
Sampling Search-Engine Results

Aris Anagnostopoulos∗
Dept. of Computer Science

Brown University
Providence, RI 02912, USA

aris@cs.brown.edu

Andrei Z. Broder
IBM T. J. Watson Research

Center
19 Skyline Drive

Hawthorne, NY 10532, USA

abroder@us.ibm.com

David Carmel
IBM Haifa Research Lab

Haifa 31905, ISRAEL

carmel@il.ibm.com

ABSTRACT
We consider the problem of efficiently sampling Web search
engine query results. In turn, using a small random sample
instead of the full set of results leads to efficient approximate
algorithms for several applications, such as:

• Determining the set of categories in a given taxonomy
spanned by the search results;

• Finding the range of metadata values associated to the
result set in order to enable “multi-faceted search;”

• Estimating the size of the result set;

• Data mining associations to the query terms.

We present and analyze an efficient algorithm for obtain-
ing uniform random samples applicable to any search en-
gine based on posting lists and document-at-a-time evalu-
ation. (To our knowledge, all popular Web search engines,
e.g. Google, Inktomi, AltaVista, AllTheWeb, belong to this
class.)

Furthermore, our algorithm can be modified to follow the
modern object-oriented approach whereby posting lists are
viewed as streams equipped with a next method, and the
next method for Boolean and other complex queries is built
from the next method for primitive terms. In our case we
show how to construct a basic next(p) method that samples
term posting lists with probability p, and show how to con-
struct next(p) methods for Boolean operators (AND, OR,
WAND) from primitive methods.

Finally, we test the efficiency and quality of our approach
on both synthetic and real-world data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
Search Engines, Sampling, Weighted AND, WAND

∗Work performed while this author was at IBM T. J. Watson
Research Center.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

1. INTRODUCTION
Web search continues its explosive growth: according to

the Pew Internet & American Life Project [11], there are
over 107 million Web search users in United States alone,
and they did over 3.9 billion queries in the month of June
2004. At the same time, the Web corpus grows: as of Febru-
ary 8, 2005, google.com claims over 8 billion pages indexed.

Thus search algorithmic efficiency is as important as ever:
although processor speeds are increasing and hardware is
getting less expensive every day, the size of the corpus and
the number of searches is growing at an even faster pace.

On the other hand, Web search users tend to make very
short queries (less than 3 words long [19]) that result in
very large result sets. Although by now search engines have
become very accurate with respect to navigational queries
(see [6] for definitions), for informational queries the situa-
tion is murkier: quite often the responses do not meet the
user’s needs, especially for ambiguous queries.

As an example, consider a user that is interested in find-
ing out about famous opera sopranos and enters the query
sopranos in the Google search box. It turns out that the
most popular responses refer to the HBO’s TV-series with
the same name: in the top 100 Google results, only 7 docu-
ments do not refer to the HBO program. (All Google num-
bers, here and below, refer to experiments conducted on
February 8, 2005.)

This situation has stimulated search engines to offer vari-
ous “post-search” tools to help users deal with large sets of
somewhat imprecise results. Such tools include query sug-
gestions or refinements (e.g., yahoo.com and teoma.com), re-
sult clustering and the naming of clusters (e.g., wisenut.com
and vivisimo.com), and mapping of results against a pre-
determined taxonomy, such as ODP (the Open Directory
Project used by Google and many others), Yahoo, and Look-
Smart. All these tools are based in full or in part on the
analysis of the result set.

For instance in the previous example, the search engine
may present the categories “TV series,” “Opera,” etc. or
the query extensions “HBO sopranos,” “mezzo sopranos,”
etc. Ideally, in order to extract the most frequent cate-
gories within the results set, all the documents matching
the query should be examined; for Web size corpora this is
of course prohibitive, as thousands or millions of documents
may match. Therefore, a common technique is to restrict
attention only to the top few hundreds ranked documents
and extract the categories from those. This is much faster
since search engines use a combination of static (query-
independent) rank factors (such as PageRank [5]) and query

dependent factors. By sorting the index in decreasing order
of static rank and using a branch-and-bound approach, the
top 200 (say) results can be produced much faster than the
entire set of results.

The problem with this approach is that the highly-ranked
documents are not necessarily representative for the entire
set of documents, as they may be biased towards popular
categories. In the “sopranos” example, although 93 of the
top 100 documents in Google refer to the HBO series, the
query for sopranos AND HBO matches about 265,000 pages in
Google (per Google report), while the query sopranos AND

opera -HBO matches about 320,000, a completely different
picture.

Many corporate search engines, and especially e-commerce
sites, implement a technique called multi-faceted or multi-
dimensional search. This approach allows the refinement of
full-text queries according to meta-data specifications asso-
ciated to the matching items (e.g., price range, weight) in
any order, but only nonempty refinements are possible. The
refinement is presented as a “browsing” of those results that
satisfy certain metadata conditions, very similar to narrow-
ing results in a particular category.

As an example, consider a user who visits an online music
store such as towerrecords.com, and performs a query, say,
the string james. The engine (from mercado.com) provides a
number of hits, but also numerous possible refinements, ac-
cording to various “facets,” for instance by “Genre” (Blues,
Children’s, Country, . . .), by price (Under $7, Under $10,
Under $15, . . .), by “Format” (Cassette, CD, Maxi-Single,
Compact Disc, . . .), and so on. The refinements offered
depend on the initial query, so that only nonempty cate-
gories are offered, and sparse subcategories are merged into
an “Other” subcategory. Similar approaches are used by
many other e-tailers.

Multi-faceted search is used in other contexts as well, for
instance, Yee et al. [22] show the benefits of this approach
as applied within the “Flamenco” project at U. C. Berkeley
for searching images using metadata refinement.

Since the categories displayed for multi-faceted search de-
pend on the result set of the query, they have to be extracted
quickly, which becomes a problem when the corpus is large.
It seems that some current multi-faceted search engines are
limited to corpora that can be represented in memory.

1.1 Sampling the Search Results
The applications described above require significant pro-

cessing time; in order to apply them to large corpora we
propose to only sample the set of documents that match
the user’s query. Asymptotically, under term independence
assumptions, the average running time of our sampling ap-
proach is proportional to the sample size and grows only
logarithmically in the size of the full matching set. On the
other hand, sampling allows us to extract information that
is unbiased with respect to the search-engine’s ranking, and
therefore produce better coverage of all topics or all meta-
data values present in the full result set.

The main technical difficulty in sampling follows from the
fact that we do not have the results of the query explicitly
available, but instead the results are generated one after the
other, by a rather expensive process, potentially involving
numerous disk accesses for each query term. The straight-
forward implementation is to pay the price, find and store
pointers to all the documents matching the original query,

and build a uniform sample from these results. However, as
we already mentioned, our algorithm will obtain the sample
after generating and examining only a small fraction of the
result set and yet the sample produced is uniform, that is,
every set of matching pages of size k (the desired sample
size) has an equal probability to be selected as the output
sample.

Although, to the best of our knowledge, the idea of sam-
pling query results from search engines is new, sampling has
been applied in different contexts as a means to give fast
approximate answers to a particular problem. The areas of
randomized and approximation algorithms provide numer-
ous examples. In the area of data streams, where the input
size is very large, sampling the input and operating on it is
a common technique (see e.g., [3, 13, 17]). Even databases
allow the user to specify a sampling rate in a select operation
that instead of performing the query on the full set of data
it operates on a sample [15]; as a result the DB2 standard
has been augmented in order to support this option.

Besides the two applications already mentioned, result
categorization and multi-faceted search, a random sample of
the query results has more potential uses. In Theorem 2.2
we show that after the execution of our algorithm we can ob-
tain an unbiased estimator of the total number of documents
matching the user’s original query, while in Theorem 2.3 we
show that the estimator can achieve any prespecified degree
of accuracy and confidence. Many users seem to like such es-
timates, maybe to help them decide whether they should try
to refine the query further. In any case, Web search engines
generally provide estimates of the number of results match-
ing a query. For instance both Google and Yahoo provide
such estimates at the top of the search results page. How-
ever these estimates are notoriously unreliable, especially for
disjunctions. As an example, as of February 8, 2005, Google
reports about 105M results containing the term “George,”
about 185M pages containing the term “Washington,” while
its estimate for the documents satisfying the query “George
OR Washington” (done via advanced search) is about 33M.
In contrast, in our experiments (see Section 4) even a 50-
result uniform sample yielded estimates within 15% of target
in all cases.

Yet another application of random sampling is to identify
terms or other properties associated to the query terms. For
instance one might ask “Who is the person most often men-
tioned on the Web together with Osama bin Laden?” The
approach we envisage is to sample the results of the query
"Osama bin Laden", fetch the sample pages, run an entity
detection text analyzer that can recognize people names, ex-
tract these names, and so on. Again the advantage of this
approach compared to using the top results for the query
"Osama bin Laden" is that the top results might be biased
towards a particular context.

A similar application is suggested by the paper [2] where
the authors demonstrate how finding (by “hand”) new terms
relevant or irrelevant to a given query can be useful for build-
ing “corpus independent” performance measures for infor-
mation retrieval systems. The main idea is that by pro-
viding a set of relevant and a set of irrelevant terms for a
given query, we can evaluate the performance of the informa-
tion retrieval system by checking whether the documents re-
trieved contained the specified relevant and irrelevant terms.
However, discovering these sets of terms is a daunting task,
that requires the time and skill of an IR specialist; a sample

of the search results for the query can help the specialist
identify both relevant and irrelevant terms. Again the lack
of bias is probably useful.

Yet another application is suggested by the paper [18]
that proposes the use of the Web as a knowledge source
for domain-independent question answering by paraphras-
ing natural language questions in a way that is most likely
to produce a list of hits containing the answer(s) to the
question. It might well be the case that the results would
be better when using a random sample of matches rather
than a ranked set of matches, since the ranking is based on
a very different idea of “best” results.

The list of potential applications of search results sam-
pling that we proposed above is probably far from complete.
We hope that our work will stimulate search engines to im-
plement a random sampling feature, and this in turn will
lead to many more uses than we can conceive now.

1.2 Alternative Implementations
A very simple way of producing (pseudo) random samples

is to keep the index in a random order. Then the first k
matches of a query can be viewed as a random sample, or,
if more than one sample is needed, we can take matches x
to x + k as our sample. In fact this is the approach used in
IBM’s WebFountain [14], a system for large scale Web data
mining.

However, in a standard Web search engine, there are many
disadvantages for such an architecture:

1. If the index is in random order, rather than in decreas-
ing static rank order, ranking regular searches (“top-
k”) is very expensive since no branch-and-bound op-
timization can be used. Thus the random-order index
has to be stored separately from the search index which
doubles the storage cost. (This is not an issue in Web-
Fountain where “top-k” searches are a small fraction
of the load.)

2. Maintaining a true random order as documents are
added and deleted is nontrivial. A good solution is
to have a “random static score” associated to each
document and keep the index sorted by this “random
score.” This allows having an old index and a delta
index to deal with additions.

3. Creating multiple truly independent random samples
for the same query is nontrivial.

Thus, for regular Web search engines, sampling is a much
better alternative.

1.3 Retrieval Model and Notations
Our model is a traditional Document-at-a-time (DAAT)

model for IR systems [20]. Every document in the database
is assigned a unique document identifier (DID). (As we men-
tioned in the introduction, the DIDs are assigned in such a
way that increasing DIDs corresponds to decreasing static
scores. However this is not relevant to the rest of our dis-
cussion.) Every possible term is associated with a posting
list. This list contains an entry for each document in the
collection that contains the index term. The entry consists
of the document’s DID, as well as any other information
required by the system’s scoring model such as number of
occurrences of the term in the document, offsets of occur-
rences, etc. Posting lists are ordered in increasing order of
the document identifiers.

Posting lists are stored on secondary storage media, and
we assume that we can access them through stream-reader
operations. In particular, each pointer to a term’s posting
list, supports the following standard operations.

1. loc(): returns the current location of the pointer.

2. next(): advances the pointer to the next entry in the
term’s posting list.

3. next(r): moves the pointer to the first document with
DID greater or equal to r.

For our purposes, we need a special operator

4. jump(r,s): moves the pointer to the s-th entry in the
posting list after the document with DID greater or
equal to r. (Equivalent to next(r) followed by s next()
operations. However simulating jump(r,s) this way
would cost s moves rather than one – see below.)

Operations loc and next are easily implemented with a
linked-list data structure, while for next(r) search engines
augment the linked lists with tree-like data structures in
order to perform the operation efficiently. For example one
can use a binary tree where the leaves are posting locations
corresponding to the first posting in consecutive disk records
and every inner node x contains the first location in the
subtree rooted at x.

The jump operation is not traditionally supported but can
be easily implemented using the same tree data-structures
needed for next(r) – we simply augment the inner nodes
with a count of all the postings contained within the rooted
subtree.

In the modern object-oriented approach to search engines
based on posting lists and DAAT evaluation, posting lists
are viewed as streams equipped with the next method above,
and the next method for Boolean and other complex queries
is built from the next method for primitive terms. For in-
stance, next(AOR B) = min(next(A),next(B)). We will
show later how to construct a basic next(p) method that
samples term posting lists with probability p, and show how
to construct next(p) methods for Boolean operators (AND,
OR, WAND) from primitive methods.

Since the posting lists are stored on secondary storage,
each next or jump operation may result to one or more disk
accesses. The additional search-engine data structures en-
sure that we have at most one disk access per operation.
Our goal is to minimize the number of disk accesses, and
hence we want to minimize the number of the stream-reader
move operations. In the rest of the paper, we assume that
these moves have unit cost, while any other calculation has
a negligible cost. (This assumption is of course only a first
approximation, but it is well correlated with observed wall
clock times [7]. A more accurate model would have to distin-
guish at least between “within-a-block” moves and “block-
to-block” moves.)

For easy reference, we list here the notations used in the
remainder of the paper. The total number of documents
is N , while the number of documents containing term Ti

is Ni. For the query under consideration, we let t be the
number of terms contained in the query, and m ≤ N be the
number of documents that satisfy the query. The sample
size that we require is of size k; we expect in general to have
k � m. Finally, in many cases we assume that p = k/m.
This assumption will be clear from the context.

The most general sampling technique that we propose is
applicable to many search engine architectures. We describe
it in Section 2. Next, in Section 3, we specialize to a particu-
lar architecture based on the WAND operator that was first
introduced in [7] and this specialization allows us to achieve
better performance. We implemented and performed vari-
ous experiments, and we present the results in Section 4. In
Section 5 we summarize and conclude our results.

2. A GENERAL SCHEME FOR SAMPLING

2.1 Two Motivating Examples
In order to build some intuition for the sampling problem,

we present two examples: one where the query is a conjunc-
tion (AND) of two terms and another where the query is a
disjunction (OR) of two terms. Later in the paper we will
provide more details about the sampling mechanism, and
generalize it to a broader class of queries.

For the AND example consider some term A that ap-
pears in 10M documents, a term B that appears in 100M
documents, and assume that the number of documents con-
taining both terms is 5M . Assume, moreover, that we want
a sample of 1000 results. Then sampling each document
that satisfies the AND query with probability equal to p =
1000/5M = 1/5000 creates a random sample with the de-
sired expected size.

We will use the notation A (resp. B, C, etc.) to mean
both the term A and the set of postings associated to A.
The meaning should be clear from context.

An initial problem arises from the fact that although we
may know how many documents contain the term A and
how many contain the term B, we do not know a priori the
number of documents that contain both terms, and thus we
do not know the proper sampling probability. There are
ways to circumvent this issue and we discuss them later in
Subsection 2.3. For now, assume that we know the correct
sampling probability, and the question is how to sample ef-
ficiently.

The naive approach would be to identify every document
that contains both terms and, for each document indepen-
dently, add it to the sample with probability p. This means
checking at least all the postings for the rarest of the terms,
so we need to examine at least the 10M postings on A’s
posting list.

Instead consider the following approach: Sample the post-
ing list of A (the rarest term) with probability p and create
a virtual term Ap whose posting list contains the sampled
postings of A. Then the posting list for Ap contains roughly
10M/5000 = 2000 documents. We return the documents
satisfying the query Ap ANDB. It is easy to verify that
the result is a uniform sample over all the documents con-
taining AANDB. Later we will show how, given p, we
can create the posting list of Ap online in time proportional
to |Ap|; hence, this method allows us to examine only 2000
postings, a clear gain over the 10M postings examined by
the naive approach.

Now let’s look at the OR example that turns out to
be somewhat more complicated. Consider another term C
that appears also in 10M documents and assume that there
are 15M documents containing AOR C. Again we want a
sample of 1000 documents, so in this case p = 1000/15M =
1/15000. The naive approach is to check every document
in AORC and insert it into the sample with probabil-

ity p, which means traversing the posting lists of both A
and C, or 20M operations. However we can apply the
same technique as before and create a term Ap in time pro-
portional to |Ap|. However, a document may satisfy the
query even if it does not contain A, so we create also a vir-
tual term Cp in the same manner, and return documents in
Ap ORCp. Thus the total number of postings examined is
|Ap|+ |Cp| = 20M/15000 ' 1333, a factor of 15000 improve-
ment. But now we need to be more careful: if a document
contains only the term A then it is inserted in Ap with prob-
ability p, and similarly if it contains only the term C then
it is inserted in Cp with probability p. But if a document
contains both terms, the probability to be contained in ei-
ther Ap or Cp is 2p− p2. Hence, every document containing
both A and C and contained in Ap OR Cp must be rejected
from the sample with probability 1 − p/(2p − p2). This will
ensure that every document in AOR C is included in the
sample with probability exactly p.

2.2 Sampling Search Results for a General
Query

We now generalize the examples of the previous section
and show how to apply the same procedure for sampling
query results to any search engine based on inverted indices
and a Document-at-a-time retrieval strategy. This class in-
cludes Google [5], AltaVista [8] and IBM’s Trevi [12].

Consider a query Q, that can be as simple as the prior ex-
amples, or a more complicated boolean expression (including
NOT terms, but not exclusively NOT terms). It could even
contain more advanced operators like phrases or proximity
operators. Every such query contains a number of simple
terms, say T1, T2, . . . , T`, to which the operators are applied,
and each term is associated with a posting list. Although the
exact details depend on the specific implementation, every
search engine traverses those lists and evaluates Q over the
documents in the lists and several heuristics and optimiza-
tion techniques are applied to reduce the number of docu-
ments examined (so, for example, for an AND query the
engine will ideally traverse only the most infrequent term).
Recall that the total number of documents satisfying the
query is m, and that we need a sample of size k, which
means that every document satisfying the query should be
sampled with probability p = k/m. Assume, moreover, for
the moment that we know m, and therefore we know the
sampling probability p – in Subsection 2.3 we show how to
handle this.

The way to sample the results is simple in concept. For ev-
ery term Ti (but not for terms NOT Ti) we create a pruned
posting list of document entries, which contains every doc-
ument from the posting list of Ti with probability p, inde-
pendently of anything else. The naive way to create the
pruned list, is to traverse the original posting list and in-
sert every document into the pruned list with probability p.
An efficient equivalent way is to skip over a random num-
ber X of documents, where X is distributed according to a
geometric distribution with parameter p. We can create a
geometrically distributed random variable with parameter p,
in constant time, by using the formula

X =

‰

log(U)

log(1 − p)

ı

,

where U is a real random variable uniformly distributed in
the interval [0, 1] (see [10]).

The random skip is then simulated by executing a jump(r,
X) operation, where r is the last document considered. (Re-
call from the discussion of Section 1.3 that the data structure
used for postings allows for efficiently skipping documents
in the posting lists, thus the skip has unit cost.) We then
insert the document into the pruned list and we skip another
random number of documents, continuing until the posting
list is completely traversed. Note that the pruned lists can
be precomputed at the beginning of the query, or they can
be created on the fly, as the documents are examined.

We now perform the query by considering only documents
that contain at least one term in the pruned lists. This is
equivalent to replacing the original query Q(T1, T2, . . .) with
the query

Q(T1, T2, . . .)AND
`

T1,p OR T2,p OR · · ·
´

.

By this construction, every document that appears in
some posting list has probability at least p to be consid-
ered. There are, however, documents that originally appear
in more than one posting list. Consider some document
that appears in the posting lists of r terms that are also
being pruned. Then this document has increased chances
to appear in some pruned list, the probability being exactly
1− (1−p)r. Therefore, for every document that satisfies the
query, we should also count the number r of posting lists
subject to pruning, in which it originally appears. Then
we insert the document into the sample with probability
p/(1 − (1 − p)r), so that overall the probability that the
document is accepted becomes exactly p.

There are several remarks to be made about this tech-
nique:

• First we want to stress its generality that allows it to
be incorporated in a large class of search engines.

• Second, the method is very clean and simple, since it
does not require any additional nontrivial data struc-
tures; indeed, although the pruned lists can be pre-
computed (and, to improve response time, even stored
on disk for common search terms and fixed pruning
probabilities), the pruned lists can exist only at a con-
ceptual level. When an iterator traverses a pruned list,
in the actual implementation, it may traverse the origi-
nal posting list and skip the necessary documents. Our
implementation that we describe in detail in Section 3,
demonstrates this approach. The only addition we re-
quire is the support of the jump operation described in
Section 1.3, which is not significantly different from the
next operation. Therefore from a programming point
of view, the needed modifications are very transparent.

• Furthermore, the modern object-oriented approach to
search engines is to view posting lists as streams that
have a next method, and to build a next method for
Boolean and other complex queries from the basic next
method for primitive terms. Our geometric jumps
method provides a method that samples term posting
lists with probability p providing the primitive next(p)
method, and the approach described above provides
a next(p) method for arbitrary queries: we first ad-
vance to the minimum posting in all pruned posting
lists via the primitive next(p) method, we evaluate the
query, and if we have a match, we perform the rejection
method as described.

• Finally, we want to mention that the general mech-
anism can be appropriately modified and made more
efficient for particular implementations. For example,
in the AND example of the previous section, we saw
that we need to create the pruned list of only one of
the terms. In Section 3 we show how we apply the
technique to the WAND operator used in IBM’s Trevi
search engine [12] and JURU search engine [9] and gain
similar benefits.

2.3 Estimating the Sampling Probability
During the previous discussion we assumed that we know

the total number of documents m matching the query and
hence that we can compute the sampling probability p =
k/m. In reality we do not know m, and therefore we have to
adjust the probability during the execution of the algorithm.
The problem of sequential sampling (sample exactly k out
of m elements that arrive sequentially) when m is unknown
beforehand, has been considered in the past. Vitter [21] was
first to propose efficient algorithms to address that prob-
lem, using a technique called reservoir sampling. The main
idea is that when the i-th item arrives we insert it into the
sample (reservoir) with probability k/i (for i ≥ k) replacing
a random element already in the sample. This technique
ensures that at every moment, the reservoir contains a ran-
dom sample of the elements seen so far. Vitter and subse-
quent researchers proposed efficient algorithms to simulate
this procedure that instead of checking every element skip
over a number of them (see, for example, [21, 16]).

It seems, however, that those techniques cannot be applied
directly to our problem, because the list of matching doc-
uments represents the union or intersection of several lists.
If we simply skip over a number of documents, we do not
know how many skipped documents matched the query and,
therefore, we cannot decide what the acceptance probability
of the chosen document should be.

Instead we apply the following technique, related to the
method used in [13] in the context of stream processing: We
maintain a buffer of size B > k (e.g., B can equal 2k), and
initially we set the sampling probability equal to some up-
per bound for the correct sampling probability, p0 (p0 can
be 1). In other words, we accept every document that satis-
fies the query with probability p = p0. Whenever the buffer
is full, that is, the number of documents accepted equals
B (which indicates that p was probably too large) we set
a new sampling probability p′ = α · p, for some constant
k/B < α < 1. Then every already accepted document is
retained in the sample with probability α and deleted from
the sample with probability 1 − α. Thus the expected sam-
ple size becomes Bα > k and a Chernoff bound shows that
with high probability the actual size is close to Bα, if k is
large enough. Subsequent documents that satisfy the query
are inserted into the sample with probability p = p′ inde-
pendently of all other documents and p is decreased again
whenever the buffer becomes full.

Eventually, the algorithm goes over all the posting lists
and it ends up with a final sampling probability equal to
some value p∗, and with a final number of documents in
the sample, K, where K < B always, and K ≥ k with
high probability. Assuming the latter holds, we can then
easily sample without replacement from this set and extract
a sample of exactly k documents.

Observe that the number of times the sampling probabil-
ity is decreased is bounded by

log(1/p∗)

log(1/α)
≈

log(m/k)

log(1/α)
.

Every time the probability is decreased the expected number
of samples removed from the buffer is (1 − α)B. Thus the
total number of samples considered can be bound by

(1 − α)B
log(m/k)

log(1/α)
+ B = O

`

k log(m/k)
´

. (1)

It is tempting to assert that the algorithm chooses inde-
pendently every document with probability p∗. Unfortu-
nately this is not the case: for every independent sampling
probability p there is some probability that the sample will
be larger than B; however our algorithm never produces a
sample larger than B. What holds is that conditional on
its size, the sample is uniform. Furthermore we can use the
final size and the final sampling probability to compute m,
the size of the set we sampled from. This is captured by the
following three theorems.

Theorem 2.1. Assume that at the end of the sampling
algorithm the actual size of the sample is K. Then the pro-
duced sample set is uniform over all sets of K documents
that satisfy the query.

Proof. We use a coupling (simulation) argument and
here we give the main intuition. Assume that each of the m
documents that satisfy the query has an associated real ran-
dom variable Xi, chosen independently uniformly at random
in the interval (0, 1].

We build a new algorithm that proceeds exactly as before
except that whenever the buffer is full, p is reduced to p′

and we keep in the buffer only those documents i that have
Xi < p′. Every new document j is inserted in the buffer iff
it has Xj < p (the new sampling probability).

Let Sp = {i | Xi < p}. Then p∗ is the largest value in the
set {p0, αp0, α

2p0, . . .} such that

|Sp∗ | = |{i | Xi < p∗}| < B,

and the final sample is Sp∗ . Clearly the set Sp∗ is uniform
over all sets of size K = |Sp∗ |. On the other hand the
original algorithm and the new algorithm are in an obvious
1-1 correspondence, and thus conditional on its size, the final
sample is uniform.

Notice, that the algorithm does not know initially the
number of documents that satisfy the query, a value that
is usually hard to estimate. As mentioned, an additional
feature of the algorithm is that we can estimate the number
of documents matching the query. The following theorem
summarizes the result.

Theorem 2.2. Assume that at the end of the algorithm
the size of the sample is K, and the final sampling probability
is p∗. Then the ratio K/p∗ is an unbiased estimator for
the number of documents m matching the query, that is,
E[K/p∗] = m.

Proof. View the algorithm as performing two types of
steps: if the buffer is full then the algorithm reduces the
sampling probability and resamples the buffer; if the buffer
is not full, the algorithm considers the next candidate doc-
ument and inserts it with probability p.

Assume that after t steps there were were Kt documents
in the sample, the sampling probability was pt, and we have
considered mt candidate documents. Thus if the algorithm
stops after f steps Kf = K and pf = p∗ and mf = m. We
prove that at every step the ratio E[Kt/pt] = mt.

To this end we define a sequence of random variables
{Xt}t≥0 as follows. We let X0 = 0 and

Xt =
Kt

pt

− mt.

We now show that the sequence {Xt} is a martingale (i.e.,
that E[Xt |X0, X1, . . . , Xt−1] = Xt−1) which implies that
E[Kf/pf]− mf = 0, and completes the proof. (For brevity,
we gloss over some technical details; the complete proof will
be included in a longer version of this work.)

Notice that if Kt−1 < B then the sampling probability
does not change (pt = pt−1) but we will consider a new
document that is inserted with probability pt. Therefore, if
we let Z be the indicator random variable of the event that
at time t a document becomes accepted, we get

E[Xt | X0, . . . , Xt−1, Kt−1 < B]

= E

»

Kt−1 + Z

pt

− mt

˛

˛

˛

˛

X0, . . . Xt−1

–

=
Kt−1 + pt

pt

− mt =
Kt−1

pt

− (mt − 1)

= Xt−1.

On the other hand, if Kt−1 = B then every document
already in the sample is resampled with probability pt/pt−1

but we are not considering any new document, that is mt =
mt−1. Therefore

E[Xt | X0, . . . , Xt−1, Kt−1 = B]

= E

»

Binomial(Kt−1, pt/pt−1)

pt

− mt

˛

˛

˛

˛

X0, . . . , Xt−1

–

=
Kt−1

pt

pt−1

pt

− mt−1 = Xt−1.

Hence, we conclude that the sequence {Xt} is a martingale,
and this implies via the Optional Sampling Theorem that
E[Xf] = E[X0] = 0.

Besides having the correct expectation, a good estimator
should be close to the correct value with high probability.
In general an (ε, δ)-approximation scheme for a quantity X,
is defined as a procedure that given any positive ε < 1 and
δ < 1 computes an estimate X̂ of X that is within relative
error of ε with probability at least 1 − δ, that is

Pr(|X̂ − X| ≤ εX) ≥ 1 − δ.

The following theorem shows that our sampling procedure
using a buffer size quadratic in 1/ε and logarithmic in 1/δ
is in fact an (ε, δ)-approximation scheme.

Theorem 2.3. There is a constant C such that for any
positive ε < 1 and δ < 1, the algorithm above with a buffer
size B = C

ε2
log 1

δ
is an (ε, δ)-approximation scheme, that is,

if at the end of the algorithm the size of the sample is K and
the final sampling probability is p∗ we have:

Pr

„˛

˛

˛

˛

K

p∗
− m

˛

˛

˛

˛

≤ εm

«

≥ 1 − δ.

Proof. The proof is similar to that of Theorem 3 in [13]
and we omit it here for lack of space.

3. EFFICIENT SAMPLING OF THE WAND
OPERATOR

Although we described a general sampling mechanism that
can be applied to diverse settings, we have also seen that
when we specialize to some particular operator such as AND
we can achieve improved performance. In this section we
describe the operator WAND, introduced in [7], that gen-
eralizes AND and OR and we present an efficient imple-
mentation for sampling the results of WAND.

3.1 The WAND Operator
Here we briefly describe the WAND operator that was

introduced in [7] as a means to optimize the speed of search
queries. WAND stands for Weak AND, or Weighted AND.
It takes as arguments a list of Boolean variables X1, X2, . . . , Xk,
a list of associated positive weights, w1, w2, . . . , wk, and a
threshold θ. By definition, WAND(X1, w1, . . . Xk, wk, θ) is
true iff

X

1≤i≤k

xiwi ≥ θ, (2)

where xi is the indicator variable for Xi, that is

xi =



1, if Xi is true
0, otherwise.

Observe that WAND can be used to implement AND
and OR via

AND(X1, X2, . . . Xk) ≡ WAND(X1, 1, X2, 1, . . . Xk, 1, k),

and

OR(X1, X2, . . . Xk) ≡ WAND(X1, 1, X2, 1, . . . Xk, 1, 1).

For the purposes of this paper we shall assume that the
goal is simply to sample the set of documents that satis-
fies Equation (2) with Xi indicating the presence of query
term Ti in document d. We note however that the situation
considered in [7] is more complicated: there each term Ti is
associated with an upper bound on its maximal contribu-
tion to any document score, UB i, and each document d is
subject to a preliminary filtering given by

WAND(X1, UB1, X2,UB2, . . . , Xk, UBk, θ),

where Xi again indicates the presence of query term Ti in
document d. If WAND evaluates to true, then the doc-
ument undergoes a full evaluation, hence a document that
matches WAND does not necessarily match the query. We
can deal with this approach by doing a full evaluation on ev-
ery document that we would normally insert into the buffer.
(That is, a document that won the coin toss.) The docu-
ment is then inserted into the buffer only if it passes the full
evaluation. This insures that p is reduced only as needed.
Further refinements considered in [7], such as varying the
threshold θ during the algorithm, are meant to increase the
efficiency of finding the top k results and thus are beyond
the scope of this paper.

3.2 Sampling WAND Results
In the AND example that we saw previously, we can sam-

ple only the rarest term, and hence minimize the total num-
ber of next operations. In contrast, in the OR example,
we must sample the posting lists of all terms. Since the
WAND operator varies between OR and AND, a good
sampling algorithm must handle efficiently both extremes.

Let T be the set of the query terms. We divide it into
two subsets, the set S that contains the terms that must be
sampled, and the set Sc that contains the rest of the terms
in T . In the AND example, the set S contains only the least
frequent term, while in the OR example the set S contains
all the terms.

The first issue is how to select the set S. We will discuss
the optimal way to do it, after discussing the running time
of the algorithm. For the time being, assume that we choose
the set S arbitrarily such that

X

i∈Sc

wi < θ.

Hence S is such that any document that satisfies Equa-
tion (2) must contain at least one term from S. It is easy
to check that the AND and the OR examples expressed
as WAND obey this inequality for their respective choices
of S.

Following the description in Section 2.2, we create pruned
lists for the terms in S (but not for the terms in Sc), and
again as before, a document in the posting list of a term is
included in the pruned list of that term with probability p,
independently of other documents and other terms.

Of course the algorithm does not know p beforehand, so it
initially starts accepting all the documents with some prob-
ability p = p0, maybe p = 1, and it reduces p over time,
using the process described in Subsection 2.3.

The algorithm guarantees that every document that con-
tains at least one term in S has probability at least p to be
selected. If it becomes selected and it satisfies WAND, we
normalize the probability to be exactly p using the rejection
method described in Subsection 2.2. If a document does not
contain any term from S, its total weight is strictly smaller
than θ and, therefore, it does not satisfy WAND.

We now give a high-level description of the sampling al-
gorithm. The details appear in Figure 1; Figure 2 contains
a visual example.

Every term in the set S is associated with a producer,
which is an iterator traversing the pruned list, selecting doc-
uments for evaluation against the query. Furthermore, in
order to perform the evaluation, every term in the query
is also associated with a checker that traverses the original
posting list. At one iteration of the algorithm we advance
the producers that point to the document with the smallest
DID, and some document is selected (with probability p) by
some of them. Then the checkers will determine the terms
that are contained in the document and if the sum of their
weights exceeds the threshold θ, then the document becomes
a candidate to be selected for the sample. Like in the general
approach, the pruned list may exist only at the conceptual
level, and the producers may traverse the original posting
lists and jump over a random number (geometrically dis-
tributed) of documents.

Once a document (whose DID is held in the variable global)
is selected for consideration, we use the checkers to deter-
mine if global satisfies the query. Some checkers point to
documents with DID smaller than global and these are terms
that, as far as we know at this point, might be contained
in the document with DID=global. The algorithm main-
tains an upper bound equal to the sum of the weights of the
terms whose checkers point to a document with DID not
greater than global. As long as the upper bound exceeds the
threshold θ (and therefore global might satisfy the query),

1. Function getWANDSample()
2. /* First some initializations. */
3. curDoc ← 0
4. global ← 0
5. p← 1
6. foreach (term i)
7. checker[i].next(0)
8. foreach (term i ∈ S)
9. producer[i].nextPruned(0)
10.
11. repeat

12. advance global to smallest DID for which
P

i:checker[i]≤global wi ≥ θ

13. if (global < min DID of producers)
14. global ← min DID of producers
15. /* Now at least one producer is ≤ global. */
16. A← {terms i ∈ S s.t. producer[i].DID < global}
17. while (A 6= ∅ && no producer points to global)
18. pick i ∈ A
19. producer[i].nextPruned(global)
20. if (no producer points to global)
21. global ← min DID of producers
22. if (global = lastID)
23. return /* Finished with all the documents */
24. /* Now the global points to a DID that exists in some

pruned list, and such that the accumulated weight
behind it is at least θ. */

25. B ← {terms i ∈ T s.t. checker[i] ≤ global}
26. /* B contains the terms that contribute to the upper

bound */
27. if (global ≤ curDoc)
28. /* document at global has already been considered */
29. pick i ∈ B
30. /* it is probably best to pick an i ∈ B ∩ S */
31. checker[i].next(curDoc + 1)
32. else /* global > curDoc */
33. if (

P

i∈B:checker[i].DID = global wi ≥ θ)

34. /* Success, we have enough mass on global. */
35. curDoc ← global
36. /* We consider curDoc as a candidate. Now we

must count exactly how many posting lists in S
contain global in order to perform the probability
normalization correctly. */

37. foreach (i ∈ S ∩ B s.t. checker[i].DID < curDoc)
38. checker[i].next(curDoc)
39. D← {terms i ∈ S s.t. checker[i] = global}
40. with probability normalizedProbability(|D|)

addToSample(curDoc)
41. else (of line 33)
42. /* Not enough mass yet on global, advance one of

the preceding terms. */
43. pick i ∈ B s.t. checker[i].DID < global
44. /* it is probably best to pick an i ∈ B ∩ S */
45. checker[i].next(global)
46. end repeat

1. Function producer[i].nextPruned(r)
2. X ← Geometric(p)
3. producer[i].jump(r, X)

1. Function normalizedProbability(r)
2. return p/(1− (1 − p)r)

1. Function addToSample(DID)
2. Add DID to the sample
3. /* Let B be the size of the buffer. */
4. while (size of sample = B)
5. /* we should take a smaller sample */
6. p′ ← α · p
7. foreach (i ∈ sample)
8. keep i with probability p′/p
9. p← p′

Figure 1: Sampling WAND.

we advance some term’s checker to the first document with
DID ≥ global. Assume its DID is doc. If doc = global then
the term is contained in global. We continue by advancing
the rest of the checkers that are behind global until either
the total sum of weights of the terms whose checkers are in
positions ≤ global is less than the threshold θ, in which case
the document does not satisfy the query, or until the sum of
the weights of the terms that were found to be contained in
global exceeds the threshold θ, in which case the document
becomes a candidate to be selected for the sample. In the
latter case, the next step is to count the exact number of
terms in S that are contained in the document. Each of
these terms offers a chance to the document to be inserted
to the corresponding pruned list, therefore, by counting the
terms in S that are contained in the document we can ap-
ply the rejection method, described in Subsection 2.2, and
accept the document with the correct probability (i.e., with
probability p).

Notice that the algorithmic description leaves some de-
tails unspecified. For instance, whenever some checker has
to be advanced there is usually more than one choice. The
goal is to select the checker that will advance the farthest
possible, and a simple heuristic is to select the checker of
the most infrequent term. This problem appears in the gen-

eral context of query constraints satisfaction for posting list
iterators and there are more advanced heuristics that try to
guess the best move based on the results seen so far (see [8]
and [4]). In our particular case, at some point during the
execution of the algorithm, there is even more flexibility:
we can either advance a checker or a producer (for example
at line 31 we can advance a producer instead of a checker).
Hence in principle, we can select whether it is better to ad-
vance a producer or a checker, based on our experience so
far and the expected benefit of the choice and, indeed, our
implementation uses this heuristic.

3.3 Running-Time Estimation and the Choice
of the SetS

We now bound the running time of the algorithm, assum-
ing that we know the correct value of the sampling proba-
bility p = k/m. Consider a query with t terms, and recall
that Ni is the total number of documents containing the i-
th term and that wi is the weight of the i-th term in the
WAND operator. In order to obtain an upper bound for
the number of pointer advances, we note that whenever we
advance a checker we advance it to at least past a producer,
since during the execution of the algorithm the document
under consideration (global) has been originally selected by

Term 4

Producer

Checker

22DID

curDoc global

Term 1

Term 2

Term 3

Term 5

Term 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S

Figure 2: An example of the posting lists. A bullet indicates that the term exists in the corresponding
document. A black bullet indicates that the document was sampled (or will be), hence it exists in the pruned
list.

some producer. Therefore the total number of each checker’s
advances is bounded by the total number of producer ad-
vances which is expected to be k

m

P

i∈S
Ni. Therefore the

running time is expected to be

O

„

t
k

m

X

i∈S

Ni

«

. (3)

If the sampling probability is not known in advance, then
in the worst case sampling will not help much. For instance
if the standard search WAND spends a large amount of
time getting the first B matches and then starts producing
matches very fast, the sampling WAND will spend an equal
amount of time until the first decrease of p from 1 to α. This
is of course unlikely but entirely possible.

Hence for the average case we need to assume that the re-
sults are uniformly distributed with respect to DID numbers.
To this end we assume the often-used probability model in
IR, that is, we assume that each document contains the
query terms independently with certain probabilities. In this
case, conditional on a document d containing a term ti ∈ S
there is a fixed probability πi that d satisfies the query. Sim-
ilarly there are fixed probabilities, πi,1, πi,2, . . . , πi,r that d
satisfies the query and contains exactly 1, 2, . . . , r terms from
S. Now consider the first time a document d is selected by a
producer, say for the term ti. Assume that at that time the
sampling probability was p. In view of the above, the proba-
bility that d satisfies the query and also passes the rejection
procedure is

X

j

πi,jp

1 − (1 − p)j
≥

X

j

πi,j

j
= ρi.

On the other hand, in view of Equation (1), we know that
the total number of samples ever inserted in the buffer is
bounded by O

`

k log(m/k)
´

. Hence the number of occur-

rences of the term ti selected by its producer is bounded
by

O

„

k

ρi

log(m/k)

«

,

and therefore the total number of moves (producers and
checkers) is

O

„

tk log(m/k)
X

i∈S

1

ρi

«

= O
`

k log(m/k)
´

, (4)

for any fixed query, and k, m → ∞.
In order to minimize the running time of the algorithm, we

want to select S so that the sum
P

i∈S
ρ−1

i is minimized. Of
course ρi is not known in advance, but it can be estimated
as the query progresses. Another approach, for m � Ni, is
to make the rough estimate ρi ≈ m/Ni. Then Equation (4)
again suggests that a good choice for S is to try to minimize
P

i∈S
Ni.

A simple way to achieve a good selection for S in this vein
is to sort the terms in increasing order of frequencies (and
decreasing order of weights in case of ties), and let

` = min
i

s.t. :
t

X

j=i+1

wj < θ.

Then let S = {1, 2, . . . , `}. Notice that this greedy approach
includes both the examples of AND and OR as special
cases.

The optimal choice for the set S to minimize
P

i∈S
Ni is

obtained by solving the following integer program:

min
X

i∈S

Ni

s.t. :
X

i∈Sc

wi < θ,

or, equivalently,

max
X

i∈Sc

Ni

s.t. :
X

i∈Sc

wi < θ,

which can be interpreted as a Knapsack problem. Since the
values Ni are integral we can solve it exactly in polynomial
(in t and N) time through dynamic programming, but since
we have a small number of terms we can solve it much more
efficiently by brute force. Sometimes we have some flexi-
bility in assigning weights (usually we want terms with low
frequency to have large weight), in which case the greedy
approach will suffice to obtain an optimal solution.

The analysis above is based on minimizing the running-
time upper bound, but the actual running time will usually
be smaller, and will depend on the actual joint distribu-
tion of the query terms that generally changes as the algo-
rithm iterates through the posting lists. In practice we can
achieve better performance by observing the performance of
each producer and dynamically changing the set S as the
algorithm progresses. We want to insert terms that both
produce large jumps and are well correlated with success-
ful samples so that the sampling probability will go down
quickly.

4. EXPERIMENTS
We implemented the sampling mechanism for the WAND

operator and performed a series of experiments to test the ef-
ficiency of the approach as well as the accuracy of the results.
We used the JURU search engine developed by IBM [9].

The data consisted of a set of 1.8 million Web pages, con-
sisting of a total of 1.1 billion words (18 million total distinct
words). Each document was classified according to its con-
tent to several categories. The taxonomy of the categories,
as well as the classification of the documents to categories,
were performed by IBM’s Eureka classifier described in [1].
We used a total of 3000 categories, and each document be-
longed to zero, one, or more categories. Eureka’s taxonomy
contains additionally a number of broader super-categories
that form a hierarchical structure. Although we did not
make use of this structure in our experimental evaluation,
we argue later in this section that it can be used to provide
more meaningful results for the category-suggestion prob-
lem.

In order to estimate the gain in run-time efficiency, we
count the number of times a pointer is advanced (via next or
jump) over the terms’ posting lists. As we argued previously,
the total running time depends heavily on the number of
those advances, since the posting lists are usually stored on
secondary storage and accessing them is the main bottleneck
in the query response time.

We experimented with nine ambiguous queries depicted
in Table 1 chosen to produce results in many different cate-
gories. For each query we created different samples of sizes
k = 50, 200, and 1000. In all the experiments the resampling
probability equals α = 3/4 and the buffer size is B = 2k.
In Table 2 we compare the number of pointer advances for
different sample sizes. Notice that even though the total
number of matching documents is small (in the order of sev-
eral thousands, while the motivation for our techniques is

Query

Q1 Schumacher and (Joel or Michael)
Q2 Olympic and (Airline or Games or Gods)
Q3 Turkey and Customs
Q4 Long and Island and Tea
Q5 Schwarzenegger and (California or Terminator)
Q6 Taxi and Driver
Q7 Dylan and (Musician or Poet)
Q8 Football and (Lazio or Patriots)
Q9 Indian and (America or Asia)

Table 1: The queries that we inserted to the sam-
pling algorithm.

Query Matches No Sampl. 50 200 1000

Q1 587 3275 2627 4297 4561
Q2 5109 31121 4323 12716 31231
Q3 3111 33849 13841 24192 35461
Q4 1111 28604 12120 28547 40151
Q5 407 2497 1532 3278 3314
Q6 1028 6491 3783 6401 7475
Q7 356 3678 3173 4967 4967
Q8 566 8796 5060 8699 9123
Q9 15721 96997 6437 19423 55248

Table 2: Number of pointer advances for the nine
queries. The second column contains the total num-
ber of pages matching each query. The rest of the
columns contain the number of pointer advances
performed without sampling, and for samples of 50,
200, and 1000 pages.

for applying them to queries with result sizes in the mil-
lions) we show a significant gain for small sample sizes. In
order to further establish this point we performed additional
queries using artificially created documents built from ran-
dom sequences of numbers, such that the result sets would
be larger. We present the results in Table 3.

From the two tables it is clear that sampling is justified if
the sampling size k is at least 2 orders of magnitude smaller
than the actual result size m. In this case the total time can
be reduced by a factor of 10, 100, or even more, depending
on the ratio k/m, as well as on the query type. On the other
hand, if k is comparable to m, the overhead of the sampling
(due to more than one pointer for each term) might even
increase the total time.

4.1 Estimating the Most Frequent Categories
of the Search Results

We also evaluated the accuracy of the results, that is, how
well the small sample we produced represented the most fre-

Query Matches No Sampling 10 100

T1 and T2 13011 104087 977 7161
T3 or T4 57046 120102 566 4392
T3 or T4 or T5 62890 134874 715 5351

Table 3: Comparison of pointer advances for queries
performed on artificially created documents with
samples of sizes 10 and 100.

Query 50 200 1000

Q1 10 10 10
Q2 7 10 10
Q3 7 10 10
Q4 4 8 10
Q5 5 10 10
Q6 7 9 10
Q7 7 10 10
Q8 8 10 10
Q9 2 9 10

Table 4: Number of the top-10 frequent categories
that appear in the samples.

Query 50 200 1000

Q1 7 8 10
Q2 6 5 8
Q3 4 6 9
Q4 3 6 10
Q5 3 7 10
Q6 3 4 10
Q7 5 10 10
Q8 7 8 10
Q9 0 3 7

Table 5: Number of the top-10 frequent categories
that appear in the 10 most frequent sample cate-
gories.

quent categories of the matched documents. For that we
consider the same queries of Table 2. Each of these query
results induces a set of categories from the Eureka Taxon-
omy. In order to determine whether the sampling succeeds in
discovering the most frequent categories, we measured how
many of the 10 most frequent categories are found in each
of the sample size, and we present the results at Table 4.

An additional desirable property is for frequent categories
in the result set to be also frequent in the sample so that
we can identify them. For that, we check how many of the
top-10 frequent categories for each query appear also in the
top-10 frequent categories according to the sample, and we
depict the results in Table 5.

There are a few facts worth noticing with respect to the
results of sampling, some which are not revealed in the ta-
bles. First notice that in most cases, even small sample sizes
succeed in sampling documents from the frequent categories
(Table 4) but a somehow larger sample size is needed in
order to ensure that the frequent categories manage to be
popular in the sample as well as depicted in Table 5. It also
seems that a sample of size 1000 is always successful in our
examples, but this is somewhat misleading since in some of
the examples the total number of documents is small, and
therefore the sampling extracts all the original categories.

A final important remark, explains the poor performance
in most of the cases of Table 5, compared with Table 4.
Let us focus, for concreteness, on Q9 (corresponding to the
query “Indian and (America or Asia”). The total number
of matching documents is 15721, and the sample of size 50
fails completely to identify the frequent categories, while the
sample of size 200 also fails to spot out the most frequent
categories in Table 5 (although, notice in Table 4 that it

Match 50 200 1000
Q’ry

Count Est. Err Est. Err Est. Err

Q1 587 562 4.3 597 1.7 587 0
Q2 5109 5388 5.5 5088 0.4 5050 1.1
Q3 3111 2652 14.8 3376 8.5 3150 1.3
Q4 1111 1119 0.7 1150 3.5 1111 0
Q5 407 433 6.4 395 2.9 407 0
Q6 1028 1172 14.0 989 3.8 1028 0
Q7 356 316 11.2 356 0 356 0
Q8 566 545 3.7 596 5.3 566 0
Q9 15721 17028 8.3 15448 1.7 15902 1.2

Table 6: Evaluation of the estimates for the sizes
of the query results. The table shows the actual
value, and for each sampling size the estimate and
the percentage of the error.

does manage to sample some documents related to 9 out of
the 10 frequent categories). This is due to the Eureka cat-
egorization: the 3000 categories used to tag the documents
are very fine, resulting in documents matching very specific
categories. For query Q9, the 15721 matching documents
were found to be related to 1935 categories, from which we
tried to extract the top 10. Each of these categories contains
a number of documents, the most frequent one contains 125
documents, the 10th most frequent contains 54; the accu-
mulated mass in the top 10 categories (sum of the number
of documents contained within the top 10 categories) is 753,
while the total mass is 9404. Therefore, each of the 50 sam-
pled documents, has less than 1% chance to be a document
contained within the top-10 categories, and negligible prob-
ability (0.57%) to be contained within the top 10th category.

The solution to this categorization artifact is straightfor-
ward: after obtaining the samples, we must aggregate the
categories to coarser super-categories according to the tax-
onomy (e.g., the categories Lions, Cheetahs and Monkeys
can be aggregated to Mammals, or Animals). Then the fi-
nal result is a sample of a smaller number of categories each
with a large mass, in which case even a small sample size can
efficiently discover the popular super-categories and present
them to the user. Since the emphasis of our work lies mainly
on the method for sampling, we have not pursued this line
of research any further.

4.2 Estimating the Size of the Result Set
Finally we evaluate the quality of the estimator for the

size of the result set. Table 6 shows the estimates and the
relative errors. We mention again that many commercial
Web search engines fail to provide an accurate estimation
of the number of results. In contrast, notice that for even
the smallest sampling size the error never exceeds 15%, and
usually it is negligible for a sample size greater than 200.

5. SUMMARY
We propose performing sampling on the results of search-

engine queries in order to extract fast summary information
from the ensemble of the results. We can use this informa-
tion as a means of providing feedback to the user in order to
refine his query. We develop a general scheme for performing
the sampling efficiently, and we show how we can increase

the performance for particular implementations. Finally, we
test the efficiency and quality of our methods on both syn-
thetic and real-world data.

There are several issues worth further investigation. First,
for general WAND sampling there are many choices that
might improve the running time, such as the optimal se-
lection of the set S and the selection of the checkers and
producers to advance. One approach inspired by [8], is to
use an adaptive mechanism that keeps track of the effect of
past choices while the query is running. Second, it would
be interesting to understand which classes of queries can
be sampled with a more efficient method than the general
procedure of Section 2.2. In particular simple but common
Boolean combinations, even if expressible as a single WAND,
could probably be sampled more efficiently than either the
general procedure or even the general WAND mechanism.
Third, a model for the average running time for sampling
WAND that allows a rigorous analysis and requires fewer or
no independence assumptions, remains a challenge.

6. ACKNOWLEDGEMENTS
We would like to thank Steve Gates and Wilfried Teiken

for many useful discussions and suggestions, as well as for
providing us with all the experimental set-up (hardware, the
Eureka taxonomy, and the Web crawled data) that allowed
us to perform our experiments. We are indebted to Andrew
Tomkins for his observations regarding an early draft of our
paper and we benefitted from comments received from An-
dreas Neumann, Ronny Lempel, Runping Qi, Jason Zien,
and the anonymous referees.

7. REFERENCES
[1] C. C. Aggarwal, S. C. Gates, and P. S. Yu. On using

partial supervision for text categorization. IEEE
Trans. Knowl. Data Eng., 16(2):245–255, 2004.

[2] E. Amitay, D. Carmel, R. Lempel, and A. Soffer.
Scaling IR-system evaluation using term relevance
sets. In Proceedings of the 27th annual international
conference on Research and development in
information retrieval, pages 10–17. ACM Press, 2004.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In
Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 633–634.
Society for Industrial and Applied Mathematics, 2002.

[4] K. Beyer, A. Jhingran, B. Lyle, S. Rajagopalan, and
E. Shekita. Pivot Join: A runtime operator for text
search. Manuscript, 2003.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. WWW7/Computer
Networks and ISDN Systems, 30:107–117, April 1998.

[6] A. Z. Broder. A taxonomy of web search. SIGIR
Forum, 36(2):3–10, 2002.

[7] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of the Twelfth
International Conference on Information and
Knowledge Management, pages 426–434. ACM Press,
2003.

[8] M. Burrows. Sequential searching of a database index
using costraints on word-location pairs. United States
Patent 5 745 890, 1998.

[9] D. Carmel, E. Amitay, M. Herscovici, Y. S. Maarek,
Y. Petruschka, and A. Soffer. Juru at TREC 10 -
Experiments with Index Pruning. In Proceedings of
the Tenth Text REtrieval Conference (TREC-10).
National Institute of Standards and Technology
(NIST), 2001.

[10] L. Devroye. Non-Uniform Random Variate
Generation. Springer-Verlag, 1986.

[11] D. Fallows, L. Rainie, and G. Mudd. The popularity
and importance of search engines, August 2004. The
Pew Internet & American Life Project,
http://www.pewinternet.org/pdfs/PIP_Data_Memo_

Searchengines.pdf.

[12] M. Fontoura, E. J. Shekita, J. Y. Zien,
S. Rajagopalan, and A. Neumann. High performance
index build algorithms for intranet search engines. In
VLDB 2004, Proceedings of the Thirtieth
International Conference on Very Large Data Bases,
pages 1158–1169. Morgan Kaufmann, 2004.

[13] P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In SPAA ’01:
Proceedings of the thirteenth annual ACM symposium
on Parallel algorithms and architectures, pages
281–291. ACM Press, 2001.

[14] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Zien. How to build
a webfountain: An architecture for very large-scale
text analytics. IBM Systems Journal, 43(1), 2004.

[15] P. J. Haas, J. F. Naughton, and A. N. Swami. On the
relative cost of sampling for join selectivity estimation.
In Proceedings of the Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 14–24. ACM Press, 1994.

[16] K.-H. Li. Reservoir-sampling algorithms of time
complexity o(n(1 + log(n/n))). ACM Trans. Math.
Softw., 20(4):481–493, 1994.

[17] S. M. Muthukrishnan. Data streams: Algorithms and
applications.
http://athos.rutgers.edu/~muthu/stream-1-1.ps.

[18] D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn,
Z. Zhang, W. Fan, and J. Prager. Mining the web for
answers to natural language questions. In Proceedings
of the tenth international conference on Information
and knowledge management, pages 143–150. ACM
Press, 2001.

[19] C. Silverstein, H. Marais, M. Henzinger, and
M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[20] H. Turtle and J. Flood. Query evaluation: Strategies
and optimizations. Information Processing and
Management, 31(6):831–850, 1995.

[21] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, 1985.

[22] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted metadata for image search and browsing. In
Proceedings of the Conference on Human Factors in
Computing Systems, pages 401–408. ACM Press, 2003.

