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Abstract
Exploring large-scale networks is a time consuming and expensive task which is usually operated in
a complex and uncertain environment. A crucial aspect of network exploration is the development
of suitable strategies that decide which nodes and edges to probe at each stage of the process.

To model this process, we introduce the stochastic graph exploration problem. The input is an
undirected graph G = (V,E) with a source vertex s, stochastic edge costs drawn from a distribution
πe, e ∈ E, and rewards on vertices of maximum value R. The goal is to find a set F of edges of total
cost at most B such that the subgraph of G induced by F is connected, contains s, and maximizes
the total reward. This problem generalizes the stochastic knapsack problem and other stochastic
probing problems recently studied.

Our focus is on the development of efficient nonadaptive strategies that are competitive against
the optimal adaptive strategy. A major challenge is the fact that the problem has an Ω(n) adaptivity
gap even on a tree of n vertices. This is in sharp contrast with O(1) adaptivity gap of the stochastic
knapsack problem, which is a special case of our problem. We circumvent this negative result by
showing that O(lognR) resource augmentation suffices to obtain O(1) approximation on trees and
O(lognR) approximation on general graphs. To achieve this result, we reduce stochastic graph
exploration to a memoryless process – the minesweeper problem – which assigns to every edge a
probability that the process terminates when the edge is probed. For this problem, interesting in its
own, we present an optimal polynomial time algorithm on trees and an O(lognR) approximation
for general graphs.

We study also the problem in which the maximum cost of an edge is a logarithmic fraction of
the budget. We show that under this condition, there exist polynomial-time oblivious strategies that
use 1 + ε budget, whose adaptivity gaps on trees and general graphs are 1 + ε and 8 + ε, respectively.
Finally, we provide additional results on the structure and the complexity of nonadaptive and
adaptive strategies.
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1 Introduction

Exploring networked data is a time consuming and expensive task which is also subject to
several limitations. For example, social networks can be explored only through the use of
specific APIs made available by the provider which restrict the number of nodes that can be
probed and limit the number of neighbors of each node that can be discovered with one probe.
The cost and the difficulty of exploring large-scale networks can be an obstacle to collecting
suitable snapshots for the purpose of testing new network analysis tools. The testing is more
often executed on static networks made available in public repositories [18, 17] collected in
the past for other purposes. It is therefore of crucial importance the development of effective
and efficient methods to explore large-scale networks.

The core of a network exploration method is the definition of a probing strategy that
decides which nodes or edges to probe at each stage of the process. Both the edge-probe
and the node-probe models are useful in this setting. In the case of the exploration of social
networks, a node-probing strategy allows to gain knowledge on a subset of the neighbors of
the probed node. In the case of the exploration of the Twitter graph, an edge-probing strategy
allows to gain information on those tweets of a user that are retweeted from his followers.

One main difficulty in the definition of an effective probing strategy is the intrinsic
uncertain nature in terms of cost and probability of success of the process of discovering links
in a network, especially if these links represent complex relationships between nodes. In order
to confirm the existence of a link between two nodes, it may be required to execute several
experiments whose outcome cannot be predicted in advance. Examples are the in-vitro
reactions between proteins needed to discover protein-to-protein interaction networks [22, 6]
or the influence between humans in social networks.

The second main difficulty stems from the adaptive nature of the optimal probing strategy
that needs to be updated from time to time while new parts of the network are discovered.
Adaptive strategies are computationally expensive, given that they must be continuously
updated. In the case of large network exploration, the communication cost of adaptive
strategies is also high since many machines are usually working in parallel at the exploration
process, and the updated strategy must be communicated to the machines participating in
the process. We are therefore interested in devising nonadaptive probing strategies that are
simple and that define the sequence of probes in advance before the process is started. The
obvious drawback is that nonadaptive probing strategies may be suboptimal.

Several recent works [20, 21, 16] have focused on the task of exploring real-world networks
when a limited budget is available. However, these papers do not provide a comprehensive
theoretical study of these problems. In this work we initiated the study of exploring an
undirected network from a root node. The graph has costs on the edges and rewards on the
vertices. A budget limits the total cost of the of the graph edges that are probed.

More formally, the input of the stochastic graph exploration problem is an undirected
graph G = (V,E) with a source vertex s ∈ V , stochastic edge costs C : E → R≥0 distributed
according to πe, e ∈ E, and deterministic rewards of vertices w : V → R≥0. (The model
can be easily extended to rewards distributed according to independent random variables.)
During the graph-exploration process we construct a set of edges F ⊆ E that we probe and
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we traverse. All vertices of the subgraph of G spanned by F must be connected to s via the
edges of F . We probe edges one by one and we add them to F . The actual cost of an edge e,
drawn from the distribution πe, is revealed only when the edge is traversed. The goal is to
maximize the total reward from the vertices spanned by the edge set F while the total cost
of the edges in F remains bounded by a prespecified budget B. As soon as we probe an edge
such that the total cost exceeds B the process terminates.

In the stochastic graph exploration problem, we aim to design simple polynomial-time
computable nonadaptive strategies with a reward as close as possible to the reward obtained
by the optimal adaptive strategy, which decides on the next edge to be traversed after the
cost of all previously traversed edges is revealed (see Section 2 for precise definitions). This
is customary in a class of stochastic optimization problems [4], for which it is common to
bound the adaptivity gap of the nonadaptive strategy.

The stochastic graph exploration problem generalizes some important stochastic opti-
mization problems. If the graph G is a star graph, our problem models exactly the stochastic
knapsack problem [8, 4]. Stochastic knapsack admits an O(1) adaptivity gap, that is, there
exists an optimal nonadaptive strategy, which approximates the optimal adaptive strategy
up to a constant factor. The nonadaptive strategy is devised by exploiting a suitable LP
relaxation for the problem because the standard formulation has an unbounded integrality
gap defined as the worst-case ratio between the optimal integral cost and optimal fractional
cost of the LP. In the LP version of the problem that is used, the costs of the edges are
reduced to their truncated (by the maximum budget) expected costs and the rewards are
also reduced by the probability that the cost of the item is below the maximum budget.

If the network we need to explore is a tree, the stochastic graph problem is a stochastic
knapsack problem with precedence constraints: only a subset of items are available in the
beginning and adding each item to the knapsack will make some new items – the direct
descendants of the explored node – available. Unfortunately, as opposed to the knapsack
problem, the adaptivity gap of the stochastic graph exploration problem that we consider
is unbounded even on a tree network and therefore the LP-based approach of stochastic
knapsack cannot directly be extended.

The stochastic graph exploration problem also models stochastic graph probing problems.
Probing problems in graphs have been introduced [7, 14] because of their applications to
kidney exchange and online dating. Consider a probing probability for each edge p : E → [0, 1],
that is, edge e will materialize with probability p(e) each time is probed, independently of
the other edges and of the previous probes. The goal is to maximize the number of vertices
that are connected to a source vertex s by the set F of edges that have been successfully
probed when the total number of probes is limited by B. Nonadaptive strategies probe a list
of edges in a sequence till success or the total budget B is reached. The stochastic graph
exploration problem we study models the stochastic graph probing problem by setting the
costs of the edges distributed according to Pr(Ce = i) = (1− p(e))i−1p(e), with i being the
number of probes needed to discover edge e.

1.1 Summary of Our Results

Our main contribution is the definition of the stochastic graph exploration problem and
the study of the adaptivity gap of nonadaptive probing strategies. Here is a summary of
our results:

Our first result is an Ω(n) adaptivity gap for the stochastic graph exploration problem
even on a spider graph, which is a tree containing a single node of degree more than two.
(Observe that the problem for a simple path is easy because the optimal strategy will traverse
sequentially the edges of the path starting from the root.)

ICALP 2019
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One first direction we pursue to circumvent the impossibility result is to allow a limited
amount of resource augmentation: instead of using budget B, we allow the algorithm to use a
budget of β ·B, for some value of β. We call an algorithm (α, β)-approximate if it computes
a strategy which uses budget β ·B, and obtains an expected reward of at least 1/α times the
optimal reward (obtained by an adaptive algorithm). We present polynomial time computable
nonadaptive strategies in a graph of n vertices that are (O(1), O(lognR))-approximate for
trees and (O(lognR), O(lognR))-approximate for general graphs, with R being the maximum
reward of a vertex.

The idea is to transform the stochastic exploration problem into a memoryless stochastic
process, which we call the minesweeper problem, and which may be of independent interest.
In the minesweeper problem, the budget and the edge costs are replaced by probabilities
p(e), which are specified for every edge e. When an edge e is probed, the process stops with
probability 1− p(e). Hence, the final reward of a vertex is discounted by the probability that
the strategy does not stop before the vertex is acquired. The minesweeper problem is, in fact,
a special case of stochastic graph exploration, where the support of each πe (distribution of
cost of edge e) is {0, B + 1} and the budget is B.

We prove that an α-approximate strategy for the minesweeper problem implies an
(O(α), O(lognR))-approximate nonadaptive strategy for the stochastic graph exploration
problem. The idea of the reduction is as follows. We construct a minesweeper problem
instance, where p(e) = Pr(πe < XB), where XB is random variable that follows an expo-
nential distribution with parameter B. We first show that, for any subset of edges F , the
probability that their total cost in the stochastic graph exploration is at most B is at most a
constant factor of the probability that minesweeper would stop on this set. On the other
hand, the expected additional reward that can be achieved from minesweeper after the total
cost becomes larger than O(B lognR) is negligible.

We then show how to compute in polynomial time an optimal strategy for the minesweeper
problem on trees and an O(lognR)-approximate strategy on general graphs. These results im-
ply imply an (O(1), O(lognR))-approximate strategy for trees and an (O(lognR), O(lognR))-
approximate strategy for general graphs. To show the optimal result on trees we prove
two facts. First, the order of traversal of the edges in each subtree can be determined
independently. Second, we show a simple optimality condition which helps us determine how
many edges from each subtree should be probed before switching to a different subtree. We
remark that our approach is in a spirit similar to the greedy optimal strategy defined by
the Gittins index [10, 9] for multi-armed bandit problems. However, differently from the
standard setting of the Gittins index, in the minesweeper problem, a whole new set of arms
is made available for each node of the tree reached by the exploration process. Moreover,
in the minesweeper problem, the discount factor is not constant because it depends on the
probability assigned to the traversed edge. This approach is not viable for general graphs,
and we provide an approximate solution instead, by showing a reduction of minesweeper to
max-prize problem [5].

We also pursue a second direction to circumvent the lower bound on the adaptivity
gap for trees: we restrict the distributions by considering the case when the edge costs are
bounded by ε2B

c logn for a suitable constant c. We show, under this condition, the existence of
a polynomial time computable (1 + ε, 1 + ε)-approximate nonadaptive strategy for trees and
(1 + ε, 8 + ε)-approximate nonadaptive strategy for any graph G. We note that this approach
can be extended to prove a result with resource augmentation similar to the one we obtained
through reduction to the minesweeper problem. Yet, we believe that both the minesweeper
problem and the reduction technique can be of independent interest.
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Our final result is related to the problem of finding a nonadaptive probing strategy that
is (o(n), O(1))-approximate. We leave open this challenging problem even for trees. However,
we establish an interesting result for the characterization of nonadaptive strategies. We prove
that any nonadaptive strategy that probes edges in order until it succeeds or until the budget
is exceeded can be (O(1), O(1))-approximated by a set strategy, which probes all edges at
once and obtains a reward only if all edges of a set are successfully probed within budget.
We specifically prove that the adaptivity gap of a nonadaptive strategy can be approximated
up to a factor of 6 by a set strategy that uses budget 9B. We use this result to give an
algorithm for finding a strategy for trees, which is (O(1), O(1))-approximate, compared to
the best nonadaptive strategy. Surprisingly, the resulting strategy is adaptive.

1.2 Related Work
The adaptivity gap of stochastic problems has been studied for the knapsack problem [8, 4]
which is a special case of the problem we study. The adaptivity gap has also been studied
for budgeted multi-armed bandits [19, 12, 11] by resorting to suitable linear programming
relaxation. Differently from previous work on budgeted multi-armed bandit problems, we
consider the setting in which new arms appear after some arms are pulled. Stochastic probing
problems have also been studied for matching [1, 7, 2] motivated from kidney exchange and
for more general classes of matroid optimization problems [14, 15].

The stochastic graph exploration problem we introduce is also related to the stochastic
orienteering problem [3, 13]. In stochastic orienteering, the set of traversed edges must form
a path in a metric graph with deterministic costs on the edges, while the time spent on a
node is a random variable, which follows an a-priori known distribution. In stochastic graph
exploration, the random variables are the costs of the edges of the graph but we cannot
ensure that the costs on the edges form a metric since the random variables are independent.

1.3 Organization of the Paper
In Section 2 we formally define our problems. In Section 3 we show the lower bounds on
the adaptivity gap for stochastic graph exploration. In Section 4 we show our reduction
to the minesweeper problem and our results for stochastic graph exploration with resource
augmentation. In Section 5 we present a near-optimal set strategy for trees. In Section 6 we
present our results for the case of edges of small costs and, finally, in Section 7 we study the
power of resource augmentation for relating the cost of nonadaptive strategies to the cost of
optimal set strategies.

2 Problem Definition

We start by an auxiliary definition. Let G = (V,E), with |V | = n, be an undirected graph
and s ∈ V . We say that a set F ⊆ E is connected to s if F induces a connected subgraph of
G and s is the endpoint of at least one e ∈ F .

Let us now define the StochasticExploration problem (in the following sometimes
abbreviated by SGE). This problem instance is given by a tuple (G, s, C,w), where G is an
undirected graph G = (V,E), s ∈ V is a source vertex, C is a function that assigns stochastic
edge costs to each edge, and w : V → R≥0 is a function that assigns (deterministic) reward
to each vertex.1 And we denote R as the maximum reward of a vertex i.e. R = maxv∈V w(v).

1 The results hold also if the rewards are random variables that are independent of each other and the
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Formally, for each e ∈ E, C(e) is a random variable distributed according to πe that takes
values in R≥0, all random variables C(e) being jointly independent. For an edge (u, v) we
will often denote C(u, v) = C((u, v)).

Consider the following single-player game. The player has an initial budget of B (B = 1
if not specified) and maintains an initially empty subset F of E, which we call the set of
acquired edges. In each step the player can choose an edge e ∈ E \ F and probe it (if F = E,
the game finishes). Probing an edge e is only allowed when F ∪ {e} is connected to s. When
e is probed, the actual cost C(e) of e, drawn from the distribution πe, is revealed. If the cost
e is not greater than the remaining budget, e is acquired (added to F ) and C(e) is subtracted
from the budget. If C(e) exceeds the remaining budget, the game finishes. The goal of the
player is to maximize the final payoff of F , which is the total reward of all vertices in the
subgraph of G induced by F .

Let us now define the MineSweeper problem, which we often abbreviate to MS. This
problem is defined by a tuple (G, s, p, w), where G is an undirected graph, s ∈ V is a
start vertex, p : E → [0, 1] is a function that assigns to each edge e the probability that
e materializes and w : V → R≥0 is a function that assigns (deterministic) reward to each
vertex. The only difference between MS and SGE is in how edges are probed. There are no
edge costs or budget. Instead, whenever an edge e is probed, it materializes (independently
of the other edges) with probability p(e) and is acquired immediately. If the edge does
not materialize, the process ends immediately. Note that as in SGE, probing an edge e is
only allowed when F ∪ {e} is connected to s. Note that the MineSweeper problem is a
special case of the StochasticExploration problem, by letting, for each edge e, πe be
the distribution in which with probability p(e) we obtain the value 0 and with probability
1− p(e) the value B + 1.

We consider the following types of strategies for both problems:
An adaptive strategy is a mapping from the set of already acquired edges (and the
remaining budget, in the case of SGE) to the next edge to be probed.
A nonadaptive strategy, also called a list strategy, is described by a sequence e1, . . . , ek
consisting of distinct elements of E, such that for each 1 ≤ i ≤ k, the set {e1, . . . , ei} is
connected to s. In this strategy, the edges are simply probed according to their order in
the sequence.
A set strategy is a nonadaptive strategy with the additional restriction that it does not
obtain any payoff if it does not acquire all edges from the list.2

For a strategy S for SGE, we denote by r(ISGE, S,B) the expected payoff of strategy S for
the SGE problem instance ISGE = (G, s, C,w) with initial budget of B, which is the expected
reward of the set of nodes in the returned solution. When B = 1 we sometimes omit the
third argument of r(·). Similarly, we denote by rMS(IMS, S) the expected payoff of strategy
S for the MS problem instance IMS. We call a strategy S optimal for I with budget B, if
for all strategies S′, r(I, S,B) ≥ r(I, S′, B). Let OPTad be the optimal adaptive strategy
for the SGE problem and OPTna be the optimal nonadaptive strategy. We call a strategy
S α-approximate, if for each instance I, r(I, S) ≥ 1/α · r(I,OPTad). Finally, an algorithm
ALG is (α, β)-approximate if for any instance I it computes a α-approximate strategy by
using a β factor resource augmentation, i.e. r(I,ALG(I), β ·B) ≥ 1/α · r(I,OPTad, B).

edge costs. It suffices to replace each reward with its expected value.
2 Note that we abuse earlier definitions slightly for the sake of simplicity.
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u2

C(s,ui) =

{
2−i, w.p. 1− 1

ℓ

0, otherwise

v2 vi

u1

v1

ui uℓ

vℓ

s

C(ui,vi) = 1−2−i+2−(ℓ+1), w.p. 1

w(ui) = 0

w(vi) = T

Figure 1 An instance in which the optimal adaptive strategy obtains a payoff which is Ω(n)
larger than the payoff of the optimal nonadaptive strategy.

3 Lower Bounds

In this section we prove a lower bound on the adaptivity gap of StochasticExploration.
Namely, we show an instance ILB = (G, s, C,w) such that r(ILB ,OPTad)/r(ILB ,OPTna) =
Ω(n), where OPTad and OPTna denote the optimal adaptive and nonadaptive strategies.

The instance ILB is shown in Figure 1. The graph G contains the set of nodes
{s, u1, u2, . . . , u`, v1, . . . , v`}, and the set of edges (s, ui) and (ui, vi) for each i ∈ [`]. For each
i ∈ [`] we set w(ui) = 0, w(vi) = T , C(s, ui) = 2−i with probability 1− 1/l and 0 otherwise,
and C(ui, vi) = 1− 2−i + 2−(`+1) with probability 1.

I Lemma 1. Let OPTad and OPTna denote the optimal adaptive and nonadaptive strategies
for instance ILB. Then, r(ILB ,OPTad)/r(ILB ,OPTna) = Ω(n).

One natural approach for StochasticExploration instance is to replace the stochas-
tic edge costs with the truncated expected costs, that is, set the cost of an edge e to
E[min{1, C(e)}]. However as this following example illustrates this approach does not lead
to a good solution, even if constant budget augmentation is allowed.

I Lemma 2. Let OPTad denote the optimal adaptive strategy for an instance I and let n
be the number of vertices in the instance. Let OPTna be the optimal nonadaptive strategy
computed on instance ITR obtained from I by setting edge costs E[min{1, C(e)}], e ∈ E.
Assume the nonadaptive algorithm is allowed to use a budget of 1 < c < n/10. Then, there
exists an instance I such that r(I,OPTad)/r(ITR,OPTna) = Ω(n/22c).

4 The General Case and the Minesweeper Problem

In this section we describe algorithms for solving StochasticExploration, which use
logarithmic budget augmentation. We first show how to reduce an instance of SGE to
MineSweeper and then present solutions for MineSweeper on trees and general graphs.
During the description of the reduction we also introduce the logarithmic budget augmentation.
First, we observe that in the MineSweeper problem we do not have budget so there is no
history that an algorithm may have to remember, except for the edges that it has probed
(and succeeded). This implies the following:

I Observation 1. There exists an optimal strategy for the MineSweeper problem that is
nonadaptive.

ICALP 2019



136:8 Stochastic Graph Exploration

4.1 Reduction from StochasticExploration to MineSweeper

In this section we show how, given an instance ISGE = (G, s, C,w) of StochasticExplo-
ration, we transform it to an instance IMS = (G, s, p, w) of MineSweeper. The graph and
the rewards remain the same; the challenge is to define the correct edge probability function
p(·) for MS and relate it to the cost function C(·) of SGE. For each edge e′ we transform the
cost distribution C(e′) to the probability that the edge materializes, p(e′) (a scalar). Let Xe′

be a random variable distributed according to the exponential distribution with parameter 1,
let ce′ be the cost, which is distributed according to C(e′), and we set p(e′) = Pr(Xe′ > ce′).
Next we show how this choice couples the two problems.

First, we show that for any subset of edges F the probability that their total cost in
SGE is at most 1 is at most a factor e times of the probability that all the edges in F

materialize, and therefore MS does not stop on this set. Let EF be the event that all the
edges in F materialize and GF the event that

∑
e′∈F ce′ ≤ 1. The following lemma makes

use of properties of the exponential distribution.

I Lemma 3. For any F ⊆ E we have that Pr(GF ) ≤ e ·Pr(EF ).

This lemma allows us to prove the following lemma, which gives a strategy for MS that
is competitive with the optimal adaptive strategy for SGE. The idea behind the proof is to
define a strategy for MS in such a way that we can couple the execution of the two strategies
in the corresponding problems.

I Lemma 4. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Let OPTad denote the optimal adaptive strategy
for SGE and OPTMS the optimal strategy for MS. We have that

r((G, s, C,w),OPTad, 1) ≤ e · rMS((G, s, C,w),OPTMS).

Recall from Observation 1 that the optimal strategy for the MineSweeper problem is
nonadaptive, therefore it can be specified by a list of edges that are selected sequentially
until for one of them there is a failure. Let OPTMS be such an optimal sequence of edges.
Next we show that the sequence of edges OPTMS can provide an approximate result to the
StochasticExploration problem if we allow for some budget augmentation.

I Lemma 5. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Let OPTMS be the optimal sequence of edges for
the MineSweeper instance, and let S be the (nonadaptive) strategy for StochasticEx-
ploration that probes the same edges, in the same order. Then we have that

r((G, s, C,w), S, 2 ln(nR)) ≥ rMS((G, s, C,w),OPTMS)− o(1),

where R = maxv∈V w(v).

Collecting the results of Lemmas 4 and 5 we obtain the following theorem.

I Theorem 6. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Then

r((G, s, C,w),OPTna, 2 ln(nR)) + o(1) ≥ rMS((G, s, C,w),OPTMS) ≥ r((G, s, C,w), 1,OPTad)
e

.
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4.2 MineSweeper on Trees
We show that the minesweeper problem on trees can be solved optimally in near-linear time.

I Theorem 7. Consider the instance I = (T, s, p, w) of the minesweeper problem, where
T is a tree. The optimal strategy, OPTMS, for MineSweeper on T can be computed in
O(n logn) time, where n is the number of vertices of T .

The algorithm is surprisingly simple and based on a greedy approach. We define the
utility of an edge to be the expected payoff from probing it, divided by the probability that
the edge does not materialize. The algorithm is based on two observations. First, we observe
that if there is a node x in the graph with a single child y and the utility of the edge xy is
larger than the utility of the edge connecting x and its parent, then without loss of optimality
we can assume that the edge xy is probed right after the edge connecting x and its parent,
so we can merge these two edges into a single one. Second, if there is a node x, such that one
can probe all edges in the subtree of x in the order of decreasing utilities (and not violate
the constraint that an edge can be probed only after one of its endpoints has been acquired)
then one can replace the entire subtree of x with a line, which is a subtree imposing the
concrete order of probing edges. It turns out that by using both these rules one can find the
optimal order of probing edges efficiently.

We obtain the algorithm by generalizing some existing results from the area of scheduling.
At the same time our analysis is arguably simpler. We give the proof of Theorem 7 in the
full version of the paper.

4.3 MineSweeper on general graphs
In this section we present an algorithmic solution to Minesweeper for general graphs, which
provides a bicriteria approximation for our problem. We prove the following theorem.

I Theorem 8. Consider the instance I = (G, s, p, w) of the minesweeper problem, where
G = (V,E) is an undirected graph. An O(lognR)-approximate strategy can be computed in
polynomial time.

In the following we provide a sketch of the proof. Assume that the optimal solution is
the sequence of edges S∗ = (e1, . . . , ek). We first observe that the edges in S∗ must form
a tree. DefineM(E′) to be the event that all the edges in the set E′ materialize. Also let
w(e1, . . . , ei) =

∑i
j=1 w(ei). Then S∗ is a sequence that maximizes

O∗ =
k∑
i=1

Pr(M({e1, . . . , ei}),¬M({ei+1)})) · w(e1, . . . , ei) .

For ` = 0, 1, . . . , lnnR, define I(`) to be all values j such that w(e1, . . . , ej) ∈ [2`, 2`+1−1],
and ι(`) to be the smallest such j.

We can write after some manipulations:

O∗ ≤
lnnR∑
`=0

2w(e1, . . . , eι(`)) ·Pr
(
M({e1, . . . , eι(`))}

)
≤ 2 ln(nR) · w(Ẽ) ·Pr

(
M(Ẽ)

)
,

with Ẽ ⊂ E being the set of edges that defines a tree that contains s and maximizes
w(Ẽ) · Pr

(
M(Ẽ)

)
. Therefore, our goal becomes that of finding that set of edges Ẽ that

forms a tree and maximizes w(Ẽ) ·Pr
(
M(Ẽ)

)
.
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For this purpose, we use the problem of max-prize tree. In the max-prize tree [5] we are
given an undirected graph G = (V,E) with a source vertex s ∈ V , (deterministic) edge costs
c : E → R≥0, deterministic rewards on the vertices w : V → R≥0, and a budget B ∈ R. The
objective is to build a subgraph G′ = (V ′, E′) of G such that (1) G′ is a tree, (2) s ∈ V ′, and
(3)

∑
e∈E′ c(e) ≤ B, that maximizes

∑
v∈V ′ w(v).

We use for our approximation the 8-approximation algorithm for the max-prize–tree
problem given by Blum et al. [5].

5 Approximating Set Strategy on Trees

In this section we show an algorithm for computing a strategy for trees, which is (1, 1 + ε)-
approximate compared to the optimal set strategy. The strategy itself is adaptive.

I Lemma 9. Let I = (G, s, C,w) be a SGE instance, where G is a tree. Let OPTset be the
optimal set strategy for I. Then, in O(n4/ε2) time we can compute an adaptive strategy S,
such that r(I, S, 1 + ε) ≥ r(I,OPTset, 1). Moreover, if edge costs are not stochastic, that is,
the support of each distribution πe has size 1, the algorithm runs in O(n3/ε) time and the
resulting strategy is not adaptive.

We briefly describe the ideas behind the algorithm. Consider the instance I = (T, s, C,w),
where T is a tree. We root the tree at s and assume an order on the children of each node.
Consider the sequence P = 〈e1, . . . , en〉 of the tree edges built with the following recursive
algorithm. Given a node of T , iterate through its descendant edges (according to their order)
and for each such edge output it and recur on the other endpoint. This traverses the tree in
a preorder fashion. We define ≺ to be the linear order on the edges of T induced by this
traversal. In the following, we assume that the edges are ordered according to ≺, for example,
by a maximal element of a set of edges, we mean the edges that is largest according to ≺.

We say that a subset A of edges of T is feasible, if each edge e ∈ A is either incident to
the root of T , or the parent edge of e also belongs to A. Observe that given sufficient budget,
a strategy can acquire any feasible set of edges of T . This follows from the fact that for each
edge e of T , its parent comes before it in P . Our algorithm will probe some feasible set of
edges according to the order ≺, that is, after probing an edge e it will not probe any edge f
such that f ≺ e.

The algorithm for computing our strategy is based on dynamic programming. A simple
and inefficient approach is to use an exponential number of states. Namely, each state can be
characterized by the set of edges acquired so far, denoted by A, and the remaining budget,
which we discretize to a multiple of ε/n. Knowing the set A allows us to find all such edges
e that A ∪ {e} is a feasible set and e comes after the maximal element of A in the order ≺.
The key idea is that we can improve the number of states to polynomial, by taking advantage
of the following property of the ordering ≺.

I Lemma 10. Let A be a nonempty feasible set of edges of T and let e be the maximal edge
of A. Given e (and without knowing A) we can compute the set Fe of all edges f such that
e ≺ f and A ∪ {f} is a feasible set.

6 Bounded Edge Costs

In this section, we deal with the special case of StochasticExploration, where the cost
of each edge is bounded by O( ε2

lnn ) and the ratio between the smallest and largest reward R
is polynomial in n. We prove that in this setting a (O(1), 1 + ε) strategy for SGE can be
computed in polynomial time.
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I Theorem 11. Let I = (G, s, C,w) be an instance of SGE, where C(e) = O( ε2

lnn ) (for each
edge e and some 0 < ε = O(1)), R ≤ εnO(1), and the smallest reward is 1. Then, in polynomial
time, we can compute a nonadaptive (O(1), 1 + ε)-approximate strategy for I. Additionally,
if G is a tree, then in time O(n3/ε) we can compute a nonadaptive (1 + ε, 1 + ε)-approximate
strategy for I.

To prove the theorem, we consider the following strategy. We replace the stochastic edge
costs with their expected values (i.e., the edge cost distributions in the modified instance
have size 1). Then, we show that the optimal set strategy using budget augmented by a
factor of 1 + ε gives a (1 + ε)-approximate solution.

For ease of notation, we scale the edge costs and the budgets by a factor of Θ(ε2/ lnn),
so that the edge costs are bounded by 1 and the available budget is B = O(ε2/ lnn).

First, we bound the payoff of an adaptive strategy when the expected cost of its acquired
edges is more than B · (1 + ε). Let µe = E[C(e)], and µ(F ) =

∑
e∈F µe.

I Lemma 12. Let 0 < ε < 1/3 and let I = (G, s, C,w) be an instance of SGE, in which
B ≥ 5c/ε2 ·lnn. Let F be a set of edges acquired by some adaptive strategy. If µ(F ) ≥ (1+ε)·B
then the probability that C(F ) ≤ B is at most n−c.

Next, we show that if the expected cost of some set of edges is close to the budget, then
this cost is highly concentrated around the expected value. This enables us to give a set
strategy with small budget augmentation.

I Lemma 13. Let I = (G, s, C,w) be an instance of SGE. For any set of edges F and any
B̃ ≥ 5c/ε2 · lnn, if µ(F ) = B̃ then the probability that C(F ) ≥ (1 + ε)B̃ is at most n−c.

I Lemma 14. Let I = (G, s, C,w) be an instance of SGE, where B ≥ 5c/ε2 lnn, the
maximum reward R satisfies R ≤ εnc−1, and the minimum reward is 1. Let Ie be obtained
from I by replacing each edge cost with its expected value. Let OPTεset be the optimal set
strategy using budget (1+ ε)B for Ie and OPTad be the optimal adaptive strategy using budget
B for I. Then, (1 + ε)r(I,OPTεset, (1 + ε)B) ≥ r(I,OPTad, B).

Observe that finding the optimal set strategy on Ie is NP-hard, as it generalizes the
knapsack problem. However, it becomes tractable, if we augment the budget. In particular,
for trees, we use the algorithm of Lemma 9, and for general graphs, in Section 4.3, we show
how to use the solution of the max-prize problem.

7 Nonadaptive strategies

In this section we consider nonadaptive strategies for the stochastic exploration problem.
The main result of this section is that, for the graph exploration problem, that there exists a
set-strategy with a constant budget augmentation, which is a constant competitive compared
to the best nonadaptive algorithm. Recall that, a set-strategy is to choose a set of edges
(without an internal order) and to try to probe all of the edge in that set. The gain of
strategy for a set of edges, is non-zero only if the entire set was successfully probed (i.e., if
the total cost of the set is smaller than the budget), and then it collects the rewards of all
the vertices connected to this set. Therefore, the expected gain of set-strategy given a set
of edges, is the total gain of vertices spanned by these edges times the probability that the
total cost of these edges would not be greater than the specified budget.

First, we are able to show how much is the increment in the probability to successfully
probe a set, when using a constant budget augmentation.
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7.1 Power of Budget Augmentation
Let S = {e1, e2, . . . , en} be a set of edges and let ci , C(ei). Define Cnk =

∑n
i=k ci the

realized cost of the subset of the edges {ek, . . . en} and, for ease of notation, let Cj = Cj1 .
For any i ∈ [n] let Pi(a) be the probability that the sum of cost of the edges {e1, . . . ei} is at
most a, that is, Pi(a) = Pr

(
Ci ≤ a

)
.

The next lemma will allow us to take advantage of budget augmentation.

I Lemma 15. Assume that for each edge ei, i ∈ [n] we have ci ∈ [0, 1]. Then

Pn(3) ≥ Pn(1) (1− ln(Pn(1))) .

Interestingly, the multiplicative factor increases as the probability to succeed with the
original budget decreases. We will use this fact, but to compare to a list-strategy we need
stronger guarantees, we simply use the above lemma twice and deduce the following.

I Corollary 16.

Pn(9) ≥ Pn(1)(1− ln(Pn(1)))2

2

7.2 List Strategy vs. Set Strategy
Now, we are ready to prove the main claim of this section, that we are able to compare the
strategies using a budget augmentation. Consider an SGE problem instance I = (G, s, C,w).
Let Sls = 〈e1, . . . , en〉 be a nonadaptive strategy (a feasible sequence of edges) and let vi
denote the vertex whose reward is obtained when ei is acquired. The expected payoff of
probing the list with budget B(≥ 1) is by linearity of expectation:

r(I,Sls, B) =
n∑
j=1

w(vj) ·Pr
(
Cj ≤ B

)
.

Given a non-adaptive strategy Sls = 〈e1, . . . , en〉, consider n different set strategies Sk,
for k = {1 . . . n}, where Sk = {e1, . . . ek}. Note that the expected payoff of Sk with budget
9 ·B is

r(I, Sk, 9B) = Pr
(
Ck ≤ 9B

)
·
k∑
j=1

w(vj).

Finally, we show that there exists k ∈ {1, . . . , n} such that the set strategy Sk with
budget 9B obtains a constant fraction of strategy Sls.

I Lemma 17.

max
k
{r(I, Sk, 9B)} ≥ 0.46 · r(I,Sls, B).

7.3 Algorithm for Trees
By combining Lemma 17 with the algorithm of Lemma 9, we obtain the following.

I Theorem 18. Let I = (G, s, C,w) be a SGE instance, where G is a tree. Let OPTna be
the optimal nonadaptive strategy for I. Then, in O(n4/ε2) time we can compute an adaptive
strategy S, such that r(I, S, 9 + ε) ≥ 0.46 · r(I,OPTna, 1).
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8 Conclusions

In this work we have introduced the stochastic exploration problem on graphs which gener-
alizes the stochastic knapsack problem [8, 4]. We proved that, differently from stochastic
knapsack, no o(n) adaptivity gap is possible unless we allow some resource augmentation on
the budget. We provided algorithms with bounded adaptivity gap and logarithmic resource
augmentation by reducing stochastic exploration to a related memoryless problem – the
minesweeper problem. We also considered the case of edges with small costs for which it is
possible to provide an algorithm with O(1) adaptivity gap and O(1) resource augmentation.
The most challenging problem left open from our work is the one of devising an algorithm
with O(1) approximation factor that uses only O(1) resource augmentation for general graphs.
The problem is open even for trees. We provided a set of additional results on the structure
of optimal adaptive strategies and on the power of resource augmentation for set strategies
with respect to list strategies that can help in addressing this problem.
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