
A Simulated Annealing Approach to
the Traveling Tournament Problem∗

A. Anagnostopoulos, L. Michel†, P. Van Hentenryck, and Y. Vergados
Brown University, Box 1910, Providence, RI 02912

Abstract

Automating the scheduling of sport leagues has received considerable attention in recent
years, as these applications involve significant revenues and generate challenging combina-
torial optimization problems. This paper considers the traveling tournament problem (TTP)
which abstracts the salient features of major league baseball (MLB) in the United States. It
proposes a simulated annealing algorithm (TTSA) for the TTP that explores both feasible
and infeasible schedules, uses a large neighborhood with complex moves, and includes ad-
vanced techniques such as strategic oscillation and reheats to balance the exploration of the
feasible and infeasible regions and to escape local minima at very low temperatures. TTSA
matches the best known solutions on the small instances of the TTP and produces significant
improvements over previous approaches on the larger instances. Moreover, TTSA is shown
to be robust, since its worst solution quality over 50 runs is always smaller or equal to the best
known solutions.

Keywords: Sport Scheduling, Travelling Tournament Problems, Local Search, Simulated
Annealing.

Introduction

The scheduling of sport leagues has become an important class of combinatorial optimization
applications in recent years for two main reasons. On the one hand, sport leagues represent sig-
nificant sources of revenue for radio and television networks around the world. On the other
hand, sport leagues generate extremely challenging optimization problems. See [4] for an excel-
lent review of these problems, recent research activities, and several solution techniques.

This paper considers the traveling tournament problem (TTP) proposed in [4] to abstract the
salient features of Major League Baseball (MLB) in the United States. The key to the MLB
schedule is a conflict between minimizing travel distances and feasibility constraints on the
home/away patterns. Travel distances are a major issue in MLB because of the number of teams
and the fact that teams go on “road trips” to visit several opponents before returning home. The
feasibility constraints in the MLB restricts the number of successive games that can be played at
home or away.

∗A Preliminary version of this paper was presented at the CP’AI’OR’03 Workshop.
†Current Address: University Of Connecticut, Stoors, CT 06269

The TTP is an abstraction of the MLB intended to stimulate research in sport scheduling.
A solution to the TTP is a double round-robin tournament which satisfies sophisticated feasi-
bility constraints (e.g., no more than three away games in a row) and minimizes the total travel
distances of the teams. While both minimizing the total distance traveled, and satisfying the fea-
sibility constraints, are separately easy problems, and current software can solve big instances,
it seems that the combination of the two (which is captured by the TTP) makes the problem
very difficult; even instances with as few as 8 teams are hard to solve, requiring techniques used
by both constraint programming and mathematical programming communities. [4] argues that,
without an approach to the TTP, it is unlikely that suitable schedules can be obtained for the
MLB. The TTP has raised significant interest in recent years since the challenge instances were
proposed. [4] describes both constraint and integer programming approaches to the TTP which
generate high-quality solutions. [1] explores a Lagrangian relaxation approach (together with
constraint programming techniques) which improves some of the results. Other lower and up-
per bounds are given in [10], although the details of how they are obtained do not seem to be
available.

This paper proposes a simulated annealing algorithm (TTSA) for the traveling tournament.
TTSA contains a number of interesting features that are critical to obtain high-quality solutions:

1. TTSA separates the tournament constraints and the pattern constraints into hard and soft
constraints and explores both feasible and infeasible schedules.

2. TTSA uses a large neighborhood of size O(n3), where n is the number of teams. Some
of the moves defining the neighborhood are rather complex and affect the schedule in
significant ways. Others can be regarded as a form of ejection chains [7, 9].

3. TTSA includes a strategic oscillation strategy to balance the time spent in the feasible and
infeasible regions.

4. TTSA incorporates the concept of “reheats” to escape from local minima with very low
temperatures.

TTSA was applied to the challenge instances of the TTP. It matches the best found solutions on
the smaller instances (up to 8 teams) and produces significant improvements in travel distances
on the larger instances. TTSA is also shown to be robust, since its average solution quality is,
in general, smaller than the best known solutions. Note also that previous results have been
obtained with relatively heavy machinery and state-of-the-art techniques (e.g., [4] mixes con-
straint and integer programming, [1] combines a CP solver with Language relaxation). TTSA
demonstrates the ability of simulated annealing to attack these hard combinatorial optimization
problems successfully with a much simpler machinery.

The rest of the paper is organized as follows. Section 1 describes the problem. Section 2
describes the new algorithm, including its neighborhood and the various advanced techniques
that it uses. Section 3 presents the experimental results. Section 4 concludes the paper.

1 Problem Description

The problem was introduced by Easton, Nemhauser and Trick [10, 4], which contains many
interesting discussions on sport scheduling. An input consists of n teams (n even) and an n× n
symmetric matrix d, such that dij represents the distance between the homes of teams Ti and Tj .
A solution is a schedule in which each team plays with each other twice, once in each team’s

home. Such a schedule is called a double round-robin tournament. It should be clear that a double
round-robin tournament has 2n − 2 rounds. It turns out that tournaments with 2n − 2 rounds
can be constructed for each n and we only consider tournaments with this minimal number of
rounds. In such tournaments, the number of games per round is always n.

For a given schedule S, the cost of a team as the total distance that it has to travel starting from
its home, playing the scheduled games in S, and returning back home. The cost of a solution is
defined as the sum of the cost of every team.

The goal is to find a schedule with minimum cost satisfying the following two constraints:

1. Atmost Constraints: No more than three consecutive home or away games are allowed
for any team.

2. Norepeat Constraints: A game of Ti at Tj’s home cannot be followed by a game of Tj

at Ti’s home.

As a consequence, a double round-robin schedule is feasible if it satisfies the atmost and norepeat
constraints and is infeasible otherwise.

In this paper, a schedule is represented by a table indicating the opponents of the teams. Each
line corresponds to a team and each column corresponds to a round. The opponent of team Ti

at round rk is given by the absolute value of element (i, k). If (i, k) is positive, the game takes
place at Ti’s home, otherwise at Ti’s opponent home. Consider for instance the schedule S for 6
teams (and thus 10 rounds).

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

Schedule S specifies that team T1 has the following schedule. It successively plays against teams
T6 at home, T2 away, T4 at home, T3 at home, T5 away, T4 away, T3 away, T5 at home, T2 at
home, T6 away. The travel cost of team T1 is

d12 + d21 + d15 + d54 + d43 + d31 + d16 + d61.

Observe that long stretches of games at home do not contribute to the travel cost but are limited
by the atmost constraints. This kind of tension is precisely why this problem is hard to solve in
practice.

2 The Local Search

This paper proposes an advanced simulated annealing algorithm (TTSA) for the TTP. As usual,
the algorithm starts from an initial configuration. Its basic step moves from the current con-
figuration c to a configuration in the neighborhood of c. TTSA is based on four main design
decisions:

1. Constraints are separated into two groups: hard constraints, which are always satisfied
by the configurations, and soft constraints, which may or may not be satisfied. The hard
constraints are the round-robin constraints, while the soft constraints are the norepeat and
atmost constraints. In other words, all configurations in the search represents a double
round-robin tournament, which may or may not violate the norepeat and atmost con-
straints. Exploring the infeasible region seems to be particularly important for this prob-
lem. Obviously, to drive the search toward feasible solutions, TTSA modifies the original
objective function to include a penalty term.

2. TTSA is based on a large neighborhood of size O(n3), where n is the number of teams. In
addition, these moves may affect significant portions of the configurations. For instance,
they may swap the schedule of two teams, which affects 4(n−2) entries in a configuration.
In addition, some of these moves can be regarded as a form of ejection chains which is
often used in tabu search [7, 9].

3. TTSA dynamically adjusts the objective function to balance the time spent in the feasible
and infeasible regions. This adjustment resembles the strategic oscillation idea [5] suc-
cessfully in tabu search to solve generalized assignment problems [3], although the details
differ since simulated annealing is used as the meta-heuristics.

4. TTSA also uses reheats (e.g., [2]) to escape local minima at low temperatures. The “re-
heats” increase the temperature again and divide the search in several phases.

The rest of this section explore some of these aspects in more detail. Since they are double
round-robin tournaments, configurations are called schedules in the following.

2.1 The Neighborhood

The neighborhood of a schedule S is the set of the (possibly infeasible) schedules which can be
obtained by applying one of five types of moves. The first three types of moves have a simple
intuitive meaning, while the last two generalize them.

SwapHomes(S, Ti, Tj) This move swaps the home/away roles of teams Ti and Tj . In other
words, if team Ti plays home against team Tj at round rk, and away against Tj’s home at round
l, SwapHomes(S, Ti, Tj) is the same schedule as S, except that now team Ti plays away against
team Tj at round rk, and home against Tj at round rl. There are O(n2) such moves. Consider
the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapHomes(S, T2, T4) produces the schedule:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 -4 3 6 4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 2 1 5 -2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

SwapRounds(S, rk, rl) The move simply swaps rounds rk and rl. There are also O(n2) such
moves. Consider the schedule S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapRounds(S, r3, r5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 -5 3 4 -4 -3 5 2 -6
2 5 1 4 -6 -3 3 6 -4 -1 -5
3 -4 5 6 -1 2 -2 1 -6 -5 4
4 3 6 -2 -5 -1 1 5 2 -6 -3
5 -2 -3 1 4 6 -6 -4 -1 3 2
6 -1 -4 -3 2 -5 5 -2 3 4 1

SwapTeams(S, Ti, Tj) This move swaps the schedule of Teams Ti and Tj (except, of course,
when they play against each other). There are O(n2) such moves again. Consider the schedule
S:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move SwapTeams(S, T2, T5) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -5 4 3 -2 -4 -3 2 5 -6
2 5 -3 6 4 1 -6 -4 -1 3 -5
3 -4 2 5 -1 6 -5 1 -6 -2 4
4 3 6 -1 -2 -5 1 2 5 -6 -3
5 -2 1 -3 -6 4 3 6 -4 -1 2
6 -1 -4 -2 5 -3 2 -5 3 4 1

Note that, in addition to the changes in lines 2 and 5, the corresponding lines of the opponents of
Ti and Tj must be changed as well. As a consequence, there are four values per round (column)
that are changed (except when Ti and Tj meet).

It turns out that these three moves are not sufficient for exploring the entire search space
and, as a consequence, they lead to suboptimal solutions for large instances. To improve these
results, it is important to consider two, more general, moves. Although these moves do not have
the apparent interpretation of the first three, they are similar in structure and they significantly
enlarge the neighborhood, resulting to a more connected search space. More precisely, these
moves are partial swaps: they swap a subset of the schedule in rounds ri and rj or a subset of the
schedule for teams Ti and Tj . The benefits from these moves come from the fact that they are
not as global as the “macro”-moves SwapTeams and SwapRounds. As a consequence, they may
achieve a better tradeoff between feasibility and optimality by improving feasibility in one part
of the schedule, while not breaking feasibility in another one. They are also more “global” than
the “micro”-moves SwapHomes.

PartialSwapRounds(S, Ti, rk, rl): This move considers team Ti and swaps its games at rounds
rk and rl. Then the rest of the schedule for rounds rk and rl is updated (in a deterministic way)
to produce a double round-robin tournament. Consider the schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

and the move PartialSwapRounds(S, T2, r2, r9). Obviously swapping the game in rounds r2 and
r9 would not lead to a round-robin tournament. It is also necessary to swap the games of team 1,
4, and 6 in order to obtain:

T\R 1 2 3 4 5 6 7 8 9 10

1 6 4 2 3 -5 -4 -3 5 -2 -6
2 5 -6 -1 -5 4 3 6 -4 1 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 -1 -3 -6 -2 1 5 2 6 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 2 -5 4 -3 5 -2 3 -4 1

This move, and the next one, can thus be regarded as a form of ejection chain [7, 9].
Finding which games to swap is not difficult: it suffices to find the connected component

which contains the games of Ti in rounds rk and rl in the graph where the vertices are the teams
and where an edge contains two teams if they play against each other in rounds rk and rl. All the
teams in this component must have their games swapped. Note that there are O(n3) such moves.

PartialSwapTeams(S, Ti, Tj, rk) This move considers round rk and swaps the games of teams
Ti and Tj . Then, the rest of the schedule for teams Ti and Tj (and their opponents) is updated
to produce a double round-robin tournament. Note that, as was the case with SwapTeams, four
entries per considered round are affected. There are also O(n3) such moves. Consider the
schedule S

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 -4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -5 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1

The move PartialSwapRounds(S, T2, T4, r9) produces the schedule

T\R 1 2 3 4 5 6 7 8 9 10

1 6 -2 2 3 -5 -4 -3 5 4 -6
2 5 1 -1 -5 4 3 6 -4 -6 -3
3 -4 5 4 -1 6 -2 1 -6 -5 2
4 3 6 -3 -6 -2 1 5 2 -1 -5
5 -2 -3 6 2 1 -6 -4 -1 3 4
6 -1 -4 -5 4 -3 5 -2 3 2 1

2.2 Simulated Annealing

As mentioned, TTSA uses a simulating annealing meta-heuristics to explore the neighborhood
graph [6]. TTSA starts from a random initial schedule which is obtained using a simple back-
track search. No special attention has been devoted to this algorithm and feasible schedules were
easily obtained. TTSA then follows the traditional simulating algorithm schema. Given a tem-
perature T , the algorithm randomly selects one of the moves in the neighborhood and computes
the variation Δ in the objective function produced by the move. If Δ < 0, TTSA applies the
move. Otherwise, it applies the move with probability exp(−Δ/T).

As typical in simulated annealing, the probability of accepting a non-improving move de-
creases over time. This behavior is obtained by decreasing the temperature as follows. TTSA
uses a variable counter which is incremented for each non-improving move and reset to zero
when the best solution found so far is improved. When counter reaches a particular upper limit,
the temperature is updated to T · β (where β is a fixed constant smaller than 1) and counter is
reset to zero.

Figure 1 depicts the simulated annealing algorithm in more detail. The algorithm keeps an
implicit representation of the neighborhood as a set of pairs and triplets, since all moves can

1. find random schedule S;
2. bestSoFar ← cost(S);
3. counter ← 0;
4. while phase ≤ maxP do
5. phase ← 0;
6. counter ← 0;
7. while counter ≤ maxC do
8. select a random move m from neighborhood (S);
9. let S′ be the schedule obtained from S with m;
10. if cost(S′) < cost(S) then
11. accept ←true;
12. else
13. accept ← true with probability exp(−Δ/T),
14. false otherwise;
15. end if
16. if accept then
17. S ← S′;
18. if cost(S′) < bestSoFar then
19. counter ← 0; phase ← 0;
20. bestSoFar ← cost(S ′);
21. else
22. counter++;
23. end if
24. end if
25. end while
26. phase++;
27. T ← T · β;
28. end while

Figure 1: The Simulated Annealing Algorithm

be characterized this way. For instance, the partialSwapTeam(S, Ti, Tj , rk) are characterized by
triplets of the form 〈Ti, Tj , rk〉. Note that a Metropolis algorithm can be obtained by removing
line 27 which updates the temperature.

2.3 The Objective Function

As mentioned already, the configurations in algorithm TTSA are schedules which may or may
not satisfy the norepeat and atmost constraints. In addition, the moves are not guaranteed to
maintain feasibility even if they start with a feasible schedule. The ability to explore infeasible
schedules appears critical for the success of simulated annealing on the TT.

To drive toward feasible solution, the standard objective function function cost is replaced by
a more complex objective function which combines travel distances and the number of violations.

1. find random schedule S;
2. bestFeasible ←∞; nbf ←∞;
3. bestInfeasible ←∞; nbi ←∞;
4. reheat ← 0; counter ← 0;
5. while reheat ≤ maxR do
6. phase ← 0;
7. while phase ≤ maxP do
8. counter ← 0;
9. while counter ≤ maxC do
10. select a random move m from neighborhood (S);
11. let S′ be the schedule obtained from S with m;
12. if C(S′) < C(S) or
13. nbv(S′) == 0 and C(S′) < bestFeasible or
14. nbv(S′) > 0 and C(S′) < bestInfeasible

15. then
16. accept ← true;
17. else
18. accept← true with probability exp(−ΔC/T),
19. false otherwise;
20. end if
21. if accept then
22. S ← S′;
23. if nbv(S) == 0 then
24. nbf ← min(C(S), bestFeasible);
25. else
26. nbi ← min(C(S), bestInfeasible);
27. end if
28. if nbf < bestFeasible or nbi < bestInfeasible then
29. reheat ← 0; counter ← 0; phase ← 0;
30. bestTemperature ← T ;
31. bestFeasible ← nbf ;
32. bestInfeasible ← nbi ;
33. if nbv(S) == 0 then w← w/θ; else w← w · δ; end if
34. else
35. counter++;
36. end if
37. end while
38. phase++;
39. T ← T · β;
40. end while
41. reheat++;
42. T ← 2 · bestTemperature;
43. end while

Figure 2: The Simulated Annealing Algorithm TTSA

The new objective function C is defined as follows:

C(S) =

{
cost(S) if S is feasible,√

cost(S)2 + [w · f(nbv(S))]
2otherwise,

where nbv(S) denotes the number of violations of the norepeat and atmost constraints, w is a
weight, and f : N → N is a sublinear function such that f(1) = 1.

It is interesting to give the rationale behind the choice of f . The intuition is that the first
violation costs more than subsequent ones, since adding 1 violation to a schedule with 6 existing
ones does not make much difference. More precisely, crossing the feasible/infeasible boundary
costs w, while v violations only cost wf(v), where f(v) is sublinear in v. In our experiments,
we chose f(v) = 1 +

√
v ln v/2. This choice makes sure that f does not grow too slowly to

avoid solutions with very many violations.
Of course, it should be clear that TTSA applies the simulated annealing presented earlier, not

on the travel distance function cost, but on the function C. TTSA must also keep track of the
best feasible solution found so far.

2.4 Strategic Oscillation

TTSA also includes a strategic oscillation strategy which has been often used in tabu search when
the local search explores both the feasible and infeasible region (e.g., [5, 3]). The key idea is to
vary the weight parameter w during the search. In advanced tabu-search applications (e.g., [3]),
the penalty is updated according to the frequencies of feasible and infeasible configurations in the
last iterations. Such a strategy is meaningful in that context, but is not particularly appropriate for
simulated annealing since very few moves may be selected. TTSA uses a very simple scheme.
Each time it generates a new best solution (line 28 of the algorithm), TTSA multiplies w by some
constant δ > 1 if the new solution is infeasible or divide w by some constant θ > 1 if the new
solution is feasible.

The rationale here is to keep a balance between the time spent exploring the feasible region
and the time spent exploring infeasible schedule. After having spent a long time in the infeasible
region, the weight w, and thus the penalty for violations, will become large and it will drive the
search toward feasible solutions. Similarly, after having spent a long time in the feasible region,
the weight w, and thus the penalty for violations, will become small and it will drive the search
toward infeasible solutions. In our experiments, we chose δ = θ for simplicity.

2.5 Reheats

The last feature of TTSA is the use of reheating, a generalization of the standard simulated an-
nealing cooling schemes has been proposed by several authors (see, for example, [8]). The basic
idea is that, once simulated annealing reaches very low temperatures, it has difficulties to es-
cape from local minima, because the probability of accepting non-decreasing moves is very low.
Reheating is the idea of increasing the temperature again to escape the current local minimum.

TTSA uses a relatively simple reheating method. The idea is to reheat upon completion of
the outermost loop by increasing the temperature to twice its value when the best solution was
found. TTSA now terminates when the number of consecutive reheats without improving the
best solution reaches a given limit. The algorithm including all these modifications is shown in
Figure 2.

1. RANDOMSCHEDULE() {
2. Q← {〈t, w〉 | t ∈ Teams & w ∈Weeks};
3. GENERATESCHEDULE(Q, S);
4. return S;
5. }
6. bool GENERATESCHEDULE(Q, S) {
7. if Q = ∅ then return true; end if
8. select 〈t, w〉 ∈ Q such that ∀〈t′, w′〉 ∈ Q : 〈t′, w′〉 ≥ 〈t, w〉;
9. Choices ← {1,−1, . . . , t− 1,−(t− 1), t + 1,−(t + 1), . . . , n,−n};
10. forall o ∈ Choices in random order do
11. if 〈o, w〉 /∈ Q then
12. S[t, w]← o;
13. if o > 0 then
14. S[o, w]← −t;
15. else
16. S[−o, w]← t;
17. end if
18. if GENERATESCHEDULE(Q \ {〈t, w〉, 〈|o|, w〉}, S) then
19. return true;
20. end if
21. end if
22. end forall
23. return false;
24. }

Figure 3: The Generation of Initial Random Schedules

2.6 Initial Solutions

The algorithm to generate of random schedules satisfying the hard constraints is depicted in Fig-
ure 3. The algorithm uses a set Q containing all the position (Team,Week) to complete the sched-
ule. The set Q is initialized in line 2, before calling the recursive procedure GENERATESCHED-
ULE. This procedure returns true (and the schedule S) whenever Q is empty (line 7). Otherwise,
it selects the position 〈t, w〉, which is lexicographically smallest (line 8), and tries all its possible
choices randomly (line 9). The choices are simply the other teams, either at home or away. If the
selected opponent o is not already assigned in week w, then the schedule S is updated and the
algorithm is called recursively with the set Q where 〈t, w〉 and 〈|o|, w〉 have been removed (line
18). This procedure is very simple and can be improved considerably, but it appears sufficient to
find schedules satisfying the hard constraints reasonably fast.

3 Experiments

This section describes the experimental results on TTSA. It first reports the results for the stan-
dard version, which aims at producing the best possible schedules. The impact of the various
components is then studied in detail. The next set of experimental results describe how the solu-
tion quality evolves over time. The section concludes with a discussion on a fast cooling version

n Best (Nov. 2002) min(D) max(D) mean(D) std(D)

8 39721 39721 39721 39721 0
10 61608 59583 59806 59605.96 53.36
12 118955 112800 114946 113853.00 467.91
14 205894 190368 195456 192931.86 1188.08
16 281660 267194 280925 275015.88 2488.02

Table 1: Solution Quality of TTSA on the TTP

n T0 β w0 δ θ maxC maxP maxR γ

8 400 0.9999 4000 1.04 1.04 5000 7100 10 2
10 400 0.9999 6000 1.04 1.04 5000 7100 10 2
12 600 0.9995 10000 1.03 1.03 4000 1385 50 1.6
14 600 0.9999 20000 1.03 1.03 4000 7100 30 1.8
16 700 0.9999 60000 1.05 1.05 10000 7100 50 2

Table 2: Parameter Values for the TTSA Instances

of TTSA, which improves TTSA’s ability to find good solutions quickly. The section concludes
with the best solutions found over the course of this research.

Quality and Performance of TTSA TTSA was applied to the National League benchmark
described in [4, 10] (we did not consider n = 6, since TTSA always finds the optimal solution).
We experimented with different values for the parameters described previously. The most suc-
cessful version of the algorithm uses a very slowly cooling system (β � .9999), a large number
of phases (so that the system can reach low temperatures), and long phases. In order to avoid big
oscillations in the value of the penalty weight w, the parameters δ and θ were chosen to be close
to 1 (� 1.03). For each instance set (i.e., for every value of n), in all 50 runs, the parameters had
the same initial values.

Table 1 describes the quality of the results for 50 runs of TTSA on each of the instances
with parameters as shown on Table 2. The first column gives the number of teams, the second
column gives the best-known solutions at the time of writing (January 12, 2003) as shown in [10]
(last update was November, 2002). These solutions are obtained using a variety of techniques,
including constraint and integer programming and Lagrangian relaxation.1 The next columns
give the best solution found over the 50 runs, the worst solution, the average quality of the
solutions. and the standard deviation.

TTSA improved all the best known solutions (at the time of the experiments) on instances
with at least 10 teams. TTSA was the first algorithm to go lower than 60,000 on 10 teams,
200,000 for 14 teams and 280,000 for 16 teams. The improvements ranged between 2% to 5%.
The table also shows that the worst solution of TTSA is always smaller than or equal to the best
known solution, indicating the robustness of TTSA.

Table 3 also gives the CPU time in seconds needed by TTSA on an AMD Athlon(TM) at 1544
MHz. It gives the time to find the best solution, the average time, and the standard deviation over
50 runs.

1It is not clear however how some of these, and newer, results were obtained. See [10] for more details.

n min(T) mean(T) std(T)

8 596.6 1639.33 332.38
10 8084.2 40268.62 45890.30
12 28526.0 68505.26 63455.32
14 418358.2 233578.35 179176.59
16 344633.4 192086.55 149711.85

Table 3: Computation Times of TTSA on the TTP

Method Best Worst Mean Std

TTSA 190,514 196,989 194,560 1,631
TTSA(PS) 191,145 197,383 194,694 1,304
TTSA(NR) 196,561 205,094 200,680 2,152
TTSA(150) 197,781 211,347 203,621 3,157
TTSA(300) 195,627 202,158 198,004 964
TTSA(450) 204,872 215,485 206,862 1,428
TTSA(600) 213,938 218,879 216,412 1,096

Table 4: Impact of TTSA Components on Solution Quality (14 Teams)

Impact of the Components TTSA includes a variety of components and it is interesting to
measure how important they are in the performance and quality of the algorithm. Table 4 com-
pares various versions of the algorithm on 14 teams with the parameters shown on table 5.
Each version leaves out some component of TTSA: TTSA(PS) considers partial moves only,
TTSA(NR) does not include reheats, and the TTSA(T) versions are not based on simulated an-
nealing but on a Metropolis algorithm with temperature T. All versions were executed at least
35 times for 100,000 seconds. The table reports the minimum, maximum, and mean solution
values, as well as the standard deviation. Observe that considering one of the partial moves only
would degrade solution quality. It was apparent early on in our research that both moves brought
benefits, since most of our best solutions were obtained when we added PartialSwapTeams.

It is interesting to observe that TTSA outperforms all other versions on these experiments.
TTSA(PS) is slighly outperformed by TTSA, although the full moves can be thought as a com-
bination of partial moves. The full moves seem to bring some benefit because of their ability to
diversify the schedule more substantially. The use of reheats produce significant benefits. The
performance of the algorithm degrades significantly when they are not used, raising the mean
from about 194,000 to about 200,000. Similar observations hold for the Metropolis version
which are largely dominated in general.

Since the results with and without full moves were rather close, another set of experiments
was carried out to understand their effect more precisely. These results are shown in Table 6
which evaluates TTSA and TTSA(PS) when the time limit is varied. Interestingly, the results
seem to indicate that full swaps are beneficial early in the search and become marginal when
long runs are considered.

Solution Quality over Time TTSA is computationally intensive, at least to find very high-
quality solutions as earlier results demonstrate. It is thus important to study how solution quality

Method T0 β w0 δ θ maxC maxP maxR γ

TTSA 1100 0.999 18000 1.03 1.03 3000 710 1000 1.4
TTSA(PS) 1100 0.999 18000 1.03 1.03 3000 710 1000 1.4
TTSA(NR) 1100 0.9999 18000 1.03 1.03 3000000 ∞ 0 1
TTSA(150) 150 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(300) 300 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(450) 450 1 18000 1.03 1.03 ∞ 0 0 1
TTSA(600) 600 1 18000 1.03 1.03 ∞ 0 0 1

Table 5: Parameter Values for Experiments on the Impact of the Components (14 Teams)

Time Method Best Worst Mean Std

TTSA 192,040 198,140 195,349 1,31150,000 sec
TTSA(PS) 193,144 202,435 196,112 1,755

TTSA 190,514 196,989 194,560 1,631100,000 sec
TTSA(PS) 191,145 197,383 194,694 1,304

TTSA 190,514 196,989 194,186 1,550150,000 sec
TTSA(PS) 191,060 196,665 194,300 1,289

Table 6: Impact of Full Moves on the Solution Quality of TTSA (14 Teams)

evolves over time in TTSA. Figures 4 and 5 depict the solution values over time for many runs
with 12 and 14 teams. The figures depict the superposition of the curves for many runs. It is
interesting to observe the sharp initial decline in the solution values which is followed by a long
tail where improvements are very slow. Moreover, at the transition point between the decline
and the tail, TTSA typically has improved the previous best solutions. In particular, TTSA takes
about 1,000 seconds to beat the previous best results for for 12 teams, after which improvements
proceed at a much slower rate. The same phenomenon arises for 14 teams.

Fast Cooling As mentioned earlier, the parameters of TTSA were chosen to find the best pos-
sible solutions without much concern about running times. The experimental results indicate that
TTSA generally exhibits a sharp initial decline followed by a long tail. Hence it is intriguing to
evaluate the potential of TTSA to find “good” solutions quickly by using a fast cooling.

Table 7 and Figure 6 depict the results of TTSA(FC), a fast cooling version of TTSA, with
the parameters shown in Table 8. TTSA(FC) uses a cooling factor (beta) of .98, phases of length
(maxC) 5000 and a number of non-improving phases before reheating (maxP) of 70. Table
7 compares TTSA and TTSA(FC) for a running time of 2 hours. The results clearly show the
benefits of a fast cooling schedule for obtaining high-quality solutions quickly. Within two hours,
the best run of TTSA(FC) outperforms the previous best solution for 16 teams, while its average
solution is less than 2% above this solution. Figure 6 depicts the solution quality over time for
best runs of TTSA and TTSA(FC) over time. Observe the sharper initial decline of TTSA(FC),
which significantly outperforms TTSA for short runs. Of course, over time, TTSA(FC) is slighly
dominated by TTSA. These results seem to indicate the versatility of TTSA and its potential to
find high-quality solutions reasonably fast.

0 1000 2000 3000 4000 5000 6000 7000
 111916

 114151

 116386

 118620

 120855

 123090

 125324

 127559

 129794

 132028

 134263

 136498

 138733

 140967

 143202

 145437

 147671

 149906

 152141

 154375

 156610

 158845

 161079

 163314

 165549

Solution value vs. time for 12 teams

seconds

Figure 4: Solution Quality over Time for 12 Teams.

Method Best Worst Mean Std

TTSA 282,948 331,014 312,102 7,200
TTSA(FC) 277,626 295,299 286,527 4,125

Table 7: Solution Quality of TTSA and TTSA(FC) within 2 Hours on 16 Teams.

Best Solutions Since the Beginning of this Research Table 9 reports the evolution of the best
solutions since we started this research in November 2002. Our currently best solution for n = 12
and n = 14, were produced by running TTSA at a fixed temperature, as shown in Table 10 which
shows the parameters for each instance. The fixed temperature at each case was determined in the
following way. For every n, we ran 50 experiments starting from different random points, all with
the same parameters used in obtaining our previous best solution for that n. Then, we computed
the average over the 50 experiments of the temperature at which the best solution was found for
every experiment. This average gave us the starting temperature used in obtaining the latest best
results. Note that, although we did not improve the best known solution for n = 16 using this
approach, the results were pretty close to the value of the best known solution. In particular, after
running 50 experiments, we got minimum cost 268137 and maximum cost 272376. Note that the
best known solution not produced with TTSA is by Langford, January 2004, who gave a solution
of value 272902.

0 1000 2000 3000 4000 5000 6000 7000
 188498
 193817
 199136
 204454
 209773
 215092
 220410
 225729
 231048
 236366
 241685
 247004
 252322
 257641
 262960
 268278
 273597
 278916
 284234
 289553
 294872
 300190
 305509
 310828
 316146

Solution value vs. time for 14 teams

seconds

Figure 5: Solution Quality over Time for 14 Teams.

Method T0 β w0 δ θ maxC maxP maxR γ

TTSA 700 0.9999 60000 1.05 1.05 10000 7100 50 2
TTSA(FC) 700 0.98 60000 1.05 1.05 5000 70 10000 2

Table 8: Parameter Values for Experiments on Fast Cooling (16 Teams)

4 Conclusion

Sport league scheduling has received considerable attention in recent years, since these applica-
tions involve significant revenues for television networks and generate challenging combinatorial
optimization problems. This paper considers the traveling tournament problem (TTP) proposed
in [10, 4] to abstract the salient features of major league baseball (MLB) in the United States.
It described the simulated annealing algorithm TTSA for the TTP which represents the prob-
lem with hard and soft constraints, explores both feasible and infeasible schedules, uses a large
neighborhood whose moves may have significant effects on the overall schedule, and incorpo-
rates advanced techniques such as strategic oscillation and reheats to balance the exploration of
the feasible and infeasible regions and to escape local minima at very low temperatures. TTSA
matches the best known solutions on the small instances of the TTP and produces significant
improvements over previous approaches on the larger instances. TTSA is also shown robust,
since its worst solution quality is always smaller or equal to the best known solutions. As a con-
sequence, we believe that these results enhance our understanding of the effectiveness of various
solution techniques on the TTP, which is a very hard combinatorial optimization problem.

There are a variety of open issues that need to be addressed. On the theoretical side, it would

 0 25000 50000 75000 100000 125000
 267483

 271377

 275271

 279165

 283058

 286952

 290846

 294740

 298634

 302528

 306422

 310315

 314209

 318103

 321997

 325891

 329784

 333678

 337572

 341466

 345360
Temperature vs. time for 16 teams

seconds

Figure 6: Solution Quality over Time for TTSA and TTSA(FC).

n Nov 2002 Author June 2003 Apr 2004 Author TTSA Sep 2005 Author

8 39721 Easton 39721 39721 39721 39721
10 61608 Zhang 59583 59583 59583 59436 Langford
12 118955 Cardemil 112800 112298 Langford 111248 111248
14 205894 Cardemil 190368 190056 Langford 189766 189766
16 281660 Shen 267194 267194 267194 267194

Table 9: Timeline of Best Known Solutions: Where no author is mentioned (including the Jun
2003 column), solutions were produced using TTSA. We show in bold face TTSA solutions that
are the best known as of September 2005.

be interesting to determine if the neighborhood is connected. On the practical side, it would be
interesting to explore other meta-heuristics that may improve the efficiency of the algorithm. This
is a challenging task however, since it seems critical to consider a large neighborhood to obtain
high-quality solutions. However, preliminary experimental results with fast cooling schedules
are encouraging.

Acknowledgements

The authors are grateful to the four reviewers for their very interesting suggestions on the ex-
perimental results. This work is partially supported by by NSF ITR Awards DMI-0121495 and
ACI-0121497.

n T0 β w0 δ θ maxC maxP maxR γ

12 158 1 10000 1.03 1.03 ∞ 0 0 1
14 193 1 18000 1.03 1.03 ∞ 0 0 1

Table 10: Parameter Values for TTSA Instances

References

[1] T. Benoist, F. Laburthe, and B. Rottembourg. Lagrange Relaxation and Constraint Program-
ming Collaborative Schemes for Travelling Tournament Problems. In CP-AI-OR’2001,
Wye College (Imperial College), Ashford, Kent UK, April 2001.

[2] D.T. Connelly. General Purpose Simulated Annealing. Journal of Operations Research,
43, 1992.

[3] Juan A. Dı́az and Elena Fernández. A tabu search heuristic for the generalized assignment
problem. European Journal of Operational Research, 132(1):22–38, July 2001.

[4] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem description
and benchmarks. In Seventh International Conference on the Principles and Practice of
Constraint Programming (CP’99), pages 580–589, Paphos, Cyprus, 2001. Springer-Verlag,
LNCS 2239.

[5] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[6] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by Simulated Annealing. Science,
220:671–680, 1983.

[7] M. Laguna, J.P. Kelly, Gonzalez-Velarde, and F. Glover. Tabu search for the multilevel
generalized assignment problems. European Journal of Operational Research, 42:677–
687, 1995.

[8] I. H. Osman. Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Annals of Operations Research, 41:421–451, 1993.

[9] E. Pesch and F. Glover. TSP Ejection Chains. Discrete Applied Mathematics, 76:165–181,
1997.

[10] M. Trick. http://mat.gsia.cmu.edu/TOURN/, 2002.

