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Abstract
We investigate opinion dynamics in multi-agent
networks when there exists a bias toward one of
two possible opinions; for example, reflecting a
status quo vs a superior alternative. Starting with
all agents sharing an initial opinion representing
the status quo, the system evolves in steps. In
each step, one agent selected uniformly at random
adopts with some probability α the superior opin-
ion, and with probability 1−α it follows an under-
lying update rule to revise its opinion on the basis
of those held by its neighbors. We analyze the con-
vergence of the resulting process under two well-
known update rules, namely majority and voter.
The framework we propose exhibits a rich struc-
ture, with a nonobvious interplay between topology
and underlying update rule. For example, for the
voter rule we show that the speed of convergence
bears no significant dependence on the underly-
ing topology, whereas the picture changes com-
pletely under the majority rule, where network den-
sity negatively affects convergence. We believe that
the model we propose is at the same time simple,
rich, and modular, affording mathematical charac-
terization of the interplay between bias, underlying
opinion dynamics, and social structure in a unified
setting.

1 Introduction
Opinion formation in social groups has been the focus of ex-
tensive research. Whereas many models considered in the lit-
erature confer the same intrinsic value to all opinions [Coates
et al., 2018], one might expect a group to quickly reach con-
sensus on a clearly “superior” alternative, if present. Yet, phe-
nomena such as groupthink may delay or even prevent such
an outcome.

In this perspective, we investigate models of opinion for-
mation in which a bias towards one of two possible opinions
exists, for instance, reflecting intrinsic superiority of one al-
ternative over the other.1 In the remainder, we use labels 0 and

1Characterizing the notion of “superiority” is typically context-

1 for the two opinions and we assume that 1 is the dominant
opinion, that is, the one towards which the agents have a bias.
We investigate this question in a mathematically tractable set-
ting, informally described as follows.

Assume some underlying opinion dynamics D. Starting
from an initial state in which all agents share opinion 0, the
system evolves in rounds. In each round, one agent is se-
lected uniformly at random. With some probability α, the
agent adopts 1, whereas with probability 1−α, the agent fol-
lows D to revise its opinion on the basis of those held by its
neighbors in an underlying network.

Although the general model that we consider is simple and,
under mild conditions onD, the family of processes that it de-
scribes always admits global adoption of opinion 1 as the only
absorbing state, convergence to this absorbing state exhibits a
rich variety of behaviors, which depends in nonobvious ways
on the interplay between the network structure and the under-
lying opinion dynamics. The relatively simple, yet general,
model that we consider allows analytical investigation of the
following question:

How does a particular combination of network
structure and opinion dynamics affects conver-
gence to global adoption of the dominant opinion?
In particular, how conducive is a particular combi-
nation to rapid adoption?

1.1 Main Findings
In general, the interplay between underlying network struc-
ture and opinion dynamics may elicit quite different collec-
tive behaviors. In Section 4, we show that the expected time
for consensus on the dominant opinion grows exponentially
in the minimum degree under the majority update rule, in
which agents update their opinion to the majority opinion
in their neighborhoods [Krapivsky and Redner, 2003]. Us-
ing asymptotic notation and denoting the number of agents
in the network by n, we obtain that the convergence time is
super-polynomial in expectation whenever the minimum de-
gree is ω(log n). One might wonder, whether the converse
occurs, namely, whether a logarithmic maximum degree al-
lows to obtain (expected) polynomial convergence time to the

dependent and may be far from obvious. We remark that this aspect
is outside the scope of this paper.
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absorbing state. Even though we prove that this is indeed the
case for specific topologies such as cycles or restricted graph
families, this does not seem to hold in general (see discus-
sion in Section 6). The results for majority are at odds with
those we obtain in Section 5 for the voter model, where agents
copy the opinion of a randomly selected neighbor [Liggett,
2012]. In this case, convergence to the absorbing state occurs
withinO

(
1
αn log n

)
rounds with high probability, regardless

of the underlying network structure. We emphasize that con-
vergence time remainsO

(
n1+s log n

)
when α = Θ

(
1
ns

)
for

any s > 0. Although results suggesting a negative impact
of network density on convergence time have been proposed
in the past, albeit for quite different models (e.g., [Montanari
and Saberi, 2010]), the results above suggest that there might
be more to the issue. In particular, the interplay between opin-
ion dynamics and underlying network structure seems more
complex than anticipated, with the former playing a key role
in amplifying network effects. At a higher level, we provide
a simple mathematical framework to investigate the interplay
between opinion dynamics and underlying network structure
in a unified setting, allowing comparison of different update
rules with respect to a common framework. In this respect,
we hope that our work moves in the direction of a shared
framework to investigate opinion dynamics, as advocated in
[Coates et al., 2018].

2 Related Work
The problem we consider touches a number of areas where
similar settings have been considered, with various motiva-
tions. The corresponding literature is vast and providing an
exhaustive review is infeasible here. In the paragraphs that
follow, we discuss contributions that relate most closely to
the topic of this paper.

2.1 Opinion Diffusion and Consensus
Opinion dynamics are widely used to investigate how a group
of agents modify their beliefs under the influence of other
agents and possibly exogenous factors. A number of models
have been proposed in the more or less recent past, mostly
motivated by phenomena that arise in several areas, ranging
from social sciences, to physics and biology. We refer the
reader to [Coates et al., 2018] and references therein for a
recent, general overview of opinion dynamics in multi-agent
systems. A first distinction is between settings in which the
set of possible beliefs is continuous, for instance, the interval
[0, 1]. This setting has been the focus of extensive research in
social sciences and economics [DeGroot, 1974; Friedkin and
Johnsen, 1990; Friedkin and Bullo, 2017]. In this paper, we
consider the case in which opinions are drawn from a discrete
set, a setting that also received significant attention in the re-
cent past. In particular, we focus on the majority rule and the
voter model. Investigation of the majority update rule origi-
nates from the study of agreement phenomena in spin systems
[Krapivsky and Redner, 2003]. The voter model was moti-
vated by the study of spatial conflict between species in bi-
ology and interacting stochastic processes/particle systems in
probability theory and statistics [Clifford and Sudbury, 1973;
Holley et al., 1975; Liggett, 2012]. These two models have

received renewed attention in the recent past, the focus mostly
being on the time to achieve consensus and conditions under
which consensus on one of the initial opinions is achieved
with a minimum degree of confidence. The voter model is by
now well understood. In particular, increasingly tight bounds
on convergence time for general and specific topologies
have been proposed over the past [Hassin and Peleg, 1999;
Cooper et al., 2013], and it is known that the probability of
one particular opinion to prevail is proportional to the sum of
the degrees of the nodes holding that opinion at the onset of
the process [Donnelly and Welsh, 1983].

2.2 Consensus and Network Structure
Network structure has been known to play an important role
in opinion diffusion and influence spreading for quite some
time [Morris, 2000], under a variety of models. For ex-
ample, consensus under the voter model and dependence of
its convergence on the underlying network topology have
been thoroughly investigated [Donnelly and Welsh, 1983;
Hassin and Peleg, 1999; Cooper et al., 2013]. For major-
ity dynamics, [Auletta et al., 2015] characterized topolo-
gies for which an initial majority can be subverted, show-
ing that this is possible for all but a handful of topologies,
including cliques and quasi-cliques. On the other hand, re-
gardless of the network, there is always an initial opinion
distribution, such that the final majority will reflect the ini-
tial one, whereas computing an initial opinion configuration
that will subvert an initial majority is topology-dependent
and NP-hard in general [Auletta et al., 2018]. A num-
ber of recent contributions investigated (among other as-
pects) the relationship between network structure and con-
sensus in opinion formation games [Ferraioli et al., 2016;
Ferraioli and Ventre, 2017] and [Auletta et al., 2019] inves-
tigated extensions of the Friedkin-Johnsen model to evolving
networks.2 Even though a high expansion of the underlying
graph typically accelerates convergence [Cooper et al., 2012;
Kanade et al., 2019] in many opinion dynamics, some recent
work explicitly points to potentially adverse effects of net-
work structure on the spread of innovation, at least in scenar-
ios where opinion updates occur on the basis of private utili-
ties that reflect both the degree of local consensus and intrin-
sic value of the competing opinions [Montanari and Saberi,
2010; Young, 2011]. Although some of our findings are
qualitatively consistent with previous work albeit under com-
pletely different models (in particular, [Montanari and Saberi,
2010]), our overall approach is very different, because it com-
pletely decouples the mechanism of opinion formation from
the modeling of the bias, allowing for a clear-cut mathemati-
cal characterization of the interplay between bias, underlying
opinion dynamics, and network structure.

2.3 Different Forms of Bias
Prior literature has studied the presence of bias in opinion
dynamics. We briefly review contributions that are at least
loosely related to our framework. For the voter and majority
update rules, [Mukhopadhyay et al., 2016] introduces bias

2For the sake of space, we are limiting to recent contributions
that are more closely related to the topics of this study.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

54



in the form of different, opinion-dependent firing-rate fre-
quencies of the Poisson clocks that trigger agents’ opinion
updates, implicitly enforcing a bias toward the opinion with
lower associated rate. Although different, their model is sim-
ilar to ours in spirit and some of their results for the voter
model are consistent with ours. Yet, these results apply only
in expectation and to very dense networks with degree Ω(n),
whereas our results for the voter model hold for every undi-
rected graph. A somewhat related line of research addresses
the presence of stubborn agents or zealots. Loosely speak-
ing, stubborn agents have a bias toward some (initially or cur-
rently) held opinion, and zealots are agents that never deflect
from some initial opinion. Restricting to the discrete-opinion
setting, which is the focus of this paper,3 the role of zealots
and their ability to subvert an initial majority have been inves-
tigated for the voter model (see [Mobilia, 2003] and follow-
up work), and [Auletta et al., 2017] investigates majority dy-
namics in the presence of stubborn agents that are biased to-
ward the currently held opinion, providing a full character-
ization of conditions under which an initial majority can be
subverted.

3 Notation and Preliminaries
Let G = (V,E) be an undirected graph with |V | = n nodes,
each representing an agent. Without loss of generality, we
assume that V = [n] := {1, . . . , n}. The system evolves
in discrete time steps4 and, at any given time t ∈ N, each
node v ∈ V holds an opinion x(t)

v ∈ {0, 1}. We use the term
opinion liberally here, in the sense that 0 and 1 in general
represent competing alternatives, whose meaning is context-
dependent and outside the scope of this paper. We denote
by x(t) =

(
x

(t)
1 , . . . , x

(t)
n

)ᵀ
the corresponding state of the

system at time t. We assume that the initial state of the system
is x(0) = 0 = (0, . . . , 0)ᵀ; such assumption is discussed in
Section 6. For each v ∈ V , we denote the neighborhood of
v with Nv := {u ∈ V : {u, v} ∈ E} and the degree of v
with dv := |Nv|. Finally, ∆ := minv∈V dv is the minimum
degree of the nodes in G.

Our framework assumes that agents exhibit a bias toward
one of the opinions (e.g., reflecting intrinsic superiority of a
technological innovation over the status quo), without loss of
generality 1, which we henceforth call the dominant opinion.
We model bias as a probability, with a parameter α ∈ (0, 1].
All dynamics we consider are Markovian, that is, given the
underlying graph G, the distribution of the state x(t) at round
t depends only on the state x(t−1) at the end of the previous
round. Moreover, they have x = 1 = (1, . . . , 1)ᵀ as the
only absorbing state. We use τ to denote the absorption time,
which is the number of rounds for the process to reach the
absorbing state 1. Finally, for a family of events {En}n∈N we
say that En occurs with high probability (w.h.p., in short) if a
constant γ > 0 exists such that P(En) = 1 − O(n−γ), for

3For the continuous case, there is a vast literature; see the seminal
paper [Friedkin and Johnsen, 1990] and follow-up work.

4This is equivalent to the asynchronous model in which a node
revises its opinion at the arrival of an independent Poisson clock
with rate 1 [Boyd et al., 2006].

every sufficiently large n.

4 Absorption Time for Majority Dynamics
In this section, we investigate the time to reach consensus on
the dominant opinion under the majority update rule. For-
mally, we study the following random process: Starting from
the initial state x(0) = (0, . . . , 0)

ᵀ, in each round t a node
u ∈ [n] is chosen uniformly at random and u updates its value
according to the rule

x(t)
u =

{
1 with probability α,
MG(u,x) with probability 1− α,

where α ∈ (0, 1] is the bias toward the dominant opinion 1
and MG(u,x) is the value held in configuration x(t−1) = x
by the majority of the neighbors of node u in graph G:

MG(u,x) =

{
0 if

∑
v∈Nu xv < |Nu|/2,

1 if
∑
v∈Nu xv > |Nu|/2,

and ties are broken uniformly at random, that is, if∑
v∈Nu xv = |Nu|/2 then MG(u,x) = 0 or 1 with prob-

ability 1/2.
It is easy to see that for every positive α, the above Markov

chain has 1 as the only absorbing state. However, the rate of
convergence is strongly influenced by the underlying graph
G. In Section 4.1 we prove a lower bound on the expected
absorption time that depends exponentially on the minimum
degree. This result implies super-polynomial expected ab-
sorption times for graphs whose minimum degree is ω(log n).
On the other hand, in Section 4.2 we prove that the absorp-
tion time isO(n log n) on cycle graphs and in Section 4.3 we
present some more graph families with sub-logarithmic max-
imum degree and polynomial (expected) absorption time.

4.1 Slow Convergence on High-Density Graphs
In this section we prove a general lower bound on the ex-
pected absorption time, which depends only on the minimum
degree ∆. To this purpose, we use the following standard
lemma on birth-and-death chains5 (see, for example, [Levin
and Peres, 2017, Section 17.3] for a proof).

Lemma 4.1. Let {Xt}t be a birth-and-death chain with state
space {0, 1, . . . , n} such that for every 1 6 k 6 n− 1

P(Xt+1 = k + 1 |Xt = k) = p,

P(Xt+1 = k − 1 |Xt = k) = q,

with p+ q 6 1. For every i ∈ {0, 1, . . . , n} let τi be the first
time the chain hits state i, that is, τi = inf{t |Xt = i}. If
p 6= q, the probability that starting from state k the chain hits
state n before state 0 is

Pk(τn < τ0) =
1− (q/p)k

1− (q/p)n
6

(
p

q

)n−k
.

5Birth-and-death chains are Markov processes for which, if in
state k, a transition could only go to either state k+1 or state k− 1.
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It is not difficult to show that, for α > 1/2, every graph
with minimum degree ∆ = Ω(log n) has O(n log n) absorp-
tion time, w.h.p.6 In the next theorem we prove that, as soon
as α is smaller than 1/2, the absorption time instead becomes
exponential in the minimum degree.
Theorem 4.2. Let G = (V,E) be an undirected graph with
minimum degree ∆. Assume that α 6 (1−ε)

2 , for an arbitrary
constant 0 < ε < 1. The expected absorption time for the
biased opinion dynamics under the majority update rule is

E[τ ] >
e
ε2

6 ∆

6n
.

Proof. Let S(t) be the set of nodes with value 1 at time t. For
each node u ∈ V , let n(t)

u be the fraction of its neighbors with
value 1 at round t:

n(t)
u =

|Nu ∩ S(t)|
|Nu|

.

Finally, let τ̄ be the first round in which n(t)
u > 1/2 for at

least one node v ∈ V , namely,

τ̄ = inf
{
t ∈ N : n(t)

u > 1/2, for some u ∈ [n]
}
.

Note that for each round t 6 τ̄ all nodes have a majority of
neighbors sharing opinion 0, thus the selected agent at time t
updates its state to 1 with probability α and to 0 with prob-
ability 1 − α. Moreover, clearly τ > τ̄ . We next prove that
E[τ̄ ] > e

ε2

6 ∆/(2n), which implies our thesis.
Notice that, for a node u with degree du that has k neigh-

bors with value 1 in some round and for every t 6 τ̄ , the
probabilities pk(u) and qk(u) of increasing and decreasing,
respectively, of one unit the number of its neighbors with
value 1 are

pk(u) =
du − k
n

α, and qk(u) =
k

n
(1− α).

Hence, because α 6 (1− ε)/2, for every k > du/(2 + ε) we
have that

pk(u)

qk(u)
=
du − k
k

· α

1− α
6 (1 + ε) · 1− ε

1 + ε
= 1− ε.

Note that
du
2
− du

2 + ε
=

ε

2(2 + ε)
du >

ε

6
du.

From Lemma 4.1 it thus follows that, for each node u, as
soon as the number of its neighbors with value 1 enters in the
range (du/(2 + ε), du/2), the probability that it will reach
du/2 before going back to du/(2 + ε) is at most

(1− ε)εdu/6 6 e−ε
2du/6 6 e−

ε2

6 ∆,

6Because every time a node updates its opinion the node chooses
opinion 1 with probability at least α, as soon as all nodes update
their opinion at least once (it happens within O(n log n) time steps,
w.h.p., by a coupon collector argument) if α > 1/2, every node u
will have a majority of 1s in its neighborhood, w.h.p.

using (1− x)x 6 e−x
2

for x ∈ [0, 1]. Hence, if we denote by
Yu the random variable indicating the number of trials before
having at least 1/2 of the neighbors of u at 1 we have that for
every t > 0

P(Yu > t) >
(

1− e− ε
2

6 ∆
)t

> e−(3t/2)e−
ε2

6
∆

,

where in the last inequality we used that 1 − x > e−3x/2 for
every x ∈ [0, 1

2 ). Thus,

P(Yu < t) 6 1− e−(3t/2)e−
ε2

6
∆

6
3t

2
e−

ε2

6 ∆,

using 1 − e−x 6 x for every x. Finally, by using the union
bound over all nodes, we have that

P(τ̄ < t) = P(∃u ∈ [n] : Yu < t) 6 n · 3t

2
e−

ε2

6 ∆.

Thus, for t̄ = e
ε2

6 ∆/3n we have P(τ̄ 6 t̄) 6 1/2 and the
thesis follows from Markov inequality:

E[τ̄ ] > t̄P(τ̄ > t̄) >
t̄

2
.

4.2 Fast Convergence on the Cycle
In this section, we prove that the absorption time on an n-
node cycle graph is O( 1

αn log n), w.h.p. We make use of the
following structural lemma, whose proof is omitted because
of lack of space.

Lemma 4.3 (Structural property of cycles). Let Cn be the
cycle on n nodes and let every node v ∈ V have an associated
state xv ∈ {0, 1}. Let us call Bi and Si the set of nodes in
state i such that: every node v ∈ Bi has both neighbors in the
opposite state and every node v ∈ Si has one single neighbor
in the opposite state. The following holds:

|B0|+
|S0|

2
= |B1|+

|S1|
2
.

Theorem 4.4 (Cycles). Let G = Cn be the cycle on n nodes.
Under the majority update rule, we have τ = O

(
1
αn log n

)
,

with high probability.

Proof. Denote by Vi the set of nodes with state i. Given a
configuration x ∈ {0, 1}n of Cn, let Bi = {v ∈ Vi : ∀u ∈
Nv, xu 6= i} and Si = {v ∈ Vi : ∃u,w ∈ Nv, xu 6= xw}
(see Lemma 4.3). Let Xt be the random variable indicating
the number of nodes in state 1 at round t and observe that for
every k, we have:

P(Xt = h |Xt−1 = k) =

{
pk if h = k + 1,
rk if h = k,
qk if h = k − 1,

where we have called pk = αn−kn + (1−α)
(
|B0|
n + 1

2
|S0|
n

)
,

qk = (1−α)
(
|B1|
n + 1

2
|S1|
n

)
, and rk = 1− qk − pk. Hence,

the expected value of Xt, conditioned to Xt−1 = k, is

E[Xt | Xt−1 = k] = k − qk + pk
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= k + α
n− k
n

+
1− α
n

(
|B0|+

|S0|
2
− |B1| −

|S1|
2

)
(a)
= k + α

n− k
n

,

where in derivation (a) we use Lemma 4.3. Therefore:

E[Xt] =
n∑
k=0

E[Xt | Xt−1 = k]P(Xt−1 = k)

= α
n∑
k=0

P(Xt−1 = k) +
(

1− α

n

) n∑
k=0

kP(Xt−1 = k)

= α+
(

1− α

n

)
E[Xt−1] .

Solving this recursion with E[X0] = 0 we get

E[Xt] = α
t−1∑
i=0

(
1− α

n

)i
= α

1− (1− α/n)
t

α/n
.

The expected number n−Xt of nodes in state 0 at round t is
thus

E[n−Xt] = n
(

1− α

n

)t
6 n e−αt/n,

which is smaller than 1
n for t > 2

αn log n. Hence,

P

(
τ >

2

α
n log n

)
= P

(
n−X 2

αn logn > 1
)

(b)

6 E
[
n−X 2

αn logn

]
6 1/n,

where in (b) we use the Markov inequality.

4.3 Further Low-Density Graph Families
It is not difficult to show that convergence times are also poly-
nomial in the cases of trees of degree O(log n) and discon-
nected cliques of size O(log n). These results are summa-
rized as the following theorem, whose proof is relatively sim-
ple and is omitted for the sake of space.
Theorem 4.5 (Trees and disconnected cliques). AssumeG =
(V,E) is a tree of degree O(log n) (resp. a set of discon-
nected cliques, each of size O(log n)). Then, for every con-
stant α ∈ (0, 1], the expected absorption time is polynomial.

5 Absorption Time for the Voter Model
As we mentioned in the introduction, the voter model has re-
ceived considerable attention as an opinion dynamics in the
more and less recent past [Liggett, 2012]. It may be regarded
as a “linearized” form of the majority update rule, in the sense
that, upon selection, a node pulls each of the two available
opinions with probability proportional to the opinion’s sup-
port within the node’s neighborhood. Despite such apparent
similarity, the two update rules result in quite different behav-
iors of the biased opinion dynamics. Namely, for the voter
model, absorption times to the dominant opinion are polyno-
mial with high probability as long as 1/α is polynomial, re-
gardless of the underlying topology. These results are clearly
at odds with those of Section 4.

The biased voter model can formally be defined as follows:
Starting from some initial state x(0), at each round t a node
u ∈ [n] is chosen uniformly at random and its opinion is
updated as

x(t)
u =

{
1 with probability α,
VG(u,x) with probability 1− α,

where α ∈ (0, 1] is a parameter measuring the bias toward
the better opinion 1 and VG(u,x) is the value held in config-
uration x(t−1) = x by a node sampled uniformly at random
from the neighborhood of node u. We assume x(0) = 0 for
simplicity, though we remark that Theorem 5.1 below holds
for any x(0) ∈ {0, 1}n.

As the proof of Theorem 5.1 highlights, the biased opinion
dynamics under the voter update rule can be succinctly de-
scribed by a nonhomogeneous Markov chain [Seneta, 2006].
Although nontrivial to study in general, we are able to pro-
vide tight bounds in probability for the simplified setting we
consider.
Theorem 5.1. Let G = (V,E) be an arbitrary graph. The
biased opinion dynamics with voter as update rule reaches
state 1 within τ = O( 1

αn log n) steps, with high probability.

Proof. For every node v ∈ V , the expected state of v at time
t, conditioned on x(t−1) = x is

E
[
x(t)
v | x(t−1) = x

]
=

1

n

[
α+

(1− α)

dv

∑
u∈Nv

xu

]
+

(
1− 1

n

)
xv

=
α

n
+

1

n

[
(1− α)(Px)v + (n− 1)(Ix)v

]
,

where P = D−1A is the transition matrix of the simple ran-
dom walk on G (with D the diagonal degree matrix and A
the adjacency matrix of the graph) and I is the identity ma-
trix. Considering all nodes we can write the vector form of
the previous equation as follows:

E
[
x(t) | x(t−1) = x

]
=
α

n
1 +

1

n

[
(1− α)P + (n− 1)I

]
x.

This immediately implies the following equation, relating
expected states at times t− 1 and t (with E

[
x(0)

]
= x):

E
[
x(t)

]
=
α

n
1 +

1

n

[
(1− α)P + (n− 1)I

]
E
[
x(t−1)

]
.

Now, consider 1−x(t), the difference between the absorb-
ing state vector 1 and the state vector at a generic time t.
Obviously, (1− x(t))v > 0 deterministically, for every v and
for every t. As for the expectation of this difference, we have:

E
[
1− x(t)

]
=

1

n

[
(1− α)P + (n− 1)I

]
E
[
1− x(t−1)

]
, (1)

where the equality is obtained by collecting and rearranging
terms, after observing that both matrices P and I have eigen-
value 1 with associated eigenvector 1. Moreover, we have

1

n

[
(1− α)P + (n− 1)I

]
=
(

1− α

n

)
P̂ ,
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with P̂ := n−1
n−α

[(
1−α
n−1

)
P + I

]
a stochastic matrix. This

follows immediately by observing that both P and I are
stochastic, so that all rows of (1 − α)P + (n − 1)I identi-
cally sum to n − α. By solving the recursion in Eq. (1) we
obtain

E
[
1− x(t)

]
=
(

1− α

n

)t
P̂ t
[
1− x(0)

]
(a)
=
(

1− α

n

)t
1 −

(
1− α

n

)t
P̂ tx(0),

where in (a) we use the fact that P̂ t is a stochastic matrix,
thus with main eigenvalue 1 and associated eigenvector 1.
Next, observe that for every v, we have

(
P̂ tx(0)

)
v
> 0, so

we also have

E
[
1− x(t)

v

]
6
(

1− α

n

)t
6 e−αt/n.

Therefore, for every t > 2
αn log n and for every v ∈ V we

have E
[
1− x(t)

v

]
6 1/n2 and, because the x(t)

v ’s are binary
random variables:

P
(
x(t)
v = 0

)
= P

(
1− x(t)

v = 1
)
6 P

(
1− x(t)

v > 1
)

6 E
[
1− x(t)

v

]
6

1

n2
,

where in the second-to-last inequality we used Markov’s in-
equality. Taking a union bound concludes the proof.

Note that Theorem 5.1 implies that the convergence time is
still O

(
n1+s log n

)
when α = Θ

(
1
ns

)
for any s > 0, hence

polynomial as long as s is constant.

6 Discussion and Outlook
In this paper, we considered biased opinion dynamics un-
der two popular update rules, namely majority [Krapivsky
and Redner, 2003] and the voter model [Liggett, 2012]. Al-
though related, these two models exhibit substantial differ-
ences in our setting. Whereas the voter model enforces a
drift toward the majority opinion within a neighborhood, in
the sense that this is adopted with probability proportional to
the size of its support, majority is a nonlinear update rule, a
feature that seems to play a crucial role in the scenario we
consider. This is reflected in the absorption time of the result-
ing biased opinion dynamics, which is O

(
1
αn log n

)
for the

voter model, regardless of the underlying topology, whereas
it exhibits a far richer behavior under the majority rule, being
super-polynomial (possibly exponential) in dense graphs. It
may be worth mentioning that in the case of two opinions,
the majority rule is actually equivalent to the (unweighted)
median rule, recently proposed as a credible alternative to the
weighted averaging of the DeGroot’s and Friedkin-Johnsen’s
models [Mei et al., 2019].

Both scenarios we studied are instantiations of a general
model that is completely specified by a triple (z, α,D), with
z an initial opinion distribution, α ∈ (0, 1] a probability mea-
suring the magnitude of the bias toward the dominant opinion,
and D an update rule that specifies some underlying opinion

dynamics. In detail, a biased opinion dynamics can be suc-
cinctly described as follows. The system starts in some state
x(0) = z, corresponding to the initial opinion distribution; for
t > 0, let x(t−1) = x be the state at the end of step t − 1. In
step t, a node v is picked uniformly at random from V and its
state is updated as follows:

x(t)
v =

{
1 with probability α,
DG(v,x) with probability 1− α,

where DG : V × {0, 1}n → {0, 1} is the update rule.7
When the update rule is probabilistic (as in the voter model),
DG(v,x) is a random variable, conditioned to the value x of
the state at the end of step t− 1.

It is simple to see that 1 is the only absorbing state of the
resulting dynamics, whenever α 6= 0 and D does not allow
update of an agent’s opinion to one that is not held by at least
one of the agent’s neighbors, which is the case for many up-
date rules in the discrete-opinion setting. We further remark
that the initial condition x(0) = 0 considered in this paper
is not intrinsic to the model, it rather reflects scenarios (e.g.,
technology adoption) where a new, superior alternative to the
status quo is introduced, but its adoption is possibly slowed
by inertia of the system. Although the reasons behind sys-
tem’s inertia are not the focus of this paper, inertia itself is
expressed here as a social pressure in the form of some up-
date rule DG. It is worth mentioning that Theorem 5.1 and
the upper bounds given in Section 4.3 hold regardless of the
initial opinion distribution.

This paper leaves a number of open questions. A first one
concerns general upper bounds on convergence times under
the majority update rule. Even though the topology-specific
upper bounds given in Section 4 might suggest general up-
per bounds that depend on the maximum degree, thus mir-
roring the result of Theorem 4.2, this turns out to not be
the case, with preliminary results suggesting a more com-
plicated dependence on degree distribution. A further ques-
tion is whether expected absorption time is alwaysO(n log n)
when α > 1/2, irrespective of the underlying dynamics and
topology. This is clearly true for the voter model from The-
orem 5.1 and it also holds for majority, whenever the under-
lying network has minimum degree Ω(log n) (see comment
after Lemma 4.1 and footnote 6 for a sketch of the proof on
dense graphs). We finally remark that our results and most
results in related work only apply to the case of two com-
peting opinions. An obvious direction for further research is
extending our results to the case of multiple opinions.
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