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We study opinion dynamics in multi-agent networks when a bias toward one of two pos-
sible opinions exists, for example reflecting a status quo versus a superior alternative. Our
aim is to investigate the combined effect of bias, network structure, and opinion dynamics
on the convergence of the system of agents as a whole. Models of such evolving processes
can easily become analytically intractable. In this paper, we consider a simple yet mathe-
matically rich setting, in which all agents initially share an initial opinion representing the
status quo. The system evolves in steps. In each step, one agent selected uniformly at ran-
dom follows an underlying update rule to revise its opinion on the basis of those held by its
neighbors, but with a probabilistic bias towards the superior alternative. We analyze con-
vergence of the resulting process under well-known update rules. The framework we pro-
pose is simple and modular, but at the same time complex enough to highlight a
nonobvious interplay between topology and underlying update rule.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Opinion formation in social groups has been the focus of extensive research. Even though many models considered in the
literature confer the same intrinsic value to all opinions [13], one might expect a group to quickly reach consensus on a
clearly superior alternative, if present. Yet, phenomena such as groupthink may delay or even prevent such an outcome, a
phenomenon that has been noted in the business world.1,2 This phenomenon has even been considered as a factor behind
France’s defeat by Germany in the second world war [1].

In this perspective, we investigate models of opinion formation in which a bias towards one of two possible opinions
exists, for instance, reflecting intrinsic superiority of one alternative over the other.3 In particular, our aim is to investigate
in a simple and mathematically tractable way the effect of the bias and the network structure on the time it takes for the system
of agents as a whole to converge to the superior opinion. In the remainder, we use labels 0 and 1 for the two opinions and we
assume that 1 is the dominant opinion, that is, the one towards which the agents have a bias. We investigate this question in a
mathematically tractable setting, informally described as follows.
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Assume some underlying opinion dynamics D. Starting from an initial state in which all agents share opinion 0, the sys-
tem evolves in discrete time steps. In each time step, one agent is selected uniformly at random.With some probability a, the
agent adopts 1, and with probability 1� a, the agent followsD to revise its opinion on the basis of those held by its neighbors
in an underlying network.

Although the general model we consider is simple and, under mild conditions on D, the family of processes it describes
always admits global adoption of opinion 1 as the only absorbing state, convergence to this absorbing state exhibits a rich
variety of behaviors, which depends on the interplay between the network structure and the underlying opinion dynamics in
nonobvious ways. The relatively simple, yet general, model we consider allows analytical investigation of the following
question:

How does a particular combination of network structure and opinion dynamics affect convergence to global adoption of
the dominant opinion? In particular, how conducive is a particular combination to rapid adoption?.

Even though results implying a negative effect of the network density on the convergence time have been proposed in the
past, albeit for quite different models (e.g., [34]), our findings suggest that there might be more to the issue. In particular, the
interplay between opinion dynamics and underlying network structure seems more complex than anticipated, with the for-
mer playing a key role in amplifying network effects.

In this respect, it is important to note that a number of continuous-time models of (discrete) opinion formation processes
have been proposed in the past (see Section 2). Having their roots in the study of compartmental models of spreading
dynamics [38], these models can often be richer than the ones we consider in this paper. In particular, they afford empirical
investigation of a number of interesting phenomena, typically in regimes in which network size tends to become very large
and correlations can to some degree be neglected. Despite being very useful, these models tend to be extremely complex. The
simplifying assumptions introduced to make them tractable, often prevent a fine-grained, mathematically rigorous investi-
gation of the relationships between opinion formation model, underlying network structure, and bias. This problem is also
acknowledged by recent work in this area (Section I, [39]): ‘‘we still lack a general theoretical framework systematically link-
ing models of information spreading, network structure, and algorithmic bias.” In contrast, our goal here is to trade some
expressivity of the model for the ability to rigorously characterize it, while hopefully retaining enough complexity to capture
basic, yet fundamental phenomena at work.

Organization of the paper and main results. We discuss work that is more or less closely related to the topic of this study in
Section 2, and we present and formalize the general model that we consider in Section 3.

In Section 4, we show that the expected time for consensus on the dominant opinion grows exponentially with the min-
imum degree under the majority update rule, in which agents update their opinion to the majority opinion in their neigh-
borhoods [29]. Using asymptotic notation and denoting the number of agents in the network by n, we obtain that the
convergence time is super-polynomial in expectation whenever the minimum degree is x lognð Þ. One might wonder
whether the converse occurs, namely, whether a logarithmic maximum degree admits an (expected) polynomial conver-
gence to the absorbing state. Even though we prove that this is indeed the case for specific topologies such as cycles or
restricted graph families, this does not seem to hold in general (see discussion in Section 7).

The results for the majority rule discussed in the previous paragraph are at odds with those we obtain in Section 5 for the
voter model, in which agents copy the opinion of a randomly selected neighbor [31]. In this case, convergence to the absorb-
ing state occurs within O 1

an logn
� �

time steps with high probability, regardless of the underlying network structure.
Empirical analysis presented in Section 6 provides results that are consistent with our theoretical findings. In particular,

the behavior predicted for the voter model closely matches empirical results. For majority, empirical analysis complements
our theoretical findings, highlighting a sharp phase transition in absorption times, with a threshold that depends on the bias
and the graph’s degree distribution in a nonobvious fashion.

Finally, in Section 7, we discuss generalizations of our framework and possible directions for further investigation.
To summarize, this study provides a simple mathematical framework to investigate the interplay between opinion

dynamics and underlying network structure in a unified setting, allowing comparison of different update rules with respect
to a common framework. In this respect, we hope that our work moves in the direction of a shared framework to investigate
opinion dynamics, as advocated in [13], complementing the aforementioned more complex, but harder to analyze, models.
The rigorous analysis of the simpler models of this paper, helps us better understand, at least qualitatively, important driving
forces behind the dynamics of agent interactions in the presence of bias.

2. Related Work

The problem we consider touches a number of areas where similar settings have been considered, with various motiva-
tions. The corresponding literature is vast and providing an exhaustive review is unfeasible here. In the paragraphs that fol-
low, we discuss contributions that most closely relate to the topic of this paper.

Opinion diffusion and consensus. Opinion dynamics are widely used to investigate how groups of agents modify their
beliefs under the influence of other agents and possibly exogenous factors. A number of models have been proposed in
the more or less recent past, mostly motivated by phenomena that arise in several areas, ranging from social sciences to phy-
sics and biology. Refer to [13] and references therein for a recent, general overview of opinion dynamics in multi-agent
50
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systems. A first distinction is between settings in which the set of possible beliefs is continuous, for instance, the interval
0;1½ �. This setting has been the focus of extensive research in social sciences and economics [3,17,21,22].

In this paper, we consider the case in which opinions are drawn from a discrete set, a setting that also received significant
attention in the recent past. In particular, we focus on the majority rule and the voter model. Investigation of the majority
update rule originates from the study of agreement phenomena in spin systems [29], whereas the voter model was moti-
vated by the study of spatial conflict between species in biology and interacting stochastic processes and particle systems
in probability theory and statistics [12,26,31]. These two models have received renewed attention in the recent past, the
focus mostly being on the time required to achieve consensus or conditions under which they achieve consensus on one
of the initial opinions with a minimum degree of confidence. The voter model is by now well understood. In particular,
increasingly tight bounds on convergence time for general and specific topologies have been proposed over the recent past
[15,25], and it is known that the probability of one particular opinion to prevail is proportional to the sum of the degrees of
nodes holding that opinion at the onset of the process [18]. In all these works there is not a bias toward one of the alterna-
tives, which is the topic of this paper.

Consensus and network structure. Network structure has been known to play an important role in opinion diffusion and
influence spreading for quite some time [35], under a variety of models. For example, multiple works have studied the con-
sensus under the voter model and the dependence of its convergence on the underlying network topology [15,18,25]. For the
majority dynamics, Auletta et al. [5] characterized the topologies for which an initial majority can be subverted, showing that
this is possible for all but a handful of topologies, including cliques and quasi-cliques. On the other hand, regardless of the
network, there is always an initial opinion distribution such that the final majority will reflect the initial one; however, com-
puting an initial opinion configuration that will subvert an initial majority is topology-dependent and NP-hard in general [8].

A number of recent contributions have investigated (among other aspects) the relationship between network structure
and consensus in opinion formation games [19,20], whereas Auletta et al. [7] studied extensions of the Friedkin-Johnsen
model to evolving networks.

Even though a high expansion of the underlying graph typically implies fast convergence [14,27] in many opinion dynam-
ics, some recent work explicitly points to potentially adverse effects of network structure on the spread of innovation, at
least in scenarios where the opinion update occurs on the basis of private utilities that reflect both the degree of local con-
sensus and the intrinsic value of the competing opinions [34,41].

Some of our findings are qualitatively consistent with previous work albeit under completely different models (in partic-
ular, [34]). However, our overall approach is very different, because it completely decouples the mechanism of opinion for-
mation from modelling of the bias, allowing for a clear-cut mathematical characterization of the interplay between bias,
underlying opinion dynamics, and network structure.

Follow-up work to a preliminary version of this paper [2] investigated the role of small sets of high-degree nodes (or
elites) to influence the outcome of the majority dynamics. In particular, Out and Zehmakan [37] identified the addition of
random connections and/or some of degree bias towards the currently held opinion as effective strategies to mitigate the
ability of elites to drive consensus towards a predefined opinion.

Forms of bias different from ours. Bias in opinion dynamics has been considered previously in the literature. We briefly
review contributions that are at least loosely related to our framework. For both voter and majority update rules, Mukhopad-
hyay et al. [36] introduced bias in the form of different, opinion-dependent firing rate frequencies of the Poisson clocks that
trigger agents’ opinion updates, implicitly enforcing a bias toward the opinion with lower associated rate. Despite being dif-
ferent, their model is similar to ours in spirit and some of their results for the voter model are consistent with ours. Yet, these
results only apply in expectation and to very dense networks with degree X nð Þ, whereas our results for the voter model hold
for every undirected graph. More recently, Bahrani et al. [9] investigated the behavior of majority dynamics when agents’
opinions are initialized to 0 (incorrect) or 1 (correct) with probabilities 1=2� d and 1=2þ d respectively. The authors prove
high probability of convergence to a majority of correct opinions within O n logn= log lognð Þ steps.

A form of bias in the communication channels between the agents is considered by Cruciani et al. [16], where one of the
two opinions is always transmitted correctly to the neighbors, whereas there is a fixed probability of incorrectly transmitting
the other one. The results for both voter and majority models are coherent with the ones presented in this paper, even if in
the work of Cruciani et al. they hold for a synchronous setting, where in each round all nodes update simultaneously.

A somewhat related line of research addresses the presence of stubborn agents and of zealots. Loosely speaking, stubborn
agents have a bias toward some (initially or currently) held opinion. Zealots are agents who never deflect from some initial
opinion. Restricting to the discrete-opinion setting, which is the focus of this paper,4 the role of zealots and their ability to
subvert an initial majority have been investigated for the voter model (see [33] and follow-up work), and Auletta et al. [6] inves-
tigated majority dynamics in the presence of stubborn agents that are biased toward the currently held opinion, providing a full
characterization of conditions under which an initial majority can be subverted.

Continuous-time dynamics. Continuous-time, discrete-opinion models have been proposed in the past and form an active
research area, following a long-standing tradition that is rooted in the analysis of epidemic processes [38]. We only mention
a few contributions that are representative of this line of research. These approaches generally rely on mean-field or finer-
grained, continuous approximations [23,24] in which, roughly speaking, the probabilities that characterize discrete models
4 For the continuous case, there is a vast literature; see the seminal paper [22] and follow-up work.
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correspond to transition rates between different opinions across the underlying population of agents. For example, [23,24]
consider a refined mean-field analysis of a number of spreading/opinion diffusion dynamics, including a noisy variant of
majority, whereas a continuous, noisy voter model has been considered recently [11], under the assumption of lack of cor-
relation among network edges. More recent work addresses the issue of bias in the opinion formation process. For example,
Peralta et al. [39] model the presence of (algorithmic) bias by a single parameter, a so-called ‘‘bias intensity,” which modifies
the transition rates defined in [23,24] in a simple way.

Continuous-time models can be rich and afford empirical investigation of a number of interesting phenomena. The result-
ing systems of differential equations can be accurate approximations of some original (continuous or discrete) model. They
often allow to simulate the evolution of models that are generally more complex than those that are analytically tractable.
Sometimes, these models also allow to derive quantitative predictions on parameters of interest, which empirically prove
accurate under suitable conditions, for example, when the correlations that can be present in the system within sub-
populations of the agents can be considered negligible. On the negative side, attempts at a theoretical analysis often require
strong simplifying assumptions to ensure tractability, which in turn can make it harder (when not impossible) to derive rig-
orous, analytical results. Also, these models can prove inaccurate with respect to the original ones in some cases. For exam-
ple, mean-field models can behave poorly on sparse networks, or on networks that are close to exhibiting properties that
induce a transition in the behavior of the underlying dinamics [23]. As a result, deriving quantitative, mathematically rigor-
ous characterizations of the complex relationships involving opinion dynamics, bias, and network structure, can become
unfeasible in such settings.

3. Notation and Preliminaries

Let G ¼ V ; Eð Þ be an undirected graph with Vj j ¼ n nodes, each representing an agent. Without loss of generality, we
assume that V ¼ n½ � :¼ 1; . . . ;nf g. The system evolves in discrete time steps5 and, at every time step t 2 N, each node v 2 V

holds an opinion x tð Þ
v 2 0;1f g. We use the term opinion liberally here, in the sense that 0 and 1 in general represent competing

alternatives, whose meaning is context-dependent. We denote by x tð Þ ¼ x tð Þ
1 ; . . . ; x tð Þ

n

� �|
the corresponding state of the system at

time t. We assume that the initial state of the system is x 0ð Þ ¼ 0 ¼ 0; . . . ;0ð Þ|; this assumption is discussed in Section 7. For each
v 2 V , we denote the neighborhood of v by Nv :¼ u 2 V : u;vf g 2 Ef g and the degree of v by dv :¼ jNv j. Finally, D :¼ minv2Vdv is
the minimum degree among the nodes in G.

Our framework assumes that the agents exhibit a bias toward one of the opinions (e.g., reflecting intrinsic superiority of a
technological innovation over the status quo), without loss of generality 1, which we henceforth call the dominant opinion.
We model bias as a probability, with a parameter a 2 0;1ð �. All dynamics we consider areMarkovian, that is, given the under-
lying graph G, the distribution of the state x tð Þ at time t only depends on the state x t�1ð Þ at the end of the previous time step.
Moreover, they have x ¼ 1 ¼ 1; . . . ;1ð Þ| as the only absorbing state. We use s to denote the absorption time, which is the
number of time steps for the process to reach the absorbing state 1. Finally, for a family of events Enf gn2N, we say that En

occurs with high probability (w.h.p., in short), if a constant c > 0 exists such that P Enð Þ ¼ 1� O n�cð Þ, for every sufficiently
large n.

4. Absorption Time for Majority Dynamics

In this section, we investigate the time to reach consensus on the dominant opinion under the majority update rule. More
formally, we study the following random process: Starting from the initial state x 0ð Þ ¼ 0; . . . ;0ð Þ|, in each time t a node u 2 n½ �
is chosen uniformly at random and u updates its value according to the rule
5 Thi
x tð Þ
u ¼ 1 with probability a;

MG u;xð Þ with probability 1� a;

�

where a 2 0;1ð � is the bias toward the dominant opinion 1 and MG u;xð Þ is the value held in configuration x t�1ð Þ ¼ x by the
majority of the neighbors of node u in graph G:
MG u;xð Þ ¼
0 if

X
v2Nu

xv < jNuj=2;

1 if
X
v2Nu

xv > jNuj=2;

8>>><>>>:

and ties are broken uniformly at random, that is, if

P
v2Nu

xv ¼ jNuj=2 then MG u;xð Þ ¼ 0 or 1 with probability 1=2, indepen-
dently of all the other random choices of this process.

It is straightforward to see that for every positive a, the above Markov chain has 1 as the only absorbing state. However,
the rate of convergence is strongly influenced by the underlying graph G. In Section 4.1 we prove a lower bound on the
s is equivalent to the asynchronous model in which a node revises its opinion at the arrival of an independent Poisson clock with rate 1 [10].
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expected absorption time, which depends exponentially on the minimum degree. This result implies super-polynomial
expected absorption times for graphs whose minimum degree is x lognð Þ. On the other hand, in Section 4.2 we prove that
the absorption time is O n lognð Þ on cycle graphs, and in Section 4.3 we briefly discuss about further graph families with sub-
logarithmic maximum degree and polynomial (expected) absorption time.

4.1. Convergence on High-Density Graphs

In this section we prove a general lower bound on the expected absorption time, which only depends on the minimum
degree D. To this purpose, we use the following standard lemma on birth-and-death chains6 (see, for example, Section 17.3
[30] for a proof).

Lemma 4.1. Let Xtf gt be a birth-and-death chain with state space 0;1; . . . ;nf g, such that for every 1 6 k 6 n� 1
6 Birt
P Xtþ1 ¼ kþ 1 jXt ¼ kð Þ ¼ p;
P Xtþ1 ¼ k� 1 jXt ¼ kð Þ ¼ q;

P Xtþ1 ¼ k jXt ¼ kð Þ ¼ r;
with pþ qþ r ¼ 1. For every i 2 0;1; . . . ;nf g let si be the first time the chain hits state i, that is, si ¼ min t jXt ¼ if g. If 0 < p < 1=2,
the probability that starting from state k the chain hits state n before state 0 is
Pk sn < s0ð Þ ¼ q=pð Þk � 1
q=pð Þn � 1

6 p
q

� �n�k

:

First we show that, for a P 1=2þ e, every graph with minimum degree D ¼ X logn
e2

� �
has O n lognð Þ absorption time, w.h.p.
Lemma 4.2 (Fast convergence for a > 1=2). Assume e > 0 and c > 0 are arbitrarily small constants. Then, if a > 1=2þ e, every
graph with minimum degree at least 1þ cð Þ 1þ2e

e2 lnn has absorption time at most 2 1þ cð Þn lnn, with probability at least 1� 3
nc.
Proof. The proof proceed in two steps. We first prove that, w.h.p., within O n lognð Þ time steps, every node has revised its
opinion at least once. Let T denote the first time at which every node has revised its opinion at least once. Because every
node is chosen independently with probability 1=n in every time step, this is a case of the coupon collector problem. Indeed,
considering any particular node u, the probability that u is never sampled in any of the first 1þ cð Þn lnn time steps is

1� 1
n

� � 1þcð Þn lnn. Hence, using a union bound:
P T > 1þ cð Þn lnnð Þ 6 n 1� 1
n

� � 1þcð Þn lnn

6 ne� 1þcð Þ lnn ¼ 1
nc

:

For the second step, consider again the first time T in which every node has revised its opinion at least once. Moreover, for
every node u, denote by T uð Þ the last time step prior to T in which u revised its opinion. Next, for every node u we define a
binary variable Xu, such that Xu ¼ 1 if u adopts 1 at time T uð Þ; and Xu ¼ 0 otherwise. We have P Xu ¼ 1ð Þ P a > 1

2 þ e, so that,
for every node u, the expected number of u’s neighbors that have adopted opinion 1 at time T is E

P
v2Nu

Xv
	 


> 1
2 þ e
� �jNuj.

Moreover, although the Xu’s are in general dependent on each other, for every u we have P Xu ¼ 1ð Þ > 1
2 þ e, regardless of

other nodes. This means that every Xu stochastically dominates an independent Bernoulli variable Zu with parameter
1
2 þ e. Moreover, if Z ¼Pv2Nu

Zv , we have E Z½ � ¼ 1
2 þ e
� �jNuj. We therefore have, for every u:
P
X
v2Nu

Xv 6 1
2 jNuj

 !
6 P Z 6 1

2 jNuj
� �

¼ P Z 6 1� 2e
1þ2e

� �
E Z½ �

� �
6
að Þ
e
� 2e2

1þ2eð Þ2
E Z½ �

¼ e�
e2

1þ2ejNu j

6
bð Þ
e�

e2
1þ2e� 1þcð Þ1þ2e

e2
lnn

¼ e� 1þcð Þ lnn

¼ 1
n1þc ;
h-and-death chains are Markov processes for which, from state k, a transition can only go to either state kþ 1 or state k� 1.
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where að Þ follows from a straightforward application of Chernoff’s bound to the sum of the Zu’s, and bð Þ holds because
minujNuj P 1þ cð Þ 1þ2e

e2 lnn by the lemma hypothesis. Finally, taking a union bound over all nodes in V we obtain:
P 9u 2 V :
X
v2Nu

Xv 6 1
2
jNuj

 !
6 1

nc
:

The arguments above allow us to conclude that w.h.p., in the very first time T in which each node has revised its opinion at
least once, namely at time T 6 1þ cð Þn lnn, w.h.p., every node is surrounded by a majority of neighbors that adopted
opinion 1. Using again a coupon collector argument, we conclude that, with probability at least 1� 1=nc, every node will
revise its opinion at least one more time within another 1þ cð Þn lnn time steps, this time adopting opinion 1 with proba-
bility 1. Overall, consensus to opinion 1 is achieved with probability at least 1� 3=nc within 2 1þ cð Þn lnn time steps.

In the next theorem we prove that, as soon as a is smaller than 1=2, the absorption time instead becomes exponential in
the minimum degree.

Theorem 4.3 (Slow convergence for a < 1=2). Let G ¼ V ; Eð Þ be an undirected graph with minimum degree D. Assume a 6 1�eð Þ
2 ,

for an arbitrary constant 0 < e < 1. The expected absorption time for the biased opinion dynamics under the majority update rule is
E s½ � P e
e2
6 D

6n
:

Proof. Let S tð Þ be the set of nodes with value 1 at time t. For each node u 2 V , let n tð Þ
u be the fraction of its neighbors with value

1 at time t:
n tð Þ
u ¼ jNu \ S tð Þj

jNuj :
Finally, let �s be the first time step in which n tð Þ
u P 1=2 for at least one node v 2 V , namely,
s
� ¼ min t 2 N : n tð Þ

u P 1=2; for some u 2 n½ �� �
:

Note that for each time t 6 �s all nodes have a majority of neighbors sharing opinion 0, thus the selected agent at time t
updates its state to 1 with probability a and to 0 with probability 1� a. Moreover, clearly sP �s. We next prove that

E �s½ � P e
e2
6 D= 6nð Þ, which implies our thesis.

Observe that, for a node u with degree du that has k neighbors with value 1 at some time and for every t 6 �s, the
probabilities pk uð Þ and qk uð Þ of increasing and decreasing, respectively, the number of its neighbors by 1 are
pk uð Þ ¼ du � k
n

a; and qk uð Þ ¼ k
n

1� að Þ:
Hence, because a 6 1� eð Þ=2, for every k P du= 2þ eð Þ we have that
pk uð Þ
qk uð Þ ¼

du � k
k

� a
1� a

6 1þ eð Þ � 1� e
1þ e

¼ 1� e:
Note that
du

2
� du

2þ e
¼ du

e
2 2þ eð Þ P

e
6
du:
From Lemma 4.1 it thus follows that, for each node u, as soon as the number of its neighbors with value 1 enters in the range
du= 2þ eð Þ; du=2ð Þ, the probability that it will reach du=2 before going back to du= 2þ eð Þ is at most
1� eð Þedu=6 6 e�e
2du=6 6 e�

e2
6 D;
using 1� xð Þx 6 e�x2 for x 2 0;1½ �. Hence, if we denote by Yu the random variable indicating the number of trials before hav-
ing at least half of the neighbors of u at 1, we have that for every t P 0
P Yu P tð Þ P 1� e�
e2
6 D

� �t
P e� 3t=2ð Þe�e

2
6 D

;

where in the last inequality we used that 1� x P e�3x=2 for every x 2 0; 12
	 �

. Thus,
P Yu < tð Þ 6 1� e� 3t=2ð Þe�e
2
6 D

6 3t
2

e�
e2
6 D;
using 1� e�x 6 x for every x. Finally, by using the union bound over all nodes, we have that
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P �s < tð Þ ¼ P 9u 2 n½ � : Yu < tð Þ 6 n � 3t
2
e�

e2
6 D:
Thus, for �t ¼ e
e2
6 D=3n we have P �s < �tð Þ 6 1=2 and the theorem follows from Markov’s inequality:
E �s½ � P �tP �s P �tð Þ P
�t
2
:

4.2. Fast Convergence on the Cycle

In this section, we prove that the absorption time on an n-node cycle graph is O 1
an logn
� �

, w.h.p. We make use of the fol-
lowing structural lemma.

Lemma 4.4 (Structural property of cycles). Let Cn be the cycle of n nodes and let every node v 2 V have an associated state
xv 2 0;1f g. Let us call Bi and Si the set of nodes in state i such that: every node v 2 Bi has both neighbors in the opposite state and
every node v 2 Si has one single neighbor in the opposite state. The following holds:
jB0j þ jS0j
2

¼ jB1j þ jS1j
2

:

Proof. Given any possible binary coloring of Cn each node v belongs to one of the following categories:

� v 2 Bi: node v is in state i and both its neighbors are in state j– i.
� v 2 Ri: node v is in state i, its left neighbor is in state i, and its right neighbor is in state j– i.
� v 2 Li: node v is in state i, its right neighbor is in state i, and its left neighbor is in state j– i.
� v 2 Zi: node v is in state i and zero of its neighbors are in state j– i, that is, both are in state i.

We also call Si ¼ Ri [ Li. Fig. 1 illustrates the eight (counting symmetries) possible categories. Let us consider a clockwise
walk through Cn that returns to its starting point. Keeping into account the categories of the nodes previously described
it is possible to generate a graph HC that describes all possible binary configurations of a Cn graph, for every n 2 N. We call
HC the cycle binary configuration graph (Fig. 2). The nodes of HC represent the possible categories of the nodes of Cn and the
edges the possible neighbors in Cn, considering a clockwise walk. For example, there is no edge from B0 to R0 because the
neighbors of B0 are both in state 1, whereas a node in R0 is in state 0.
Fig. 1. Categories of a node v in Cn; node v is black and its left and right neighbors are white.

Fig. 2. The cycle binary configuration graph HC .
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Let us pick any node v in Cn and let us walk through clockwise until we return to v. Let us pick the node of HC

corresponding to the category v belongs to and follow the clockwise walk that we do on Cn also on HC , by moving on the
corresponding states. It follows that after n steps the walk on Cn will be back to v and the walk on HC will be back to the node
representing the category of v. Note that this implies that the walk on HC is a cycle and, in general, that every cycle of length
n on HC represent a possible binary configuration of the nodes of a corresponding cycle graph Cn.

Note that every possible cycle in HC is a combination of simple cycles (that go through each node at most once) on HC . We
prove that the structural property of the lemma holds for every simple cycle on HC . By commutativity and associativity of
addition, the property directly transfers also to composition of simple graphs. To reduce the number of simple cycles (which
are 17; they are easy to find on a computer given the small size of the graph HC , even if the problem is#P-hard [4]), we avoid
cycles that pass through Zi, as jZij does not appear in the lemma; in fact, every cycle passing through Zi does Li ! Zi ! Ri and
the only other outgoing edge of Li is Li ! Ri. In other words, excluding simple cycles passing through node Zi does not have
any effect on the following calculations. By also taking advantage of symmetries in i and j, all the remaining simple cycles are
the following four, for which the equality of the lemma is true:

� Bi ! Bj
� �

: jBij cancels out with jBjj.
� Bi ! Lj ! Rj
� �

: jBij cancels out with jRj jþjLj j
2 .

� Ri ! Lj ! Rj ! Li
� �

: jRi jþjLi j
2 cancels out with jRj jþjLj j

2 .

� Bi ! Bj ! Li ! Ri ! Lj ! Rj
� �

: jBij cancels out with jBjj; jRi jþjLi j
2 cancels out with jRj jþjLj j

2 .
Theorem 4.5 (Cycles). Let G ¼ Cn be the cycle on n nodes. Under the majority update rule, we have s ¼ O 1
an logn
� �

, w.h.p.
Proof. Denote by Vi the set of nodes in state i. Given a configuration x 2 0;1f gn of Cn, let Bi ¼ v 2 Vi : 8u 2 Nv ; xu – if g and
Si ¼ v 2 Vi : 9u;w 2 Nv ; xu – xwf g (see Lemma 4.4). Let Xt be the random variable indicating the number of nodes in state 1 at
time t and observe that for every k, we have:
P Xt ¼ h jXt�1 ¼ kð Þ ¼
qk if h ¼ k� 1;
rk if h ¼ k;

pk if h ¼ kþ 1;

8><>:

where qk ¼ 1� að Þ jB1 j

n þ 1
2

jS1 j
n

� �
, pk ¼ a n�k

n þ 1� að Þ jB0 j
n þ 1

2
jS0 j
n

� �
, and rk ¼ 1� qk � pk. Therefore, the expected value of Xt , con-

ditioned on Xt�1 ¼ k, is
E Xt j Xt�1 ¼ k½ � ¼ k� 1ð Þqk þ krk þ kþ 1ð Þpk ¼ k� qk þ pk

¼ kþ a n�k
n þ 1�a

n jB0j þ jS0 j
2 � jB1j � jS1 j

2

� �
¼að Þ
kþ a n�k

n ;
where in derivation að Þ we use Lemma 4.4. We therefore have:
E Xt½ � ¼
Xn
k¼0

E Xt j Xt�1 ¼ k½ �P Xt�1 ¼ kð Þ

¼
Xn
k¼0

aþ 1� a
n

� �
k

� �
P Xt�1 ¼ kð Þ

¼ a
Xn
k¼0

P Xt�1 ¼ kð Þ þ 1� a
n

� �Xn
k¼0

kP Xt�1 ¼ kð Þ

¼ aþ 1� a
n

� �
E Xt�1½ �:
Solving this recursion with E X0½ � ¼ 0 we get
E Xt½ � ¼ a
Xt�1

i¼0

1� a
n

� �i
¼ a

1� 1� a=nð Þt
a=n

:

The expected number E n� Xt½ � of nodes in state 0 at time t is thus
E n� Xt½ � ¼ n 1� a
n

� �t
6 ne�

a
nt ;
which is smaller than 1
n for t P

2
an lnn. Hence,
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P s >
2
a
n lnn

� �
¼ P n� X2

an lnn P 1
� �

6
bð Þ
E n� X2

an lnn

h i
6 1=n;
where in bð Þ we use Markov’s inequality.
4.3. More Low-Density Graph Families

It is not difficult to show that convergence times are also polynomial in the cases of disconnected cliques of size O lognð Þ
and trees of degree O lognð Þ. These results are summarized as the following theorem.

Theorem 4.6 (Disconnected cliques and bounded-degree trees). Let G ¼ V ; Eð Þ be a set of ‘ disconnected cliques V1; . . . ;V ‘ such
that jVij ¼ O lognð Þ for every i (respectively a tree of degree O lognð Þ and such that root nodes of every subtree have at least 2
children). Then, for every constant a 2 0;1ð �, the expected absorption time is polynomial.
Proof. First we start with the proof for disconnected cliques. Then, using the same notation and in part the same tools, we
move to bounded-degree trees.

Disconnected cliques. Let T0 ¼ 0 and, for j ¼ 1;2;3; . . ., let Tj be the first round in which every node has updated its state at
least once after time Tj�1. In the beginning of the proof of Lemma 4.2, we proved that for every j, we have that
Tj � Tj�1 6 1þ cð Þn lnn with probability at least 1� 1

nc.

For a given range Tj�1; Tj
	 


, let T uð Þ be the last time in which node u updated its state in the range and let Xu be the
random variable such that Xu ¼ 1 if u adopts opinion 1 at time T uð Þ and 0 otherwise. Note that every Xu stochastically
dominates an independent Bernoulli random variable Zu of parameter a. Therefore, the probability for a given clique Vi of
reaching absorption within the given time range is
P 8u 2 Vi; Xu ¼ 1ð Þ P P 8u 2 Vi; Zu ¼ 1ð Þ ¼ ajVi j P a
max

i
jVi j

:

Therefore, we can define a family of independent and identically distributed Bernoulli random variables Yj
i

n o
i;j

with

parameter p ¼ amaxi jVi j and a coupling such that, for every clique Vi and every range Tj�1; Tj
	 


, if Yj
i ¼ 1 then Vi reached absorp-

tion within round Tj. Hence, for any given clique Vi, the checkpoint Tk in which clique Vi reaches absorption, is dominated by
a geometric random variable Gi, with probability of success in each Bernoulli trial equal to p ¼ amaxi jVi j and expected value

1=p ¼ 1=að Þmaxi jVi j ¼ O poly nð Þð Þ, because a ¼ X 1ð Þ and maxijVij ¼ O lognð Þ by our hypothesis. Therefore, the expected value
of the absorption time s is upper bounded by the maximum among ‘ 6 n i.i.d. geometric random variables Gif gi, namely
E s½ � 6 E max
i¼1;...;‘

Gi


 �
6 E

X‘
i¼1

Gi

" #
¼
X‘
i¼1

E Gi½ � ¼ ‘

p
¼ O poly nð Þð Þ:
Bounded-degree trees. As a first step, we separately consider the ‘ subtrees, each consisting of a set of sibling-leaves
together with their common parent. Note that, whenever such a subtree locally reaches absorption, it remains stable forever:
leaves have their only neighbor (namely their parent) already in state 1, and the parent has the majority of their neighbors in
state 1 (namely the leaves, given that the number of children is at least 2 by hypothesis). With the same reasoning used for
disconnected cliques in the previous paragraph, we get that the ‘ subtrees become stable within O poly nð Þð Þ time steps in
expectation.

Once all such structures have become stable, the ‘ parents of the subtrees will become the majority in state 1 of their
respective parents. Thus, it will be sufficient to wait for the parents to update once more within the next checkpoint. Given
that the same reasoning can be applied recursively for each level of the tree, from the bottom and up to the root, another O nð Þ
checkpoints (i.e., as many as the maximum possible height of the tree) will suffice to globally reach absorption, still in
O poly nð Þð Þ time steps.
5. Absorption Time for the Voter Model

As mentioned in the introduction, the voter model has received considerable attention as an opinion dynamics [31]. It
may be regarded as a linearized form of the majority update rule, in the sense that, upon selection, a node selects each of
the two available opinions with probability proportional to the opinion’s support within the node’s neighborhood. Despite
such apparent similarity, the two update rules result in quite different behaviors of the biased opinion dynamics. Namely, for
the voter model, absorption times to the dominant opinion are polynomial with high probability as long as 1=a is polyno-
mial, regardless of the underlying topology. These results are clearly at odds with those of Section 4.

The biased voter model can formally be defined as follows: Starting from some initial state x 0ð Þ, at each time t a node
u 2 n½ � is chosen uniformly at random and its opinion is updated as
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x tð Þ
u ¼ 1 with probability a;

VG u;xð Þ with probability 1� a;

�

where a 2 0;1ð � is a parameter measuring the bias toward the better opinion 1 and VG u;xð Þ is the value held in configuration
x t�1ð Þ ¼ x by a node sampled uniformly at random from the neighborhood of node u. We assume x 0ð Þ ¼ 0 for simplicity,
though we remark that Theorem 5.1 below holds for any x 0ð Þ 2 0;1f gn.

As the proof of Theorem 5.1 highlights, the biased opinion dynamics under the voter update rule can be succinctly
described by a nonhomogeneous Markov chain [40]. Although nontrivial to study in general, we are able to provide tight
bounds in probability for the simplified setting we consider.

Theorem 5.1. Let G ¼ V ; Eð Þ be an arbitrary graph. The biased opinion dynamics with voter as update rule reaches state 1
within s ¼ O 1

an logn
� �

steps, w.h.p.
Proof. For every node v 2 V , the expected state of v at time t þ 1, conditioned on x tð Þ ¼ x is
E x tþ1ð Þ
v j x tð Þ ¼ x

h i
¼ 1

n aþ 1�að Þ
dv

X
u2Nv

xu

 !
þ 1� 1

n

� �
xv ¼ a

n þ 1
n 1� að Þ Pxð Þv þ n� 1ð Þ Ixð Þv
� �

;

where P ¼ D�1A is the transition matrix of the simple random walk on G (with D being the diagonal degree matrix and A the
adjacency matrix of the graph) and I is the identity matrix. Considering all the nodes, we can write the vector form of the
previous equation as follows:
E x tð Þ j x t�1ð Þ ¼ x
	 
 ¼ a

n
1þ 1

n
1� að ÞP þ n� 1ð ÞIð Þx:
This immediately implies the following equation, relating the expected states at times t � 1 and t (with E x 0ð Þ	 
 ¼ x):
E x tð Þ	 
 ¼ a
n
1þ 1

n
1� að ÞP þ n� 1ð ÞIð ÞE x t�1ð Þ	 


:

Now, consider 1� x tð Þ, the difference between the absorbing state vector 1 and the state vector at a generic time t. By the
definition of x tð Þ; 1� x tð Þ� �

v P 0 deterministically, for every v and for every t. As for the expectation of this difference, we
have:
E 1� x tð Þ	 
 ¼ 1� a
n

� �
1� 1

n 1� að ÞP þ n� 1ð ÞIð ÞE x t�1ð Þ	 

¼ 1

n 1� að Þ1þ n� 1ð Þ1ð Þ � 1
n 1� að ÞP þ n� 1ð ÞIð ÞE x t�1ð Þ	 


¼að Þ 1
n 1� að ÞP þ n� 1ð ÞIð Þ1� 1

n 1� að ÞP þ n� 1ð ÞIð ÞE x t�1ð Þ	 

¼ 1

n 1� að ÞP þ n� 1ð ÞIð ÞE 1� x t�1ð Þ	 

;

ð1Þ
where að Þ follows from the fact that both matrices P and I have 1 as eigenvector with associated eigenvalue 1.
Moreover, we have
1
n

1� að ÞP þ n� 1ð ÞIð Þ ¼ 1� a
n

� �bP;

with bP :¼ n�1

n�a
1�a
n�1

� �
P þ I

� �
being a stochastic matrix. This follows immediately by observing that both P and I are stochastic, so

that all rows of 1� að ÞP þ n� 1ð ÞI identically sum to n� a. By solving the recursion in Eq. (1) we obtain
E 1� x tð Þ	 
 ¼ 1� a
n

� �tbPt 1� x 0ð Þ� �¼að Þ
1� a

n

� �t
1 � 1� a

n

� �tbPtx 0ð Þ;
where in að Þ we use the fact that bPt is a stochastic matrix, thus with main eigenvalue 1 and associated eigenvector 1. Next,

observe that for every v, we have bPtx 0ð Þ
� �

v
P 0, so we also have E 1� x tð Þ

v

h i
6 1� a

n

� �t 6 e�a
nt .

Therefore, for every time t P 2
an lnn, we have
E 1� x tð Þ
v

	 

6 1

n2 ;
for every v 2 V . Because the x tð Þ
v ’s are binary random variables, we have
P x tð Þ
v ¼ 0

� � ¼ P 1� x tð Þ
v ¼ 1

� �
6 P 1� x tð Þ

v P 1
� �

6 E 1� x tð Þ
v

	 

6 1

n2 ;
where in the second-to-last inequality we used Markov’s inequality. Hence, in O 1
an logn
� �

time steps the process converges
to the absorbing state 1, with high probability.
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Note that Theorem 5.1 implies that the convergence time is still O n1þs logn
� �

when a ¼ H 1
ns
� �

for any s > 0, hence poly-
nomial as long as s is constant.
6. Simulations

In this section, we empirically characterize the behavior of the a-biased majority dynamics in specific regimes that are
not addressed by our theoretical analysis in Section 4. In particular, we have proved super-polynomial absorption times
in graphs that have super-logarithmic minimum degree (Theorem 4.3) and fast absorption times in some specific graph
topologies where the maximum degree is O lognð Þ. For these reasons, we are particularly interested in cases in which the
average degree is H lognð Þ. To characterize more clearly how the absorption time depends on the interplay between a
and the degree in this regime, in our simulations we focus on d-regular graphs.

Even if the behavior of the biased voter model is well characterized by our theoretical analysis in Section 5 (Theorem 5.1),
we also conduct an empirical analysis to compare the absorption times of the a-biased voter with those of the a-biased
majority while a varies. We perform a simulation by choosing a combination of a dense network topology and a small bias
a, to highlight the difference in behavior between the two dynamics. In fact, as shown by Theorems 4.3 and 5.1, the absorp-
tion times would be polynomial for the former and exponential for the latter.

Experimental setup. We run the a-biased majority dynamics on regular graphs with n ¼ 1024 nodes, letting d and a vary
in the intervals d 2 2;3; . . . ;n� 1f g and a 2 0:01;0:02; . . . ;1:0f g, respectively. In more detail, for each pair a; dð Þ: (1) we
(almost) uniformly sample a d-regular graph G from G n; dð Þ using the algorithm by Kim and Vu [28]; (2) we perform
50 independent runs of the a-biased majority dynamics on G, for each run estimating the absorption time as explained
below; (3) we take the average of the absorption times over the 50 independent runs. For each run of the a-biased major-
ity dynamics on a graph G sampled from G n; dð Þ, our estimate of the absorption time is min s;n2

� �
, where s is the number

of steps required for 95% of the nodes to be in state 1.7 Note that this way, we are consistently underestimating absorption
times, when the process does not converge within n2 steps. It should be noted that, for each pair a;dð Þ, in step (1) we only
consider one sample G from G n;dð Þ. This choice is consistent with our theoretical findings, in particular Theorem 4.3, suggest-
ing that slow convergence occurs for every graph that satisfies conditions that essentially only depend on a and D.

Regarding the a-biased voter dynamics, instead, we only ran it in ‘‘adversarial” cases in which one might expect
some deviation from theoretical predictions. In this perspective, we considered the complete graph with n ¼ 1024 nodes
and very small values of the bias parameter a, namely a 2 0:0001;0:0002; . . . ;0:01f g. The rationale behind these choices
was highlighting the modest effect of two factors that instead significantly affect a-biased majority dynamics, namely,
high network density and a small value of the bias a. In fact, the complete graph is the topology that makes the absorp-
tion time of the a-biased majority the highest; moreover, the smallest value of the bias we considered is small even

with respect to network size, that is, a � n lognð Þ�1. Similarly to what we did for biased majority, we performed 50
independent runs of the dynamics and estimated the absorption time as the average of the value min s;n3

� �
measured

in each run.8

Empirical observations. Fig. 3 provides an overview of the results of our simulations, highlighting a sharp phase transition
in absorption times of the a-biased majority dynamics, with a threshold (represented by the narrowwhitish line dividing the
blue and red areas), which depends on a and d in a nonobvious fashion. The blue area in the heat map includes a; dð Þ pairs for
which the dynamics rapidly converged to a consensus on opinion 1, with an average absorption time that as a function of n is
compatible with O n lognð Þ, in particular, consistently smaller than 1

an logn. The red area, instead, includes pairs (a; dÞ for
which the estimated absorption time of the dynamics was always n2, namely configurations for which the dynamics never
converged to absorption within n2 updates; for those runs, it is possible to observe that the number of nodes in state 1
quickly reaches and remains concentrated at a value around an. This last part is just an empirical observation (not imme-
diately resulting from our plots), which is actually easy to motivate formally, stemming from the fact that, regardless of
the current state, the node selected in any given step has a ground probability a to choose opinion 1.

The zoomed plot in the right pane of the same figure also shows that the scenario dramatically changes for d ¼ 2, that is,
when the graph is a cycle or a collection of disconnected cycles, as one would expect from Theorem 4.5. In this case, absorp-
tion is achieved in fewer than n2 steps even for the smallest value of a we considered (0:01), consistently with the upper
bound of Theorem 4.5.

The goal of Fig. 4 is to explore the behavior of the absorption time in the vicinity of the threshold. For this reason, the plots
in this figure only refer to the combinations of a; dð Þ whose average absorption times were strictly less than n2. Note that a
given combination a; dð Þ appears in the plot even if a single run (out of the 50) reaches absorption in fewer than n2 updates;
thus, the absorption time could be dramatically underestimated. However, our goal here was to investigate how sharp the
transition in absorption times is as we approach the threshold and in this respect, an underestimation only makes this
transition appear smoother than it actually is.
7 This is done to speed up the computation. In particular, given the asynchronous nature of the dynamics, when only a small fraction of nodes is still in state
0, an artificially long delay is introduced for the simple fact that nodes in state 0 are chosen less and less frequently for revising their opinions.

8 The value n3 instead of n2 as in the biased majority is changed in order to handle much smaller values of a.
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Fig. 3. Absorption time s (color) of the biased majority dynamics on Gwhile varying d (x-axis) and a (y-axis). On the left, the results for all values of d and a;
on the right, a zoom with d 2 2;3; . . . ;2

ffiffiffi
n

p� �
and a 2 0:01; . . . ;0:5f g.

Fig. 4. Absorption time s (y-axis) of the biased majority dynamics on G while varying a (x-axis) and d (color) vs. 1
an logn. On the left, the results for low-

density graphs (d 2 2;3; . . . ;2log2nf g; on the right, the results for high-density graphs (d 2 1þ 2log2n; . . . ;nf gÞ. The black dots show the value 1
an logn,

which is our theoretical upper bound for the cycle.
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We expect, and Fig. 4 indicates, that, for each degree d (color in the figure), there exists a threshold value for a above
which the convergence is fast, whereas below it the convergence is slow; of course this value would depend on d. The figure
highlights the following patterns: (1) the threshold value for a increases with the degree, which intuitively is consistent with
the general insight that increased density slows the convergence of the dynamics; (2) as a approaches 1=2 from below, fast
convergence is ensured for increasingly growing values of the degree, a behavior that is ultimately consistent with Lemma
4.2 and suggesting a limiting behavior of the threshold that goes to 1=2 for d ¼ n� 1 (i.e., the complete graph) and n ! 1. As
commented earlier, the scenario is different in the case of d ¼ 2 (leftmost blue points in the left plot) where, differently from
the case of d > 2, the process achieved absorption for all considered values of a within n2 steps; moreover, d ¼ 2 is the only
degree value for which the value of the absorption time never exceeds the black reference line 1

an logn (i.e., our theoretical
upper bound for the cycle) as a increases.

Our simulations further suggest that the lower bound we gave in Theorem 4.3 is asymptotically tight for dense graphs. In
particular, recall that, whenever a ¼ 1�e

2 for a fixed constant 0 < e < 1, Theorem 4.3 states that if s is the absorption time we

have E s½ � P eDe2=6
� �

= 6nð Þ, where D is the minimum degree. In other words, for every arbitrarily large fixed constant K > 0,

there exists a constant C ¼ C eð Þ such that E s½ � > nK , whenever D > C logn. Put otherwise, E s½ � > nK , for every fixed constant
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Fig. 5. Absorption time s (y-axis) of the biased majority dynamics on G as a (x-axis) and d (color) vary. We also show as a dashed line the empirical
threshold �a�

D . In the left plot we see the results for low density graphs (d 2 3; . . . ;2log2nf g, eight equally distanced values); in the right plot we see the
results for high density graphs (d 2 2log2n; . . . ;nf g, eight equally distanced values).

Fig. 6. Absorption time s (y-axis) of the biased voter dynamics on the complete graph G with n ¼ 1024 nodes as a (x-axis) varies. We also show as a dotted
line the theoretical expected absorption time 2

an and as a dashed line the theoretical high probability upper bound on the expected absorption time 1
an logn.
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K > 0, whenever a < a�
D :¼ 1

2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 Kþ1ð Þ ln 6nð Þ

D

q� �
. Although meaningless for sparse graphs,9 this condition does apply to dense

graphs in which D > 6 K þ 1ð Þ ln 6nð Þ. For this reason we propose an empirical threshold �a�
D :¼ 1

2 e
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 Kþ1ð Þ ln 6nð Þ

D

p
, which is positive for

all values of D and a�
D 6 �a�

D 6 1
2 (since 1þ x 6 ex for every x).

Fig. 5 shows the empirical thresholds �a�
D corresponding to each value of D ¼ d. Even though the empirical threshold

clearly differs from the actual value of a for which the process has a phase transition, especially for small values of d (left
plot), the agreement becomes increasingly better as d increases (right plot). This suggests that a�

D and the empirical threshold
might well capture the asymptotic behavior of the phase transition in dense graphs, (asymptotically) capturing the speed of
the process toward absorption. Given that a�

D � �a�
D for D ¼ x lognð Þ and n ! 1, these empirical observations also suggest

that our lower bound provided in Theorem 4.3 might be asymptotically tight for dense graphs, although we leave this as
an open question.

Fig. 6 shows the results of the simulation of the a-biased voter dynamics. The first observation is the comparison between
the actual behavior of the dynamics with the theoretical prediction of Theorem 5.1. The absorption time of the a-biased voter
dynamics is indeed close to its expected value (i.e., s ¼ 2

an); moreover, the high probability upper bound of the absorption
9 If D < 6 K þ 1ð Þ ln 6nð Þ then a�
D < 0.
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time (i.e., s ¼ 1
an logn), is never exceeded. The second observation regards the comparison between the actual absorption

time of the a-biased voter dynamics and the lower bound on the expected absorption time of the a-biased majority dynam-
ics (Theorem 4.3). On the one hand, the biased majority dynamics would need at least exponential time to reach absorption
on a complete graph (for any a < 1=2). On the other hand, the biased voter reaches absorption in expected time O n

a

� �
and in

time O n
a logn
� �

with high probability.
7. Discussion and Outlook

In this paper, we considered biased opinion dynamics under two popular update rules, namely the majority [29] and the
voter model [31]. Although related, these two models exhibit substantial differences in our setting. Whereas the voter model
enforces a drift toward the majority opinion within a neighborhood, in the sense that this is adopted with probability pro-
portional to the size of its support, majority is a nonlinear update rule, a feature that seems to play a crucial role in the sce-
nario we consider. This is reflected in the absorption time of the resulting biased opinion dynamics, which is O 1

an logn
� �

for
the voter model, regardless of the underlying topology, whereas it exhibits a far richer behavior under the majority rule,
being super-polynomial (possibly exponential) in dense graphs. It may be worth mentioning that in the case of two opinions,
the majority rule is actually equivalent to the (unweighted) median rule, recently proposed as a credible alternative to the
weighted averaging of the DeGroot’s and Friedkin-Johnsen’s models [32].

A modular model. Both scenarios we studied are instantiations of a general model that is completely specified by a triple
z;a;Dð Þ, with z an initial opinion distribution, a 2 0;1ð � a probability measuring the magnitude of the bias toward the dom-
inant opinion, and D an update rule that specifies some underlying opinion dynamics. In more detail, a biased opinion
dynamics can be succinctly described as follows.

The system starts in some state x 0ð Þ ¼ z, corresponding to the initial opinion distribution; for t > 0, let x t�1ð Þ ¼ x be the
state at the end of step t � 1. In step t, a node v is picked uniformly at random from V and its state is updated as follows:
10 The
graph G
x tð Þ
v ¼ 1 with probability a;

DG v; xð Þ with probability 1� a;

�

where DG : V 	 0;1f gn ! 0;1f g is the update rule.10 When the update rule is probabilistic (as in the voter model), DG v;xð Þ is a
random variable, conditioned on the value x of the state at the end of step t � 1.

Remark. It is simple to see that 1 is the only absorbing state of the resulting dynamics, whenever a – 0 and D does not
allow update of an agent’s opinion to one that is not held by at least one of the agent’s neighbors, which is the case for many
update rules in the discrete-opinion setting.

We further remark that the initial condition x 0ð Þ ¼ 0 considered in this paper is not intrinsic to the model, it rather reflects
scenarios (e.g., technology adoption) where a new, superior alternative to the status quo is introduced, but its adoption is
possibly slowed by inertia of the system. Although the reasons behind system’s inertia are not the focus of this paper, inertia
itself is expressed here as a social pressure in the form of some update rule DG. Another reason for choosing a fixed initial
state (0 in our case) is being able to compare the behavior of the biased opinion dynamics under different update rules
on a common basis.

Finally, it is worth mentioning that Theorem 5.1 and the upper bounds given in Section 4.3 hold regardless of the initial
opinion distribution.

Outlook. This paper leaves a number of open questions. A first one concerns an accurate theoretical description of the
phase-transition behavior of the dynamics under the majority update rule, as empirically observed in Section 6 on regular
graphs. In fact, whereas the phenomenon is relatively well understood on dense graphs (with Lemma 4.2 and Theorem 4.3
proving a threshold phenomenon on a ¼ 1=2 for large n), we have not been able to provide any mathematical evidence of the
same phenomenon on sparse graphs. The only exceptions are specific graph topologies for which we proved polynomial
absorption time whenever a is constant, such as the cycle (Theorem 4.5), trees with degree O lognð Þ, and disconnected cliques
of size O lognð Þ (Theorem 4.6).

A further question is whether the expected absorption time is always O n lognð Þ when a P 1=2, irrespectively of the
underlying dynamics and topology. This is clearly true for the voter model from Theorem 5.1 and it also holds for the major-
ity model whenever the underlying network has minimum degree X lognð Þ from Lemma 4.2.

We finally remark that our results and most results in related work apply to the case of two competing opinions. An obvi-
ous direction for further research is the extension of our results to the case of multiple opinions.
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