {w (cb) +w (ct) +
w ((Bb ∪ Bt) \ B)}.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:15

— (left–right branching). This branching applies only to the case that e is the right-

most edge of m↑, and m↑ � �. Consider any m-task mabv that uses both er and e and

with b (mabv) > b (m↑) (possibly mabv = �). Consider the pairs of feasible entries cl =

(e,m↑,C↑,mabv ,Cabv ,Bl) and cr = (er ,m↓,C↓,mabv ,Cabv ,Br) with the following extra

compatibility property: for T ′ := C↓ ∪C↑ ∪Cabv ∪ B ∪ Bl ∪ Br , one has crit (m↑,T
′) = C↑,

crit (m↓,T
′) = C↓, crit (mabv ,T

′) = Cabv , bounde (m↓,m↑,T
′) = B, bounder

(m↓,mabv ,T
′) =

Br , and bounde (m↑,mabv ,T
′) = Bl . We set wlr (c) ← max(cl ,cr) {w (cl) +w (cr) +w ((Bl ∪

Br) \ B)}.

Finally, we set w (c) := max{wsb (c),wtb (c),wlr (c)}. Depending on the case attaining the maxi-

mum, we define (Tc ,Mc): if the maximum is achieved in the single-branching case for some cs , then

we setTc ← Tcs
∪ (Bs \ B) and Mc ← Mcs

. If the maximum is achieved in the top–bottom branch-

ing for some cb and ct , we set Tc ← Tcb
∪Tct

∪ ((Bb ∪ Bt) \ B) and Mc ← Mcb
∪Mct

∪ {mmid }.
Similarly, if the maximum is achieved in the left–right branching for some cl and cr , we set

Tc ← Tcl
∪Tcr

∪ ((Bl ∪ Br) \ B) and Mc ← Mcl
∪Mcr

∪ {mabv }.
Observe that, in the single branching case, one has that |e↑(cs) − e↓(cs) | = |e↑(c) − e↓(c) | and that

|e (cs) − e↓(cs) | < |e (c) − e↓(c) |. In the other cases one has ��e↑(c
′) − e↓(c ′)�� < �

�e↑(c) − e↓(c)��, where

c ′ ∈ {cb , ct , cl , cr }. Hence, cs , cb , ct , cl , cr ≺ c as required. Note also that c∗ is the only feasible DP-

cell associated to edge eL and for any other DP-cell c it holds that c ≺ c∗. The DP outputs (Tc∗ ,Mc∗)
and we return Tc∗ as the computed set of tasks.

Lemma 15. The above dynamic program runs in time nO (k+1/δ 2) .

Proof. Let us first bound the number of DP cells. Each DP cell is characterized by a tuple

(e,m↑,C↑,m↓,C↓,B). By the preprocessing step there are O (n) choices for e , and by the definition

of the m-tasks there are O (n2) choices for m↓ and m↑. Since |C↓|, |C↑| ≤ ncrit (δ) and |B | ≤ k by

definition, there are nO (1/δ 2) choices for C↓ and C↑, and O (nk) choices for B. Next observe that in

the DP, to compute the value of a DP-cell, one needs to consider any choice of at most two other

DP-cells with certain restrictions, and to perform a polynomial number of operations for each such

choice. The claim follows. �

Recall that by Lemma 3, to obtain a 1 + ε approximation for δ -large tasks, we need to choose

k = Θ(1
ε
+ 1

δ
) which gives an overall running time of nO (1/ε+1/δ 2) for our DP. Note also that, from

Theorem 1, to get a 1 + ε approximation for δ -small tasks, one has to choose δ = O (ε2). Therefore,

our 2 + ε approximation for UFP runs in time nO (1/ε4) . For a comparison, the running time of the

2 + ε approximation for UFP under the NBA in [16] is also nO (1/ε4) .

We next show that the dynamic program is correct. Consider any cell c . First observe that

Tc ⊆ T (c) and Mc ⊆ M (c). Also, by an easy induction, any two distinct m-tasks in Mc have dif-

ferent bottleneck capacity. In other terms, (Tc ,Mc) is a well-defined maze pair. We next prove that

w (Tc) ≥ w (T ′c) for any feasible pair (T ′c ,M
′
c) for c . To that aim, we prove that if a pair (T ′c ,M

′
c) is

feasible for a cell c , then it can be decomposed into the feasible solution for a cell cs and the tasks in

B (cs) \ B or into feasible solutions for two cells ct , cb (or cl , cr) and the tasks in (B (ct) ∪ B (cb)) \ B
(or (B (cl) ∪ B (cr)) \ B), depending on the applying branching case.

Lemma 16. If (T ′c ,M
′
c) is a feasible maze-pair for cell c , then w (T ′c) ≤ w (Tc).

Proof. We show the claim by induction, following the partial order ≺ on cells. For the base

cases, it is clear that w (T ′c) = w (Tc) = 0 and the claim follows.

Now consider a non-base-case cell c and suppose the claim is true for all cells c ′ with c ′ ≺ c .

W.l.o.g. assume again that e↓ lies on the right of e , and let er be the first edge to the right of e . We

distinguish cases, depending on which m-tasks use er .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:16 A. Anagnostopoulos et al.

First suppose that there is no m-task mmid ∈ M ′c ∩Mer
with b (m↓) < b (mmid) < b (m↑) using

er and that m↑ uses er , where possibly m↑ = � (single branching case). Then consider the DP cell

cs = (er ,m↓,C↓,m↑,C↑,Bs) with Bs = bounder
(m↓,m↑,T

′
c ∪ B). Since (T ′c ,M

′
c) is feasible for c , cs is

indeed a cell in our DP table. In particular, observe that |Bs | ≤ k since (T ′c ,M
′
c) is k-thin. The con-

sistency property follows by the weak feasibility of (T ′c ,M
′
c) and from the compatibility property of

the single branching. By induction, we know that the DP computed the optimal solution (Tcs
,Mcs

)
for cs . In particular, w (Tcs

) ≥ w (T ′c) −w (Bs \ B) since (T ′c \ (Bs \ B),M ′c) is feasible for cs . By def-

inition of the DP transition,

w (Tc) ≥ wsb (c) ≥ w (Tcs
) +w (Bs \ B)

≥ (w (T ′c) −w (Bs \ B)) +w (Bs \ B) = w (T ′c).

Next consider the case that there is an m-taskmmid ∈ M ′c ∩Mer
with b (m↓) < b (mmid) < b (m↑)

using er . Note that by our preprocessing, then m↑ uses er where possibly m↑ = � (top–bottom

branching). Also observe that there can be at most one such task mmid by our preprocessing and

using that any two m-tasks in a maze pair have different bottleneck capacities. Let us consider the

(bottom) cell cb = (er ,m↓,C↓,mmid ,Cmid ,Bb) and the (top) cell ct = (er ,mmid ,Cmid ,m↑,C↑,Bt)
where we define Bb := bounder

(m↓,mmid ,T
′
c ∪ B), Bt := bounder

(mmid ,m↑,T
′
c ∪ B), and Cmid :=

crit (mmid ,T
′
c ∪ B). Also in this case, the feasibility of (T ′c ,M

′
c) for c implies that cl and cr are in

fact DP cells. In particular, since (T ′c ,M
′
c) is weakly feasible, |Cmid | ≤ ncrit (δ) by Lemma 7. The

pair (T ′c ∩T (cb),M ′c ∩M (cb)}) is feasible for cb and the pair (T ′c ∩T (ct),M ′c ∩M (cb)) is feasible

for ct . In this case T ′c is partitioned by T ′c ∩T (cb), T ′c ∩T (ct), and (Bb ∪ Bt) \ B. Hence,

w (Tc) ≥ wtb (c) ≥ w (cb) +w (ct) +w ((Bb ∪ Bt) \ B)

≥ w (T ′c ∩T (cb)) +w (T ′c ∩T (ct)) +w ((Bb ∪ Bt) \ B)

= w (T ′c).

Finally, consider the case that there is no m-task mmid ∈ M ′c ∩Mer
with b (m↓) < b (mmid) <

b (m↑) and thatm↑ does not use er (left–right branching case). Letmabv ∈ M ′c ∩Mer
be the m-task

minimizing b (mabv) such that b (mabv) > b (m↑) (possiblymabv = �). By the preprocessing of the

input tasks, if mabv � �, then mabv must use e , as well (otherwise, two m-tasks with different

bottleneck capacities would share one endpoint).

Consider now the cells cl = (e,m↑,C↑,mabv ,Cabv ,Bl) and cr = (er ,m↓,C↓,mabv ,Cabv ,Br)
where we define Bl = bounde (m↑,mabv ,T

′
c ∪ B), Br = bounder

(m↓,mabv ,T
′
c ∪ B), and Cabv =

crit (mabv ,T
′
c ∪ B). Again, since (T ′c ,M

′
c) is feasible for c , cl and cr are in fact DP cells.

Also, the pair (T ′c ∩T (cl),M ′c ∩M (cl)) is feasible for cl and the pair (T ′c ∩T (cr),M ′c ∩M (cr)) is

feasible for cr . By induction, we know that the DP computed the optimal solutions (Tcl
,Mcl

) and

(Tcr
,Mcr

) for cl and cr , respectively. Observe that T ′c is partitioned by T ′c ∩T (cl), T ′c ∩T (cr), and

(Bl ∪ Br) \ B. Hence,

w (Tc) ≥ wlr (c) ≥ w (cl) +w (cr) +w ((Bl ∪ Br) \ B)

= w (T ′c ∩T (cl)) +w (T ′c ∩T (cr)) +w ((Bl ∪ Br) \ B)

= w (T ′c).

This concludes the proof. �

We next prove that the DP computes a feasible solution (satisfying properties 1–3) for each DP

cell c . The proofs of the next three lemmas use a similar inductive pattern. We show that whenever

we extend the solution for a cell cs or combine the solutions for two cells ct,cb or cl , cr to a solution

for some cell c according to the DP transition, then the new solution is k-thin (has the inclusion

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:17

property, is weakly feasible) assuming that the original cells cs or ct,cb or cl , cr were k-thin (have

the inclusion property, are weakly feasible).

Lemma 17 (k-thinness). For each DP-cell c = (e,m↓,C↓,m↑,C↑,B), we have that (Tc ∪ B,Mc ∪
{m↓,m↑}) is k-thin.

Proof. It is sufficient to show that, given any edge e and any two m-tasks m′,m′′ ∈ (Mc ∪
{m↓,m↑}) ∩Me , with b (m′) < b (m′′) and such that there is no m′′′ ∈ (Mc ∪ {m↓,m↑}) ∩Me with

b (m′) < b (m′′′) < b (m′′), then the number of tasks i in (Tc ∪ B) ∩Te with b (m′) < b (i) ≤ b (m′′)
is at most k . In other terms, |bounde (m′,m′′,Tc ∪ B) | ≤ k .

We prove the latter claim by induction, following the partial order ≺ on the cells. For the base

cases, recall that for each DP cell c we required that |B (c) | ≤ k . Hence, in that case (Tc ∪ B,Mc ∪
{m↓,m↑}) = (B, {m↓,m↑}) and the claim is trivially true.

Now consider a non-base-case DP cell c and suppose the claim is true for all cells c ′ with c ′ ≺ c .

Assume w.l.o.g. that e↓ lies on the right of e . We distinguish the three branching cases and show

that in each case the pair (Tc ,Mc) is k-thin.

First suppose that the single branching case applies, that is, there is a cell cs such that

Tc = Tcs
∪ (B (cs) \ B) and Mc = Mcs

. By induction (Tcs
∪ B (cs),Mcs

∪ {m↓,m↑}) is k-thin.

Hence, it suffices to ensure that �
�bounde (m↓,m↑,Tc ∪ B)�� ≤ k . However, the latter holds since

�
�bounde (m↓,m↑,Tc ∪ B)�� = �

�bounde (m↓,m↑,B)�� = |B | by the compatibility property of the branch-

ing, and |B | ≤ k by the definition of DP cells.

The same basic argument also works for the remaining two branching cases: it is sufficient to

bound �
�bounde (m↓,m↑,Tc ∪ B)��, and an upper bound of k follows from the compatibility property

of the considered branching and by definition of DP cells. �

Lemma 18 (Inclusion property). For each DP-cell c = (e,m↓,C↓,m↑,C↑,B), if i ∈ crit (m↑,Tc),
then i ∈ C↑.

Proof. We prove this claim by using the compatibility properties of the branching procedures.

The claim is trivially true for base case cells c since Tc ⊆ T (c) = ∅.
Consider now a non-base-case cell c , and assume the claim holds for any cell c ′ ≺ c . As-

sume w.l.o.g. that e↓ lies on the right of e . Suppose that Tc = Tcs
∪ (Bs \ B) for some cell cs =

(er ,m↓,C↓,m↑,C↑,Bs) in the single branching case. If i ∈ crit (m↑,Bs \ B), then i ∈ C↑ by the com-

patibility property of the single branching procedure. If i ∈ crit (m↑,Tcs
), then i ∈ C↑ by the induc-

tive hypothesis.

Assume now that Tc = Tct
∪Tcb

∪ ((B (ct) ∪ B (cb)) \ B) holds for the two DP-cells cb =

(er ,m↓,C↓,mmid ,Cmid ,Bb) and ct = (er ,mmid ,Cmid ,m↑,C↑,Bt) in the top–bottom branching

case. If i ∈ crit (m↑,Tct
), then i ∈ C↑ by the inductive hypothesis. If i ∈ crit (m↑,Tcb

), then i ∈
crit (mmid ,Tcb

) and hence i ∈ Cmid by the inductive hypothesis. Now the compatibility prop-

erty of the top–bottom branching case implies that i ∈ C↑ (using that i ∈ crit (m↑,Tcb
)). If i ∈

crit (m↑, (B (ct) ∪ B (cb)) \ B), then i ∈ C↑ by the compatibility property of the top–bottom branch-

ing case.

Finally, assume that Tc = Tcl
∪Tcr

∪ ((Bl ∪ Br) \ B) for two DP cells which are defined as cl =

(e,m↑,C↑,mabv ,Cabv ,Bl) and cr = (er ,m↓,C↓,mabv ,Cabv ,Br) in the left–right branching case. If

i ∈ Tcl
, thenb (i) > b (m↑), so i is not critical form↑ and there is nothing to show. If i ∈ crit (m↑,Tcr

),
then also i ∈ B and the claim follows from the compatibility property of the left–right branching

case. Finally, if i ∈ ((Bl ∪ Br) \ B, then the claim also follows from the compatibility property. �

Lemma 19 (Weak feasibility). For each DP-cell c = (e,m↓,C↓,m↑,C↑,B), we have that (Tc ∪ B ∪
C↓ ∪C↑,Mc ∪ {m↓,m↑}) is weakly feasible.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:18 A. Anagnostopoulos et al.

Proof. For any edge f , define mf :=mf (c) as the highest bottleneck capacity m-task in

Mc ∪ {m↓(c),m↑(c),⊥} \ {�} using edge f . Let also T ext
c := Tc ∪C↓(c) ∪C↑(c) ∪ B (c). With this

notation, we need to prove that for each edge f

d (abvf (mf ,T
ext
c)) + d (critf (mf ,T

ext
c)) + d (mf) ≤ uf .

We recall that

abvf (mf ,T
ext
c) = {i ∈ T ext

c ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)},

critf (mf ,T
ext
c) =

{
i ∈ T ext

c ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}
.

We prove the claim by induction, following the partial order ≺ on the cells. If c is a base case cell,

then Tc ⊆ T (c) = ∅, Mc ⊆ M (c) = ∅, and hence T ext
c = C↓ ∪C↑ ∪ B. By the consistency property,

(T ext
c , {m↓,m↑}) is weakly feasible.

For notation convenience, let us say that e ′ < e ′′ if edge e ′ is to the left of edge e ′′ and e ′ � e ′′.
We define analogously ≤, >, and ≥.

Suppose now that c is not a base case cell. By inductive hypothesis, we know that the claim holds

for any cell c ′ ≺ c . Assume w.l.o.g. that e < e↓. Let er be the first edge to the right of e (possibly

er = e↓). We distinguish three cases, depending on the branching that defines the maximum value

of w (c).

(a) (Single branching). Let cs = (er ,m↓,C↓,m↑,C↑,Bs) be the cell achieving the maximum.

We remark that C↓(c) = C↓(cs) = C↓ and similarly for C↑. Recall also that Tc = Tcs
∪ (Bs \ B) and

Mc = Mcs
by construction. Then we have

T ext
c = Tc ∪C↓ ∪C↑ ∪ B
= Tcs

∪ (Bs \ B) ∪C↓ ∪C↑ ∪ B

= Tcs
∪ B ∪ Bs ∪C↓ ∪C↑ (1)

and

T ext
cs
= Tcs

∪C↓ ∪C↑ ∪ Bs . (2)

We also havemf =mf (c) =mf (cs) because Mc = Mcs
. Let us assume e↑ < e , the case e↑ ≥ e being

analogous. Consider any edge f . We distinguish three subcases depending on the relative position

of f :

(a.1) (f ≤ e↑ or f ≥ e↓). Here T (c) ∩Tf = M (c) ∩Mf = ∅, which implies Tc ∩Tf = Mc ∩
Mf = ∅. Hence, T ext

c ∩Tf = (C↓ ∪C↑ ∪ B) ∩Tf and (Mc ∪ {m↓,m↑}) ∩Mf = ({m↓,m↑}) ∩Mf .

The claim follows by the consistency property restricted to edge f .

(a.2) (e < f < e↓). In this range of edges we have (B \ Bs) ∩Tf = ∅ by the compatibility prop-

erty of the single branching case. Hence,

T ext
c ∩Tf

(1)
= (Tcs

∪ B ∪ Bs ∪C↓ ∪C↑) ∩Tf

= (Tcs
∪C↓ ∪C↑ ∪ Bs) ∩Tf

(2)
= T ext

cs
∩Tf .

As a consequence, abvf (mf ,T
ext
c) = abvf (mf ,T

ext
cs

) and critf (mf ,T
ext
c) = critf (mf ,T

ext
cs

). The

claim follows by inductive hypothesis on cs .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:19

(a.3) (e↑ < f ≤ e). In this case, by the definition ofmf , b (mf) ≥ b (m↑). Because any task i ∈ B
has b (i) ≤ b (m↑), we have that no task i ∈ B satisfies b (i) > b (mf). Hence,

abvf (mf ,T
ext
c)

(1)
= {i ∈ (Tcs

∪ B ∪ Bs ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}
= {i ∈ (Tcs

∪ Bs ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}
= abvf (mf ,Tcs

∪ Bs ∪C↓ ∪C↑)
(2)
= abvf (mf ,T

ext
cs

).

Also, any task i ∈ B that is critical for mf must be contained in C↑ by the compatibility property

of the single branching, hence critf (mf ,B) ⊆ critf (mf ,C↑). Therefore,

critf (mf ,T
ext
c)

(1)
= critf (mf ,Tcs

∪ Bs ∪C↓) ∪ critf (mf ,B) ∪ critf (mf ,C↑)

= critf (mf ,Tcs
∪ Bs ∪C↓ ∪C↑)

(2)
= critf (mf ,T

ext
cs

).

The claim then follows by inductive hypothesis on cs .

(b) (Top–bottom branching). Let cb = (er ,m↓,C↓,mmid ,Cmid ,Bb) and ct = (er ,mmid ,Cmid ,
m↑,C↑,Bt) be the cells achieving the maximum. We remark thatC↓ = C↓(c) = C↓(cb),C↑ = C↑(c) =
C↑(ct) and Cmid = C↑(cb) = C↓(ct). Recall that Mc = Mcb

∪Mct
∪ {mmid } and Tc = Tcb

∪Tct
∪

((Bb ∪ Bt) \ B). Also,

T ext
c = Tc ∪C↓ ∪C↑ ∪ B = Tcb

∪Tct
∪ ((Bb ∪ Bt) \ B) ∪C↓ ∪C↑ ∪ B

= Tcb
∪Tct

∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑, (3)

T ext
cb
= Tb ∪C↓ ∪Cmid ∪ Bb , (4)

T ext
ct
= Tt ∪Cmid ∪C↑ ∪ Bt . (5)

Let emid := e (mmid). Note that e < emid and e↑ < emid . Let us assume e↑ < e , the case e↑ ≥ e being

analogous. Consider any edge f . We distinguish four subcases:

(b.1) (f ≤ e↑ or f ≥ e↓). Here T (c) ∩Tf = M (c) ∩Mf = ∅. The claim follows by the same ar-

gument as in case (a.1).

(b.2) (emid ≤ f < e↓). Note that M (ct) ∩Mf = T (ct) ∩Tf = ∅, hence Tct
∩Tf = ∅. We have

mf =mf (c) =mf (cb). Observe also that ((B ∪ Bt) \ Bb) ∩Tf = ∅ andC↑ ∩Tf ⊆ Cmid ∩Tf by the

compatibility property of the top–bottom branching case. Altogether

T ext
c ∩Tf

(3)
= (Tcb

∪Tct
∪ Bb ∪ Bt ∪ B ∪C↑ ∪C↓) ∩Tf

= (Tcb
∪ Bb ∪ Bt ∪ B ∪C↑ ∪C↓) ∩Tf

= (Tcb
∪ Bb ∪C↑ ∪C↓) ∩Tf

⊆ (Tcb
∪ Bb ∪Cmid ∪C↓) ∩Tf

(4)
= T ext

cb
∩Tf .

Then abvf (mf ,T
ext
c) ⊆ abvf (mf ,T

ext
cb

) and critf (mf ,T
ext
c) ⊆ critf (mf ,T

ext
cb

). The claim follows

by inductive hypothesis on cb .

(b.3) (e < f < emid). We havemf =mf (c) =mf (ct) and observe that b (mf) ≥ b (mmid). By the

compatibility property of the top–bottom branching, if i ∈ B ∩Tf and b (i) > b (mmid), then i ∈
Bt . This implies that any i ∈ B ∩Tf with b (i) > b (mf) must belong to Bt . Note also that for any

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:20 A. Anagnostopoulos et al.

i ∈ (Cmid ∪C↓ ∪Tcb
∪ Bb) ∩Tf we have b (i) ≤ b (mmid), hence the condition b (i) > b (mf) is not

satisfied. Altogether

abvf (mf ,T
ext
c)

(3)
= {i ∈ (Tcb

∪Tct
∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tct
∪ Bt ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tct
∪ Bt ∪C↑ ∪Cmid) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

(5)
= abvf (mf ,T

ext
ct

).

Note that for each task i ∈ (Bb ∪C↓) ∩Tf we have that b (i) ≤ b (mmid). Therefore, if i ∈ (Bb ∪
C↓) ∩Tf is critical for mf , then it is also critical for mmid , and by the compatibility property of
the top–bottom branching we have that i ∈ Cmid . If i ∈ B ∩Tf is critical for mf , then (1) if b (i) ≤
b (mmid) we have that i ∈ Cmid as before or (2) if b (i) > mmid we have that i ∈ Bt . By Lemma 18,
if i ∈ Tcb

∩Tf is critical formf (hence formmid), then i ∈ Cmid . Altogether,

critf (mf ,T
ext
c)

(3)
=

{
i ∈ (Tcb

∪Tct ∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

⊆
{
i ∈ (Tcb

∪Tct ∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑ ∪Cmid) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

=

{
i ∈ (Tct ∪ Bt ∪C↑ ∪Cmid) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

(5)
= critf (mf ,T

ext
ct

).

The claim follows by inductive hypothesis on ct .

(b.4) (e↑ < f ≤ e). We have mf =mf (c) =mf (ct) and observe that, by the definition of mf ,

b (mf) ≥ b (m↑). Note that Tcb
∩Tf = ∅. Also, for any i ∈ (B ∪ Bb ∪C↓ ∪Cmid) ∩Tf we have that

b (i) ≤ b (m↑), hence b (i) > b (mf) is not satisfied. Then

abvf (mf ,T
ext
c)

(3)
= {i ∈ (Tcb

∪Tct
∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tct
∪ Bt ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tct
∪ Bt ∪C↑ ∪Cmid) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

(5)
= abvf (mf ,T

ext
ct

).

By the compatibility property of the top–bottom branching case, if i ∈ (Bb ∪ B ∪C↓ ∪Cmid) ∩Tf

is critical formf , then i ∈ C↑. Thus, using again also the fact that Tcb
∩Tf = ∅, we obtain

critf (mf ,T
ext
c)

(3)
=

{
i ∈ (Tcb

∪Tct
∪ Bb ∪ Bt ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

=

{
i ∈ (Tct

∪ Bt ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

=

{
i ∈ (Tct

∪ Bt ∪C↑ ∪Cmid) ∩Tf : P (i) ∩ P (mf) � ∅,b (mf) ≥ b (i) ≥ δ

2
b (mf)

}

(5)
=critf (mf ,T

ext
ct

).

The claim follows by inductive hypothesis on ct .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:21

(c) (Left–right branching). Let cl = (e,m↑,C↑,mabv ,Cabv ,Bl) and cr = (er ,m↓,C↓,mabv ,
Cabv ,Br) be the cells achieving the maximum. We remark thatC↓ = C↓(c) = C↓(cr),C↑ = C↑(c) =
C↓(cl) and Cabv = C↑(cl) = C↑(cr). Recall that Mc = Mcl

∪Mcr
∪ {mabv } and Tc = Tcl

∪Tcr
∪

((Bl ∪ Br) \ B). Also,

T ext
c = Tc ∪C↓ ∪C↑ ∪ B = Tcl

∪Tcr
∪ ((Bl ∪ Br) \ B) ∪C↓ ∪C↑ ∪ B

= Tcl
∪Tcr

∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑, (6)

T ext
cl
= Tl ∪C↑ ∪Cabv ∪ Bl , (7)

T ext
cr
= Tr ∪C↓ ∪Cabv ∪ Br . (8)

Let eabv := e (mabv) (eabv := er ifmabv = �). Let us assume that eabv > er , the case eabv ≤ er being

analogous. Consider any edge f . We distinguish four subcases:

(c.1) (f ≤ e↑ or f ≥ e↓). In this case,T (c) ∩Tf = M (c) ∩Mf = ∅. The claim follows by the same

argument as in case (a.1).

(c.2) (eabv ≤ f < e↓). In this case,T (cl) ∩Tf = M (cl) ∩Mf = ∅. As a consequence,Tcl
∩Tf = ∅

andmf (c) =mf (cr). Also, ((B ∪ Bl) \ Br) ∩Tf = ∅ by the compatibility property of the left–right

branching. Furthermore, by the consistency property that we impose on the DP cells, we have

that C↑ = crit (m↑,B ∪C↑ ∪C↓), so C↑ ⊆ B ∪C↓. Since e↑ < er ≤ f , by the compatibility property

we have that (C↑ ∩ B) ∩Tf ⊆ Br . Therefore, C↑ ∩Tf ⊆ Br ∪C↓. Finally, Cabv ∩Tf ⊆ Br ∪Tcr
∪

C↓. Then

T ext
c ∩Tf

(6)
= (Tcl

∪Tcr
∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑) ∩Tf

= (Tcr
∪ Br ∪C↓) ∩Tf

= (Tcr
∪ Br ∪C↓ ∪Cabv) ∩Tf

(8)
= T ext

cr
∩Tf .

As a consequence, abvf (mf (c),T ext
c) = abvf (mf (cr),T ext

cr
) and also critf (mf (c),T ext

c) = critf (mf

(cr),T ext
cr

). The claim follows by inductive hypothesis on cr .

(c.3) (e < f < eabv). We havemf =mf (c) =mf (cl) and hence b (mf) ≥ b (mabv). Note that any

task i ∈ (Tcr
∪ B ∪ Br ∪C↓ ∪Cabv) ∩Tf has b (i) ≤ b (mabv), hence it cannot satisfy the condition

b (i) > b (mf). Thus,

abvf (mf ,T
ext
c)

(6)
= {i ∈ (Tcl

∪Tcr
∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tcl
∪ Bl ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tcl
∪ Bl ∪C↑ ∪Cabv) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

(7)
= abvf (mf ,T

ext
cl

).

Furthermore, if a task i ∈ (Tcr
∪ B ∪ Br ∪C↓) ∩Tf is critical formf , then i ∈ Cabv by the compat-

ibility property of the left–right branching. Consequently,

critf (mf ,T
ext
c) = critf (mf ,Tcl

∪Tcr
∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑)

⊆ critf (mf ,Tcl
∪Cabv ∪C↑ ∪ Bl)

(7)
= critf (mf ,T

ext
cl

).

The claim follows by inductive hypothesis on cl .

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

55:22 A. Anagnostopoulos et al.

(c.4) (e↑ < f ≤ e). In this case,mf =mf (c) =mf (cl) and b (mf) ≥ b (m↑). By the compatibility

property of the left–right branching, ((Br ∪ B) \ Bl) ∩Tf = B ∩Tf . Observe that any task i ∈ (B ∪
C↓) ∩Tf has b (i) ≤ b (m↑), hence no task in ((C↓ ∪ Br ∪ B) \ Bl) ∩Tf can satisfy the condition

b (i) > b (mf). Also, Tcr
∩Tf ⊆ T (cr) ∩Tf = ∅. Then,

abvf (mf ,T
ext
c)

(6)
= {i ∈ (Tcl

∪Tcr
∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

= {i ∈ (Tcl
∪ Bl ∪C↑) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

⊆ {i ∈ (Tcl
∪ Bl ∪C↑ ∪Cabv) ∩Tf : P (i) ∩ P (mf) � ∅,b (i) > b (mf)}

(7)
= abvf (mf ,T

ext
cl

).

By the compatibility property of the left–right branching, any i ∈ (B ∪C↓) ∩Tf that is critical for

mf must belong to C↑. Recall also that ((Br ∪ B) \ Bl) ∩Tf = B ∩Tf . Altogether, the critical tasks

formf in ((Br ∪ B ∪C↓) \ Bl) ∩Tf must belong to C↑ ∩Tf . Thus,

critf (mf ,T
ext
c)

(6)
= critf (mf ,Tcl

∪Tcr
∪ Bl ∪ Br ∪ B ∪C↓ ∪C↑)

= critf (mf ,Tcl
∪ Bl ∪C↑)

⊆ critf (mf ,Tcl
∪ Bl ∪C↑ ∪Cabv)

(7)
= critf (mf ,T

ext
cl

).

The claim follows by inductive hypothesis on cl . �

Now the proof of Lemma 6 follows from Lemmas 15–19, and the fact that the cell c∗ :=

(e∗,⊥, ∅,�, ∅, ∅) corresponds to the optimal weakly feasible k-thin maze pair.

REFERENCES

[1] Anna Adamaszek, Parinya Chalermsook, Alina Ene, and Andreas Wiese. 2016. Submodular unsplittable flow on trees.

In IPCO (Lecture Notes in Computer Science), Vol. 9682. 337–349. DOI:http://dx.doi.org/10.1007/978-3-319-33461-5_28

[2] A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese. 2013. Constant integrality gap LP formulations of un-

splittable flow on a path. In IPCO. 25–36.

[3] Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. 2014. A mazing 2+ε approximation

for unsplittable flow on a path. In SODA. 26–41.

[4] E. M. Arkin and E. B. Silverberg. 1987. Scheduling jobs with fixed start and end times. Discrete Applied Mathematics

18, 1 (1987), 1–8. DOI:http://dx.doi.org/10.1016/0166-218X(87)90037-0

[5] Y. Azar and O. Regev. 2006. Combinatorial algorithms for the unsplittable flow problem. Algorithmica 44, 1 (2006),

49–66.

[6] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. 2006. A quasi-PTAS for unsplittable flow on line graphs. In

STOC. 721–729.

[7] N. Bansal, Z. Friggstad, R. Khandekar, and R. Salavatipour. 2009. A logarithmic approximation for unsplittable flow

on line graphs. In SODA. 702–709.

[8] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. 2000. A unified approach to approximating resource

allocation and scheduling. In STOC. 735–744.

[9] R. Bar-Yehuda, M. Beder, Y. Cohen, and D. Rawitz. 2006. Resource allocation in bounded degree trees. In ESA. 64–75.

[10] Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. 2015. New approximation schemes for

unsplittable flow on a path. In SODA. 47–58. DOI:http://dx.doi.org/10.1137/1.9781611973730.5

[11] Paul Bonsma, Jens Schulz, and Andreas Wiese. 2014. A constant-factor approximation algorithm for unsplittable flow

on paths. SIAM Journal on Computing 43, 2 (2014), 767–799.

[12] G. Calinescu, A. Chakrabarti, H. Karloff, and Y. Rabani. 2002. Improved approximation algorithms for resource allo-

cation. In IPCO. 401–414.

[13] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. 2007. Approximation algorithms for the unsplittable flow prob-

lem. Algorithmica 47, 1 (2007), 53–78.

[14] C. Chekuri, A. Ene, and N. Korula. Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer

Programs. Retrieved September 2, 2018 from http://cs-people.bu.edu/aene/papers/ufp-full.pdf.

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

http://dx.doi.org/10.1007/978-3-319-33461-5_28
http://dx.doi.org/10.1016/0166-218X(87)90037-0
http://dx.doi.org/10.1137/1.9781611973730.5
http://cs-people.bu.edu/aene/papers/ufp-full.pdf

A Mazing 2+ε Approximation for Unsplittable Flow on a Path 55:23

[15] C. Chekuri, A. Ene, and N. Korula. 2009. Unsplittable flow in paths and trees and column-restricted packing integer

programs. In APPROX-RANDOM. 42–55.

[16] C. Chekuri, M. Mydlarz, and F. Shepherd. 2007. Multicommodity demand flow in a tree and packing integer programs.

ACM Transactions on Algorithms 3 (2007). An extended abstract appeared in the Proceedings of the 30th International

Colloquium on Automata, Languages and Programming (ICALP’03).

[17] B. Chen, R. Hassin, and M. Tzur. 2002. Allocation of bandwidth and storage. IIE Transactions 34 (2002), 501–507.

[18] M. Chrobak, G. Woeginger, K. Makino, and H. Xu. 2010. Caching is hard, even in the fault model. In ESA. 195–206.

[19] A. Darmann, U. Pferschy, and J. Schauer. 2010. Resource allocation with time intervals. Theoretical Computer Science

411, 49 (2010), 4217–4234.

[20] N. Garg, V. V. Vazirani, and M. Yannakakis. 1997. Primal-dual approximation algorithms for integral flow and multicut

in trees. Algorithmica 18, 1 (1997), 3–20.

[21] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. 2017. To augment or not to augment: Solving

unsplittable flow on a path by creating slack. In SODA. 2411–2422.

[22] Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. 2018. A 5/3 + ϵ approximation for unsplittable

flow on a path: Placing small tasks into boxes. In STOC. To appear.

[23] J. M. Kleinberg. 1996. Approximation Algorithms for Disjoint Paths Problems. Ph.D. dissertation. MIT.

[24] S. Leonardi, A. Marchetti-Spaccamela, and A. Vitaletti. 2000. Approximation algorithms for bandwidth and storage

allocation problems under real time constraints. In FSTTCS. 409–420.

[25] C. A. Phillips, R. N. Uma, and J. Wein. 2000. Off-line admission control for general scheduling problems. In SODA.

879–888.

[26] A. Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin.

Received May 2017; revised April 2018; accepted July 2018

ACM Transactions on Algorithms, Vol. 14, No. 4, Article 55. Publication date: September 2018.

