
Skyline in Crowdsourcing with Imprecise Comparisons∗

Aris Anagnostopoulos

Sapienza University of Rome

Italy

Adriano Fazzone

Sapienza University of Rome

Italy

Giacomo Vettraino

Sapienza University of Rome

Italy

ABSTRACT

Given an input of a set of objects each one represented as a vector

of features in a feature space, the problem of finding the skyline

is the problem of determining the subset of objects that are not

dominated by any other input object. An example of an application

is to find the best hotel(s) with respect to some features (location,

price, cleanliness, etc.)

The use of the crowd for solving this problem is useful when

a score of items according to their features is not available. Yet

the crowd can give inconsistent answers. In this paper we study

the computation of the skyline when the comparisons between

objects are performed by humans. We model the problem using the

threshold model [1] in which the comparison of two objects may

create errors/inconsistencies if the objects are close to each other.

We provide algorithms for the problem and we analyze the required

number of human comparisons and lower bounds. We also evaluate

the effectiveness and efficiency of our algorithms using synthetic

and real-world data.

CCS CONCEPTS

• Information systems→ Crowdsourcing; • Theory of com-

putation→ Models of computation.

KEYWORDS

Crowdsourcing; human computation; skyline algorithms; worker

models

ACM Reference Format:

Aris Anagnostopoulos, Adriano Fazzone, and Giacomo Vettraino. 2021.

Skyline in Crowdsourcing with Imprecise Comparisons. In Proceedings

of the 30th ACM International Conference on Information and Knowledge

Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482479

1 INTRODUCTION

In various applications there is the need to select an option among

multiple options, each of which is characterized by a set of features.

Consider, as an example, selecting a hotel, where competing factors

∗
Supported by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mecha-

nism Design Research in Online Markets”, the EC H2020RIA project “SoBigData++”

(871042), and the MIUR PRIN project ALGADIMAR “Algorithms, Games, and Digital

Markets.”

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482479

include price, location, luxury, cleanliness, and so on. Other similar

examples include the selection of a property to buy or a person to

hire. Obviously, when there is an option that is superior in each

dimension the choice is clear. Of course, typically in such cases,

there are options that are preferable in some dimensions but less

preferable in others, and it is up to the end user to examine the

various options and select the best one according to her needs or

preferences.

An important concept in such settings is that of the skyline,

also known as the Pareto frontier. An object does not belong to

the skyline if it is dominated by another object, that is, if there

exists another object that is at least as good in every dimension and

better in at least one dimension. The skyline is the set of options

that are not dominated by other options. We can see an example

in Figure 1(a). The concept of the skyline is an important one in

various disciplines [6, 14] and there has been theoretical and applied

work to compute it efficiently [5, 7, 12].

(a) An example of a skyline

(points with ×). All the points in

the grey area are dominated by at

least one point belonging to the

skyline.

(b) Three examples of approxi-

mate skylines (red–+, blue–× and
green–∗). 𝛿1 and 𝛿2 are the er-

ror thresholds in the two dimen-

sions.

Figure 1: Skyline and skyline in the threshold-error model.

Whereas the definition of the skyline is clear when each option

under consideration has a known value, in many real-life scenar-

ios the various options are not as clearly defined, but instead are

characterized by the crowd: humans may express their personal

preference between different options. Of course, humans err, thus

it is often not clear how to select the skyline when objects are

compared by humans. For this reason, there has been a line of work

that studies the problem of finding the maximum elements (the

1-dimensional skyline) as well as the skyline under the presence of

errors [1, 10, 11].

Two main models have been proposed to model human er-

rors/inconsistencies when they compare elements: (1) the prob-

abilistic error model and (2) the threshold model. To explain the

https://doi.org/10.1145/3459637.3482479
https://doi.org/10.1145/3459637.3482479

models, consider the one-dimensional setting. Consider elements 𝑥

and 𝑦 and assume that 𝑥 is objectively better than 𝑦: for instance

score(𝑥) = 8 and score(𝑦) = 7. Assume that we give pairs of el-

ements to a human worker to compare them. In the probabilistic

error model, the worker will return the correct answer with proba-

bility 1/2+𝜖 , for some 𝜖 ∈ (0, 1/2]; in the various models proposed,

𝜖 may be fixed or dependent on the elements 𝑥 and 𝑦 [8, 16]. The er-

rors performed by workers are independent, and querying multiple

workers and performing majority voting can increase the accuracy

exponentially in the number of votes. In the threshold model [1, 3],

there exists a threshold 𝛿 such that if

��
score(𝑥) − score(𝑦)

�� > 𝛿 the

workers respond correctly.
1
However, if

��
score(𝑥) − score(𝑦)

�� ≤ 𝛿

then the responses are arbitrary; this means that even if the same

query is repeated, the workers may consistently provide erroneous

answers.

Of course, often there does not exist an objective winner. Then,

depending on the context, the correct answer is typically assumed

to be the one held by the majority of the workers, or by the workers

who are more expert in the matter under consideration. Both the

probabilistic-error and the threshold models have been studied in

the crowdsourcing setting. Anagnostopoulos et al. [3] compared

them in a crowdsourcing setting, and showed that for some types of

queries the probabilistic-error model is an accurate model, whereas

for other ones the threshold model is more appropriate.

Most of the modelling work for crowdsourcing has considered

the one-dimensional case. Only in recent years have researchers

started considering the multi-dimensional case (the skyline prob-

lem). In particular, Asudeh et al. [4] studied the skyline problem

in a crowdsourcing scenario in presence of a perfect crowd: the

workers make no errors in any comparison. On the other hand,

the skyline problem under the probabilistic-error model has been

studied in [10, 11] only theoretically. Yet, there has not been any

study of the problem under the threshold model. In this paper we

do exactly that: we study the skyline problem under the threshold

error model both analytically and experimentally.

Contributions. To summarize our contributions: (1) We define

the skyline problem under the threshold error model of Ajtai et

al. [1] for crowdsourcing. (2) We give a set of algorithms of varying

complexity and we provide theoretical guarantees on the number of

required human comparisons. (3) We provide lower bounds on the

number of comparisons required. (4) We compare the algorithms

with various baselines, on synthetic and real-world data.

2 RELATEDWORK

As we mentioned in the introduction, the computation of the sky-

line is a generalization of the problem of finding the maximum

within a set of elements. With the involvement of humans in the

computation process, there have been multiple works to model

the effect of humans in the computation of the maximum element.

Venetis et al. [16] consider some models from the psychometrics lit-

erature together with tournaments used to compute the maximum

in crowdsourcing environments. Anagnostopoulos et al. [3] discuss

about this and other approaches for computing the maximum, and

we refer the reader to references therein.

1
It can also be generalized to a worker responding correctly with a probability 𝑝 > 1/2.

The more general problem of computing the skyline in crowd-

sourcing has attracted more attention lately. Asudeh et al. [4] have

been the first to face the problem of crowdsourcing skyline with

pairwise comparisons. Others, such as Lofi et al. [13], have focused

on a similar scenario where the skyline is computed on incomplete

data and the crowd provides estimation for the missing values.

However, whereas there a numerical representation for the items’

features is assumed, in [4] the authors assume only the existence of

a strict partial order for the items according to the different features,

because human preferences are very subtle, subjective, and hard to

explain and comparing items is shown to be easier, faster and less

error-prone for humans [15].

Groz and Milo [11] studied the skyline problem analytically

under the probabilistic error model providing algorithms for the

problem. Groz et al. [10] improved the theoretical results by provid-

ing algorithms that require fewer comparisons. Even though these

papers are of high theoretical interest, there is no evaluation of the

approaches in practice. To our knowledge, the only evaluation in

practice of the skyline problem in a crowdsourcing setting is the

aforementioned work of Asudeh et al. [4].

3 MODEL AND PROBLEM DEFINITION

In this section we start by describing the classic skyline problem,

and then we introduce the version with the threshold (error) model.

We also present some basic results that hold on the threshold model,

required for our algorithms.

An assumption made by the model is the presence in each di-

mension of a (hidden) total order among all elements.

3.1 The Skyline Problem

The input of the skyline problem is a set of 𝑛 𝑑-dimensional points

(we also refer to them as elements) U = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, where
𝑢𝑖 ∈ R𝑑 for 𝑖 ∈ [𝑛] := {1, 2, . . . , 𝑛}.

Given two points 𝑥,𝑦 ∈ U, we say that a point 𝑥 dominates point

𝑦 (𝑥 ⊲ 𝑦) if 𝑥𝑖 > 𝑦𝑖 for all 𝑖 ∈ [𝑑].2 We say that point 𝑦 is dominated

by point 𝑥 (𝑦 ⊳ 𝑥) if 𝑥 dominates point 𝑦. Finally, we say that a

point 𝑥 ties with point 𝑦 (𝑥 ∼ 𝑦) if there are at least two dimensions

𝑖, 𝑗 ∈ [𝑑], with 𝑖 ≠ 𝑗 , such that 𝑥𝑖 > 𝑦𝑖 and 𝑦 𝑗 > 𝑥 𝑗 ; that is, if none

of the two points dominates the other one.

The set of points S ⊆ U is called the skyline if it is the subset

of U of maximum size that contains all the points that are not

dominated by any point inU and only them.

Note that, the fact that none of the points in the skyline is domi-

nated by any other point in the skyline, implies that every skyline

point is in a tie-with relation with every other skyline point. Ad-

ditionally, our assumption that in each dimension there is a total

order between the points implies that the skyline is unique.

3.2 The Threshold-Error Model

In the crowdsourcing setting, we assume that we do not have the

objective value of each element property, but we perform queries

to the crowd to compare the various elements. When the value

2
Note that in the introduction we used a slightly different definition. The two defini-

tions are equivalent under our assumption that in each dimension there exists a total

order among the elements.

difference is large then the crowd will typically provide an accu-

rate/consistent answer. However, when the difference is small, then

the crowd may err. The threshold (comparison) model of Ajtai et

al. [1] defines a query model capturing this scenario, which we now

describe for the 𝑑-dimensional setting.

According to the threshold model, a query (we also call it a

comparison) 𝑞𝑖 (𝑥,𝑦) to a worker is defined by a pair of elements

(𝑥,𝑦) ∈ U × U and a given dimension 𝑖 ∈ [𝑑]. The query asks

whether 𝑥𝑖 > 𝑦𝑖 or 𝑥𝑖 < 𝑦𝑖 . Because we assume that for each dimen-

sion we have a total order among the elements, ties on values are

not allowed. The model also assumes that for each dimension 𝑖 there

exists a fixed threshold 𝛿𝑖 , representing the discernment ability of

the worker [1]. If

��𝑥𝑖 − 𝑦𝑖 �� > 𝛿𝑖 , then the worker returns a correct

answer.
3
However, if

��𝑥𝑖 − 𝑦𝑖 �� ≤ 𝛿𝑖 , then the worker returns an ar-

bitrary answer. Given that for

��𝑥𝑖 − 𝑦𝑖 �� ≤ 𝛿𝑖 the answer is arbitrary,

this means that even if we repeat the question to multiple workers,

we cannot obtain a higher confidence under this model; in other

words, the two elements 𝑥 and 𝑦 are indistinguishable with respect

to the 𝑖th dimension. This is in contrast to the other well studied

theoretical error model for comparisons in crowdsourcing settings,

the probabilistic model [11]. Anagnostopoulos et al. [3] showed that

the threshold model is more accurate than the probabilistic model

for some types of queries.

For two elements 𝑥,𝑦 ∈ U for which we perform the query

𝑞𝑖 (𝑥,𝑦) to a worker, we write that 𝑥 ≺𝑖 𝑦 if we obtain as a result

that 𝑥𝑖 is smaller than 𝑦𝑖 , and 𝑥 ≻𝑖 𝑦 if we obtain as a result that 𝑦𝑖
is smaller than 𝑥𝑖 .

Whereas the skyline problemhas been studied under the probabilistic-

error model, it has not been studied under the threshold model, and

this is the topic of this paper.

Two comments are necessary here. First, by rescaling, we can

assume that each 𝛿𝑖 = 𝛿 . Second, even though the model assumes

that there exist thresholds 𝛿𝑖 , these thresholds are unknown to the

algorithms and it is not requested to assess their values for the

skyline computation.

3.3 Basic Results on the Threshold Model

In this section we report some results from of Ajtai et al. [1], which

we use in our proofs, regarding the problem of sorting and finding

the maximum element under the threshold model. All these results

refer to the one-dimensional setting.

Let 𝛿 be the threshold of the model. First, the authors show that

under this model, it is impossible to return an element that is certain

to be the maximum:

Theorem 3.1. No deterministic max-finding algorithm has an

error less than 2𝛿 .

Having an error of 2𝛿 for the max-finding problem means that

the element returned as maximum (𝑚) is at most 2𝛿 smaller than

the real maximum element (𝑚∗):𝑚∗ −𝑚 ≤ 2𝛿 . The authors also

present an algorithm called 2-MaxFind, which returns an element

that is at at most 2𝛿 of the maximum.

3
The model can be generalized, with workers providing an incorrect answer when the

difference is above 𝛿 , with a fixed probability, which may depend on the difference��𝑥𝑖 − 𝑦𝑖 ��, all the answers being independent, as in the probabilistic error model.

Theorem 3.2. The 2-MaxFind algorithm is a deterministic algo-

rithm, which performs at most 2𝑛3/2 = 𝑂 (𝑛3/2) worker comparisons

and guarantees an error of 2𝛿 .

They also give a lower bound on the number of comparisons

required to find an approximate maximum element. Notice that the

number of comparisons required is superlinear.

Theorem 3.3. Every deterministic algorithm that guarantees to

return an element that is at most 2𝛿 smaller than the maximum

requires Ω(𝑛4/3) worker comparisons.

Ajtai et al. also studied the problem of sorting. We say that the

error of the output of a sorting algorithm is some value bounded

by 𝜏 if for two elements 𝑥 and 𝑦 for which we have 𝑥 − 𝑦 > 𝜏

𝑥 is ranked higher than 𝑦 in the output. The following corollary,

defines the quality of the output of any sorting algorithm under

the threshold model [1]:

Corollary 3.4. According to Theorem 3.1, no deterministic sorting

algorithm has an error less than 2𝛿 .

In addition, Ajtai et al. give a tight lower bound on the number

of required comparisons and an optimal deterministic algorithm.

Theorem 3.5. Every deterministic sorting algorithm with error at

most 2𝛿 requires Ω(𝑛3/2) comparisons.

Theorem 3.6. The 2-Sort algorithm is a deterministic algorithm,

which performs at most 4𝑛3/2 = Θ(𝑛3/2) worker comparisons and

guarantees an error of 2𝛿 .

A key component for both 2-MaxFind and 2-Sort algorithms is

the Round-Robin tournament method, a method that Ajtai et al.

defined in the following way: a Round-Robin tournament among

the elements of a setU of size 𝑛 consists in performing all

(𝑛
2

)
=

Θ(𝑛2) pairwise comparisons. It is worth to notice that, under the

threshold model, no algorithm benefits by performing more than(𝑛
2

)
worker comparisons: repeating the query does not provide a

higher confidence.

The 2-Sort algorithm is of paramount importance for this work,

for this reason Section 4.5 is dedicated to it.

3.4 Skyline Under the Threshold Model

Having described the threshold model for worker comparisons, we

are ready to analyze the skyline problem under the threshold error

model. In this model, comparisons are performed by workers, so

the responses may be incorrect. In particular, they may not even

satisfy the transitivity property. Moreover, given the lower bound

of the previous section, we cannot guarantee to obtain the true

skyline. Therefore, the goal is to return a set of elements that is as

close as possible to the real skyline.

In view of Theorem 3.1, under the threshold model, no algorithm

can guarantee to find the true skyline of a set of elements. Thus we

need to relax the requirement for the output. We therefore define

the concepts of covering and of succinctness for a solution.

Covering. Let T be the true skyline of a set of elements U, and

consider some solution S ⊂ U. Informally, we say that S is a

covering solution if for every point in the skyline T there exists a

point in S that is close to it. Now we define it formally.

We call solution S 𝑐-covering (with 𝑐 ≥ 0) if, for each element

𝑡 ∈ T , there exists an element 𝑠 ∈ S such that for each dimension

𝑖 ∈ [𝑑] we have that 𝑠𝑖 ≥ 𝑡𝑖 − 𝑐𝛿𝑖 , namely: ∀𝑡 ∈ T , ∃𝑠 ∈ S : ∀𝑖 ∈
[𝑑], 𝑠𝑖 ≥ 𝑡𝑖 − 𝑐𝛿𝑖 .

By extension, we call an algorithm 𝑐-covering if it produces 𝑐-

covering solutions. An example of two 1-covering outputs can be

found in Figure 1(b) (blue–× and green–∗).
Succinctness. The covering property guarantees that the solution

S does not miss points that are much better than the ones returned.

However, this does not suffice: there may be points in S that are

far from the optimal; in particular, a solution that returns the entire

setU is a 0-covering solution!

Let us observe Figure 1(b). Whenever for two elements 𝑥 and

𝑦 the difference in the 𝑖th dimension is larger than 𝛿𝑖 , a worker

response to a query is correct. Thus, informally, we can define a

threshold (the red line in the figure, defined by the points that in

each dimension 𝑖 are 𝛿𝑖 smaller than the “skyline frontier”) below

and in the left of which we know that points cannot be in the

skyline. This is the concept of succinctness. Informally, a solution

is succinct if it contains only points that belong in the grey area,

above and to the right of the red line. Next we define succinctness

formally.

Let T be the true skyline of a set of elementsU, and consider

some solution S ⊂ U. We call the solution S c-succinct (with 𝑐 ≥ 0)

if for each pair (𝑠, 𝑡) ∈ S × T there exists a dimension 𝑖 ∈ [𝑑] for
which we have 𝑠𝑖 ≥ 𝑡𝑖 − 𝑐𝛿𝑖 , namely: ∀(𝑠, 𝑡) ∈ S × T , ∃𝑖 ∈ [𝑑] :
𝑠𝑖 ≥ 𝑡𝑖 − 𝑐𝛿𝑖 .

By extension, we call an algorithm 𝑐-succinct if it produces 𝑐-

succinct solutions. An example of two 1-succinct outputs can be

found in Figure 1(b) (red–+ and green–∗).
Notice from the examples in Figure 1(b), a solution can be cover-

ing and not succinct, succinct and not covering, or both covering

and succinct (or neither). Of course, ideally we want solutions that

are both covering and succinct, and our goal is to design algorithms

that produce such solutions.

The following corollary follows from Theorem 3.1.
4

Corollary 3.7. Under the threshold error model no 𝑐-succinct

deterministic skyline algorithm exists, with 𝑐 < 2.

Cost. Given that the expensive resource in the crowdsourcing set-

ting is the set of comparisons performed byworkers, we evaluate the

efficiency of our algorithms with respect to the number of worker

comparisons that they perform. We call the number of comparisons

that an algorithm performs the cost of the algorithm.

Latency. In a very broad sense, Garcia-Molina at al. [9] define the

latency of a crowdsourcing method as the time taken by the method

to solve the problem. This general definition of latency embeds

the cost of the method, even though, the cost of a crowdsourcing

method is not the only characteristic associated with the time taken

by a crowdsourcing method. Another important characteristic is the

level of parallelization that a crowdsourcing method has: algorithms

typically send the queries to the workers in batches. A batch is a set

of queries that do not depend on each other and can be executed in

parallel. We define the latency of an algorithm to be the minimum

4
Proofs are omitted because of lack of space. They will appear in the full version of

the paper.

number of batches in which it can send to the queries to the workers.

For instance, if an algorithm performs ℓ queries none of which

requires the output of the other queries, the latency is 1; on the

other extreme, if deciding what query to perform requires the result

of the previous query, then the latency is ℓ .

4 ALGORITHMS

In this section we provide four algorithms for computing the skyline

under the threshold error model. We present the algorithms in

ascending order of their level of covering and then succinctness. For

each algorithm we analyze its cost and latency together with its

level of covering and succinctness. The last paragraph is dedicated

entirely to the description of the changes we made to the 2-Sort

algorithm (see Section 3.3) to reduce the cost and latency of the last

two presented algorithms in the average-case scenario.

4.1 All-Play-All Algorithm

The most straightforward method to address the skyline problem

consists in comparing all the 𝑛 input elements with each other,

discovering in this way all the dominance and tie-with relations

among them. Having this complete information, for solving the

problem it is enough to provide as output the set of input elements

that are not dominated by any other input elements. We refer to

this method as the All-Play-All algorithm.

The All-Play-All algorithm can be seen as the extension of

the Round-Robin algorithm [1] (described in Section 3.3) to a

multidimensional scenario.

The number of worker comparisons required by the All-Play-

All algorithm are 𝑑
(𝑛
2

)
in a worst-case scenario and 2

(𝑛
2

)
in a best-

case scenario. Because under the threshold error model it is not

possible to achieve higher confidence by repeating the question to

multiple workers, 𝑑
(𝑛
2

)
worker comparisons is the maximum num-

ber of comparisons that an algorithm can perform in our scenario

(as already pointed in Section 3.2 and Section 3.3 for the Round-

Robin algorithm). Despite its cost inefficiency, the All-Play-All

algorithm has an optimal latency: a latency of 1.

The All-Play-All algorithm can provide in output an empty set

as skyline even if a real skyline exists for the input set. Because of

this unpleasant property, the All-Play-All algorithm has both an

unbounded covering and succinctness.

4.2 Naive Algorithm

Here we present another simple algorithm for the skyline problem:

the Naive algorithm. Naive is an iterative algorithm that maintains

a set of elements as dominated (D), initially equal to the empty set.

At each iteration it selects an input element that has not already

been discovered as dominated (i.e., not inD), and compares it (in all

dimensions using the workers) to all the other input elements not

in D. After each worker comparison, the algorithm updates the set

of dominated elementsD. Once all iterations have been performed,

Naive provides in output all the input elements that have been not

discovered as dominated during its execution: S := U \ D. We

present the pseudocode in Algorithm 1.

Differently from the All-Play-All algorithm, the Naive algo-

rithm cannot output an empty set and has a succinctness of 2.
5
But,

5
Details for this and the other algorithms will appear in the full version of this paper.

Algorithm 1: Naive

Data: U
Result: S

1 D ←− ∅ // set of dominated elements

2 for 𝑥 ∈ U do

3 if 𝑥 ∈ D then continue

4 for 𝑦 ∈ U \ (D ∪ {𝑥 }) do
// performing worker comparisons

5 if

∧
ℓ∈[𝑑] 𝑥 ≻ℓ 𝑦 then D ←− D ∪ {𝑦 }

6 if

∧
ℓ∈[𝑑] 𝑥 ≺ℓ 𝑦 then D ←− D ∪ {𝑥 }

7 return U \ D

similarly to the All-Play-All algorithm, the Naive algorithm has

an unbounded covering and a cost of 𝑑
(𝑛
2

)
worker comparisons in

the worst-case. Moreover, this algorithm has a latency of 𝑛 − 1 in
the worst case.

4.3 Algorithm SortedDims

The third algorithm that we describe, we call it the SortedDims

algorithm and it works as follows. It first sorts all the input elements

according to each of the 𝑑 dimensions independently using the 2-

Sort algorithm, obtaining for each dimension a sorted list of all

the input elements. By iterating over all input elements, it removes

from the candidate set all the elements that are ranked, in all the

sorted lists, below the element selected in the current iteration. The

candidate set is initialized with all the input elements. Algorithm 2

depicts the pseudocode of the SortedDims algorithm.

Algorithm 2: SortedDims

Data: U
Result: S

1 foreach ℓ ∈ [𝑑] do
2 Sort U along dimension ℓ using 2-Sort with workers, storing the result in Lℓ
3 S ←− U
4 foreach 𝑒 ∈ U do

5 S ←− S \ {𝑥 ∈ U :

∧
ℓ∈[𝑑] 𝑅𝑎𝑛𝑘Lℓ (𝑥) < 𝑅𝑎𝑛𝑘Lℓ (𝑒) }

6 return S

Note that for this algorithm, we used human workers only at

the beginning for the sorting phase (step 2) using the 2-Sort al-

gorithm, where every pairwise comparison has been submitted as

a crowdsourcing task. The sorting has to be performed for every

dimension because the dimensions are completely independent

and we do not assume any correlation among them. After having

the sorted results in all the dimension, the dominance tests and

the subsequent deletion of dominated items (step 5) is carried out

without any further crowdsourcing involvement.

SortedDims sorts in each of the 𝑑 dimensions independently

using 2-Sort. By Theorem 3.6, the number of worker comparisons

required for each of them is at most 4𝑛3/2, thus the total number

of worker comparisons is 𝑂 (𝑑𝑛3/2), in the worst case. Because

all the 2-Sort algorithms can run in parallel, the latency of the

SortedDims algorithm is equal to the maximum latency of all

the 2-Sort algorithms. Differently from the the Naive algorithm,

SortedDims has both a succinctness and a covering of 2.

4.4 Algorithm SingleDim

This algorithm can be seen as a particular version of the Naive

algorithm, in which, instead of iterating without any particular

order over the input set of elements, it iterates over them according

to the order obtained by sorting the input set of elements U in

relation to an arbitrarily chosen dimension.

The SingleDim algorithm maintains the skyline solution S and

a set C of candidate elements to be part of S. Initially, S is the

empty set and C is the entire set U. During its execution, the

algorithm removes from C elements found to be dominated by

elements in S. The algorithm starts by creating a list containing

all the input elements sorted according to an arbitrarily chosen

dimension ℓ , by performing worker comparisons. Then it iterates

over the sorted list from the highest to the lowest element. At each

iteration, SingleDim adds to S the element 𝑠 ∈ C that is ranked

highest in dimension ℓ , and removes it from C. By performing

additional worker comparisons, the algorithm removes from C also

all the elements that are dominated by element 𝑠 . We present the

pseudocode in Algorithm 3.

Algorithm 3: SingleDim

Data: U
Result: S

1 S ←− ∅
2 Select any dimension ℓ ∈ [𝑑].
3 Sort U along dimension ℓ using 2-Sort with workers, storing the result in Lℓ
4 C ←− U // set containing candidate elements to be in the skyline

5 𝑖𝑛𝑑𝑒𝑥 ←− |U |
6 while 𝑖𝑛𝑑𝑒𝑥 > 0 do

7 𝑠 ←− Lℓ [𝑖𝑛𝑑𝑒𝑥]
8 if 𝑠 ∈ C then

9 S ←− S ∪ {𝑠 }
10 C ←− C \ {𝑠 }
11 C ←− C \ {𝑐 ∈ C :

∧
𝑖∈[𝑑] 𝑐 ≺𝑖 𝑠 }

// we perform new worker comparisons even for 𝑖 = ℓ

12 𝑖𝑛𝑑𝑒𝑥 ←− 𝑖𝑛𝑑𝑒𝑥 − 1
13 return S

SingleDim performs worker queries in steps 3 and 11. By Theo-

rem 3.6, step 3 requires 4𝑛3/2 worker comparisons in the worst case.

Regarding step 11, the number of comparisons is upper bounded

by 𝑘𝑛𝑑 , where 𝑘 is the output size. Therefore the total number of

worker comparisons is 𝑂 (𝑛3/2 + 𝑘𝑛𝑑), where 𝑘 is the size of the

output skyline. So we see that in this case the cost is sensitive to

the output size. The latency of the SingleDim algorithm is equal

to the latency of the 2-Sort algorithm plus the size of the output

skyline. Differently from the the previous algorithms, SingleDim

has a succinctness of 2 and a covering of 1.

4.5 2-Sort Algorithm and QuickSort

As anticipated in Section 3.3, the 2-Sort algorithm is a funda-

mental method for both SingleDim and SortedDims. We modify

the algorithm 2-Sort and, as a result, we improve the algorithms

SortedDims and SingleDim, by reducing both cost and latency.

When we use this modified version of 2-Sort inside the Sorted-

Dims and SingleDim algorithms, we refer to them as SortedDims++

and SingleDim++, respectively.

In Algorithm 4, we report the pseudocode of the 2-Sort algo-

rithm adapted to our scenario. 2-Sort is a recursive algorithm,

which takes in input a set of elements—potentially lying on more

than one dimension—and a dimension index, and provides in output

a list containing all the input elements sorted with respect to the

specified input dimension. The algorithm makes use of the workers

only in step 3, where it performs the Round-Robin tournament to

elect the pivot element, and in step 5, where the input set is parti-

tioned in two subsets:𝑈≺ containing all elements deemed smaller

than the pivot by the workers according to the dimension ℓ , and

𝑈≻ containing all elements deemed greater than the pivot by the

workers according to the dimension ℓ . Because of the usage of the

crowd for two consecutive times in each invocation of the 2-Sort

algorithm, the latency of this algorithm is equal to two times the

height of its recursion tree.

The 2-Sort algorithm can be viewed as a generalization of the

well-knownQuickSort algorithm: by setting the internal param-

eter 𝑝 = 1, 2-Sort is equivalent to theQuickSort algorithm. Ac-

cording to [1], the internal parameter 𝑝 must be equal to ⌊
√
2|U|⌋

to achieve a number of worker comparisons at most equal to 4𝑛
3

2 .

Given all this information, we modify the 2-Sort algorithm

to keep a low number of worker comparisons in the average-case

together with low latency, and still a number of worker comparisons

of Θ(𝑛
3

2) in the worst-case scenario.

The first change concerns step 2 of the algorithm. Instead of se-

lecting in an arbitrary way the subset P of size 𝑝 , now the selection

is done randomly. This allows us to exploit all the benefits that

randomness gives to the average case. We also set 𝑝 = 1.

At this point, the modified 2-Sort algorithm is equal to the

QuickSort algorithm when the pivot choice is performed ran-

domly. This sorting algorithm has good performance in practice, an

𝑂 (𝑛 log𝑛) number of comparisons in the best and expected cases,

but still a

(𝑛
2

)
number of comparisons in the worst-case. Under the

threshold model, also this algorithm has an optimal error of 2𝛿 .

To keep the number of comparisons in the worst-case equal

to Θ(𝑛
3

2), we simply keep track of the number of unique pair-

wise worker comparisons during the execution of the modified

2-Sort with random subset selection of size 𝑝 = 1. During the

algorithm execution, in each recursive call, as soon as the number

of already performed worker comparisons plus the maximum num-

ber of worker comparison than can be performed in the current

call exceeds 4𝑛
3

2 , we force the next recursive calls to the 2-Sort

method to use a 𝑝 = ⌊
√
2|U|⌋. Given that, the number of worker

comparisons for the modified 2-Sort algorithm is not greater than

4𝑛
3

2 − 1 + 4𝑛
3

2 = 𝑂 (𝑛
3

2).
As already reported in [1], under the threshold model it is manda-

tory to use 2-Sort-like algorithms, because in most other common

sorting algorithm, errors resulting from imprecise comparisons

might accumulate, causing very low output quality.

Algorithm 4: 2-Sort

Data: U, ℓ ∈ [𝑑]
Result: L (sorted list of all elements of U)

1 𝑝 ←− ⌊
√
2 |U |⌋

2 Pick an arbitrary subset P ⊂ U of size 𝑝

3 Perform a Round-Robin tournament with workers among the elements of P
4 Let pivot be the element with the median number of wins in the Round-Robin

tournament

5 Compare pivot with all elements in U \ {pivot} with workers

6 𝑈≺ ←− {𝑢 ∈ U \ {pivot} : 𝑢 ≺ℓ pivot}
7 𝑈≻ ←− {𝑢 ∈ U \ {pivot} : 𝑢 ≻ℓ pivot}
8 return 2-Sort(𝑈≺, ℓ) + [pivot] + 2-Sort(𝑈≻, ℓ)

5 LOWER BOUNDS

In this section we provide two lower bounds on the number of

required worker comparisons, which show that the room for theo-

retical improvement of our algorithms is small.

First we prove a lower bound for the skyline problem under the

threshold model, which is independent of the skyline size. We prove

the following theorem, whose proof is based on the probabilistic

method [2] and is omitted for lack of space.

Theorem 5.1. Assume that 𝑑 ≥ 2 log
2
𝑛. Under the threshold error

model, the number of worker comparisons required in the worst case

to find the skyline of 𝑛, 𝑑-dimensional points is Ω(𝑑𝑛4/3) .

Next we present a second lower bound that does not consider

any error model but that depends on the output skyline size. It is

incomparable with the previous one; it can be smaller or larger. To

derive this lower bound on the number of pairwise comparisons

for our problem, we adapted the technique developed by Asudeh

et al. [4] (Theorem 2) in the context in which transitivity among

preference relations does not hold. We prove the following theorem.

Theorem 5.2. Consider an instance to the problem of computing

the skyline in the threshold model, and assume that the skyline output

of an algorithm, which does not contain dominated points, has size 𝑘 .

Then the algorithm must perform at least (𝑛 − 𝑘)
[
2 (𝑘 − 1) + 𝑑

]
+

2

(𝑘
2

)
= Ω((𝑛 − 𝑘) (𝑘 + 𝑑) + 𝑘2) worker comparisons.

6 EXPERIMENTS

To evaluate and compare the performance of our algorithms, we

performed experiments using different datasets typologies.

We studied the performance of our algorithms on random, semi-

synthetic, and real-world datasets. For the first two, we simulated

the behavior of a worker in the following way: when a worker is

asked to rank a pair of elements according to a particular feature

(dimension) whose value difference is below the threshold 𝛿𝑖 , each

element is chosen as the answer with probability 1/2. We chose

the values of 𝛿𝑖 manually, such that workers provide inaccurate

answers for a reasonable number of nearby elements: we chose 𝛿𝑖
equal to 10% and 5% of the maximum input value in the correspond-

ing dimension, for the random and the semi-synthetic datasets,

respectively. Of course, for the real-world dataset, there is no ex-

plicit value of 𝛿 ; it is implied by the workers accuracy. Recall, in

any case, that all our algorithms are agnostic to the value 𝛿 .

For the real-world dataset, we used the results from experiments

performed using data collected by real workers from thewell known

crowdsourcing marketplace Amazon Mechanical Turk (AMT).
6
We

also computed the lower bound on the number of worker compar-

isons according to Theorem 5.2.

6.1 Datasets

The random dataset allows us to create multiple input points and

study the performance of our algorithms as the number of points

increases in a controlled experiment. As a random dataset, we

generated points with nonnegative coordinates, which are inside

the hypersphere of radius 1 centered in the origin. We chose two,

6
Data and code are available at: https://github.com/fazzadr/Skyline_in_

Crowdsourcing_with_Imprecise_Comparisons.

https://github.com/fazzadr/Skyline_in_Crowdsourcing_with_Imprecise_Comparisons
https://github.com/fazzadr/Skyline_in_Crowdsourcing_with_Imprecise_Comparisons

three, and four dimensions, for input sets with a size that spans

from 100 to 5000 points.

The semi-synthetic dataset we used in our simulations is the

publicly available “California Housing Prices” (we refer to it as

Housing) dataset.
7
The dataset provides information about 20, 000

California city blocks. For conducting our simulations we selected

the following, self explanatory, four features: “housing-median-age-

within-a-block,” “number-of-households-within-a-block,” “median-

income-for-household-within-a-block,” and “median-house-value-

for-household-within-a-block.” We considered input sets with a size

that spans from 100 to 5000 city-blocks.

The real-world dataset we used in our experiments is the publicly

available dataset
8
created and used in [4]. This dataset collects 100

photos of the University of Texas at Arlington together with data

obtained by real workers from theAMT crowdsourcingmarketplace.

For each of the 4950 pairs of photos, the dataset contains 5 different

worker answers for each of the following three photo features (the

dimensions in our setting): color, sharpness, and landscape. The

possible answers that a worker was allowed to provide given a

pair of photos and a feature (dimension) in input (for example,

sharpness) where only three: “The first photo is preferred over the

second one, for the selected feature,” “The second photo is preferred

over the first one, for the selected feature,” and “The two photos

are incomparable, for the selected feature.”

6.2 Evaluation Metrics

To assess the quality of the algorithms’ output in practice, we define

the following two metrics that are coherent with the definition of

covering and succinctness provided in Section 3.4:

CoveringU (S) = max

𝑡 ∈T
min

𝑠∈S
min

𝑖∈[𝑑]
|𝑡𝑖 − 𝑠𝑖 |

𝛿𝑖

SuccintnessU (S) = max

𝑠∈S
max

𝑡 ′∈{𝑡 ∈T: ∀𝑖∈[𝑑],𝑡𝑖 ≥𝑠𝑖 }
min

𝑖∈[𝑑]

𝑡 ′
𝑖
− 𝑠𝑖
𝛿𝑖

,

whereU is the set of elements in input, S ⊆ U is the output subset

of elements provided by a skyline algorithm and T ⊆ U is the real

skyline of the input setU.

Because these quantitative versions of covering and succinctness

are applicable only when an explicit representation of the value

of each feature is present for every input point, we cannot rely on

these metrics for assessing the quality of the output in the experi-

ments with real crowdsourcing workers. For this reason, we adapt

some standard metrics developed for assessing the quality of rank-

ing systems to our scenario. In particular, we adapt the standard

normalized-discounted-cumulative-gain@k evaluation metric [17],

used for evaluating the quality of a ranking method, to the eval-

uation of the quality of the output of a skyline algorithm. The

adaptation is that we assign a relevance of 1 to every element inU
and that we consider as the rank of an element the rank of the sky-

line the element belongs to: Given a set of elementsU, the skyline

of rank 1 (𝑠𝑘𝑦𝑙𝑖𝑛𝑒1 (U)) is simply defined as the (true) skyline of

the setU. The skyline of rank 2 for a set of elementsU, is defined

as the skyline computed on the set of elementsU \ 𝑠𝑘𝑦𝑙𝑖𝑛𝑒1 (U).

7
https://www.kaggle.com/camnugent/california-housing-prices

8
https://github.com/idirlab/crowdpareto

More generally, the skyline of rank 𝑘 > 1 for a set of elementsU, is

defined as the skyline computed on the setU \⋃𝑘−1
𝑟=1 𝑠𝑘𝑦𝑙𝑖𝑛𝑒𝑟 (U).

Given the definition of 𝑠𝑘𝑦𝑙𝑖𝑛𝑒𝑟 (U) we define as the skyline-rank
of an element 𝑒 the rank of the skyline that contains it (i.e., the value

𝑟 such that 𝑒 ∈ 𝑠𝑘𝑦𝑙𝑖𝑛𝑒𝑟 (U)), and we denote it by sk-rankU (𝑒).
For evaluating the discounted-cumulative-gain@k of a subset

S ⊂ U, we consider the elements sorted according to their skyline

ranks. Let sortedU (S) be the list containing the elements ofS ⊂ U,

sorted according to their skyline rank.

Considering all these changes, we define the adapted-discounted-

cumulative-gain@k of a subset S of the input set of elementsU in

the following way:

𝐴𝐷𝐶𝐺U
𝑘
(S) =

𝑘∑
𝑖=1

1

log
2
(sk-rankU (sortedU (S)[𝑖]) + 1)

Accordinglywith its standard definition, we define the ideal-adapted-

discounted-cumulative-gain@k (𝐼𝐴𝐷𝐶𝐺𝑘) as the highest adapted-

discounted-cumulative-gain@k score that a subset of U of size 𝑘

can obtain.

Finally, the adapted-normalized-discounted-cumulative-gain@k

is defined as follows:

𝐴𝑛𝐷𝐶𝐺U
𝑘
(S) =

𝐴𝐷𝐶𝐺U
𝑘
(S)

𝐼𝐴𝐷𝐶𝐺U
𝑘

.

Finally, for evaluating the cost and latency of our methods, as

defined in Section 3.4, we consider the number of distinct pairwise

comparisons performed by workers (cost) and the maximum num-

ber of times our methods use the workers not in a parallel fashion

during their execution (latency).

6.3 Experimental Results

6.3.1 Experiments on the Random Dataset. Figure 2 shows the re-
sults from our experiments on the random dataset described in

Section 6.1 on two dimensions. Figure 2(a) shows that the worst-

case lower bound on the number of comparisons given by the theory

turns out to be much higher than the values that we observe on

average in practice. This can be explained by the fact that lower

bound is a function of the output size of the true skyline but the

algorithms return a smaller number of points: For 𝑛 = 5000, the

average size of the real skyline is of 85.61 points against an av-

erage size of 46.39 for SingleDim, 47.11 for SingleDim++, 21.63

for SortedDims, 22.15 for SortedDims++, and 7.29 for the Naive

method. All the proposed methods seem to have the same perfor-

mance in terms of cost, with the Naive method being the cheapest

one. SingleDim is slightly more expensive than SortedDims, and

so is SingleDim++ compared to SortedDims++. We can also ob-

serve that the plus-plus algorithms are cheaper than their original

counterparts, making SortedDims++ and SingleDim++ the cheap-

est ones with theoretical guarantees, showing the effectiveness of

the optimizations performed on their original versions.

Regarding the latency, Figure 2(b) shows that the experimental

findings are completely in agreement with the theoretical analysis

of the methods: SortedDims (and SortedDims++) has a lower

latency than SingleDim (SingleDim++), and the plus-plus versions

have a lower latency than their original versions. Despite the fact

that the Naive method has a latency of 𝑛 − 1 in the worst-case,

Figure 2(b) shows that Naive has a little lower latency than Sin-

gleDim++ for this dataset.

According to Figures 2(c) and 2(d), both SortedDims and Sin-

gleDim have the same value of succinctness and covering of their

plus-plus versions, showing that the optimizations performed on

their original versions have not affected the provided level of suc-

cinctness and covering not even in practice. All algorithms have al-

most the same level of succinctness, with the exception of the Naive

method. Regarding the covering, SingleDim and SingleDim++ ob-

tain the best score: this is in agreement with the fact that SingleDim

and SingleDim++ have a covering of 1, instead SortedDims and

SortedDims++ have a covering of 2. Despite the fact that all meth-

ods have a succinctness of 2, Naive obtains the best level of suc-

cinctness among them: this can be attributed to the small size of

its output, relatively to the other methods. The small size of the

output skyline, together with an unbounded covering, explains the

fact that Naive has the worst level of covering in the conducted

experiments.

Overall, Figure 2 shows that SortedDims++ achieves a good

tradeoff among all the considered methods: it always achieves at

least the second-best performance for the considered evaluation

metrics.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0

2

4

6

8

Co
st

×105

SortedDims
SortedDims++
SingleDim
SingleDim++
Naive
WC LowerBound

(a) Cost.

0 600 1200 1800 2400 3000 3600 4200 4800
n

10

20

30

40

50

60

70

80

La
te
nc

y

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(b) Latency.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Su
cc
in
ct
ne

ss

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(c) Succinctness.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
ve

ri
ng

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(d) Covering.

Figure 2: Average and standard deviation (over 100 repeti-

tions for each input set size) of cost, latency, succinctness,
and covering provided by our algorithms on the random
dataset for various input sizes (𝑛) in two dimensions.

6.3.2 Experiments on the Semi-Synthetic Dataset. Figure 3 show
the results from our experiments on the semi-synthetic Housing

dataset on four dimensions. Figure 3(a) compares the algorithms

in terms of cost and shows that also in this dataset the cost given

by the worst-case theoretical lower bound is higher than what

we observe in practice, again explained by the large dimension

of the ground-truth-skyline: for 𝑛 = 5000, the average size of the

real skyline is of 58.96 points against an average size of 49.25 for

SingleDim, 51.11 for SingleDim++, 71.14 for SortedDims, 70.1 for

SortedDims++, and 27.42 for the Naive method.

Differently from the random dataset, Figure 3(a) shows that the

cheapest method is SingleDim++: this fact is in concordance with

the theoretical cost analysis of the method and emphasized by

the presence of four dimensions instead of two. The fact that Sin-

gleDim++ and SingleDim are cheaper than SortedDims++ and

SortedDims, respectively, can explained by the fact that the points

are in four dimension and the cost of the first two methods is less

dependent to the number of dimensions than the second ones. More-

over, coherently with the experiments performed on the random

dataset, the plus-plus algorithms are again cheaper than their origi-

nal counterparts. In contrast with the experiments performed on

the random dataset, Naive is no more the cheapest one, reporting

a cost similar to the one for SortedDims++.

Regarding the latency, Figure 3(b) shows that the experimental

findings are completely in agreement with the theoretical analysis

of the methods: SortedDims (SortedDims++) has a lower latency

than SingleDim (SingleDim++), the plus-plus versions have a lower

latency than their original versions, and the Naive method gave

the highest level of latency.

Similarly to the experiments performed on the random dataset,

Figures 3(c) and 3(d) show that both SortedDims and SingleDim

obtain the same value of succinctness and covering with their plus-

plus versions. Regarding the covering, Figure 3(d) shows that all

methods achieve the same good level of covering, with Naive per-

forming slightly worse than the other methods. Figure 3(c) shows

that also for the Housing dataset, Naive achieves the best level of

succinctness, followed by SingleDim and SingleDim++, and then

by SortedDims and SortedDims++.

Overall, Figure 3 shows that SingleDim++ is the preferable al-

gorithm among all the considered methods: it essentially achieves

the best performance in terms of covering and cost, while keeping a

latency that is second only to the methods based entirely on sorting

(SortedDims and SortedDims++) and the second-best level of

succinctness.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0

1

2

3

4

5

6

7

Co
st

×105

SortedDims
SortedDims++
SingleDim
SingleDim++
Naive
WC LowerBound

(a) Cost.

0 600 1200 1800 2400 3000 3600 4200 4800
n

20

40

60

80

100

120

140

La
te
nc

y

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(b) Latency.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Su
cc
in
ct
ne

ss

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(c) Succinctness.

0 600 1200 1800 2400 3000 3600 4200 4800
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
ve

ri
ng

SortedDims
SortedDims++

SingleDim
SingleDim++

Naive

(d) Covering.

Figure 3: Average and standard deviation (over 100 repeti-

tions for each input set size) of cost, latency, succinctness,
and covering provided by our algorithms on semi-synthetic
“Housing” datasets for various input sizes (𝑛) in four dimen-

sions.

6.3.3 Experiments Using a Real Crowdsourcing Marketplace. The
last set of experiments regards the real-world crowdsourcing setting

and the findings are summarized in Figure 4. For each subfigure, the

box plots represent the distribution of values of the specified metric

obtained from 1000 different algorithms’ executions. Each time

that one of our algorithms asks for a comparison to the workers, a

random answer among all five collected answers from the crowd

is selected as the worker’s answer. We also never provide to the

crowd the same comparison twice. Following Asudeh at al. [4],

we assumed as ground-truth the skyline obtained considering as

correct answer the one obtained applying majority voting to the

five answers provided by the dataset. For this dataset, we do not

report covering and succinctness evaluations because we do not have

an explicit representation of the elements in the space.

Recalling Section 6.1, for this experiment the input set of el-

ements has size 100 and consists of photos of the University of

Texas at Arlington. The number of dimensions is 3, corresponding

to three photo features: color, sharpness, and landscape. Given the

relative small size of the input set of elements, here we also tested

the performance of the All-Play-All method.

According to Figure 4(a), differently from the previous two ex-

periments, the number of worker comparisons provided by the

output-sensitive worst-case lower bound (Theorem 5.2) is smaller

than the one that our algorithms performed (with the exception

of some executions of the Naive method). Regarding the cost (Fig-

ure 4(a)) and latency (Figure 4(b)), the SortedDims++ and Sin-

gleDim++ methods have better performance than the original ver-

sions (SortedDims and SingleDim), while keeping the same level

of quality for the output skyline (Figure 4(c) and Figure 4(d)). This

result shows the effectiveness of the optimizations performed on

their original versions, for the real-world dataset as well.

Despite the fact that the All-Play-All method has an optimal

latency of 1 (Figure 4(b)), the method performed a median of 12, 770

worker comparisons on this dataset: this number is completely out

of scale and this is the reason behind the absence of this method in

Figure 4(a). Moreover, because of the presence of empty skylines in

output, the All-Play-All algorithm has zero score for both metrics

shown in Figures 4(c) and 4(d).

The Naive method has a median cost essentially equal to the

median cost of the SingleDim method, but with a much wider

distribution. Regarding themedian latency value, the Naivemethod

is only worse than SortedDims++ and, of course, than All-Play-

All (which has the optimal latency of one). According to Figures 4(c)

and 4(d), the quality of the skylines in output by the Naive method

have a level of quality not higher than the ones provided by the

methods with guaranteed succinctness and covering, despite the fact

that it never provided an empty skyline in output: this confirms

the observations of Section 4.2.

For a ground truth skyline size of 3, the median of the distribu-

tions of the output skyline sizes provided by all the tested methods

are the following: 4 for All-Play-All, 5 for Naive, 9 for both

SortedDims and SortedDims++, and 10 for both SingleDim and

SingleDim++.

Overall, according to the experimental results depicted in Fig-

ure 4, the SingleDim++ method provided in output the skylines

with the highest level of quality at the cheapest cost, but at a higher

latency than the other methods (with the exception of the Sin-

gleDim method).

WC LowerBound
Naive

Sorte
dDims

Sorte
dDims++

SingleDim

SingleDim++

750

1000

1250

1500

1750

2000

2250

Co
st

(a) Cost.

All-
pla

y-A
ll

Nai
ve

Sor
ted

Dim
s

Sor
ted

Dim
s++

Sin
gle

Dim

Sin
gle

Dim
++

0

5

10

15

20

25

30

35

La
te
nc

y

(b) Latency.

All-p
lay-All

Naive

Sorte
dDims

Sorte
dDims++

SingleDim

SingleDim++
0.0

0.2

0.4

0.6

0.8

1.0

Ad
ap

te
d

nD
CG

 a
t

Al
go

ri
th

m
 S

ky
lin

e
Si

ze

(c) Adapted nDCG computed at

output size.

All-p
lay-All

Naive

Sorte
dDims

Sorte
dDims++

SingleDim

SingleDim++
0.0

0.2

0.4

0.6

0.8

1.0

Ad
ap

te
d

nD
CG

 a
t

G
ro

un
d-

Tr
ut

h
Sk

yl
in

e
Si

ze

(d) Adapted nDCG computed at

Ground-Truth size.

Figure 4: Distributions of cost, latency, and adapted normal-

ized discounted cumulative gain provided by our algorithms

on the real-world dataset; results calculated over 1000 inde-

pendent executions on 100 elements lying on 3 dimensions.

7 CONCLUSION AND FUTUREWORK

In this paper we continued the study of the problem of skyline

computation in the context of crowdsourcing. Following prior work

on crowdsourcing, we considered the threshold error model for

modeling the human comparisons. We provided algorithms and

close lower bounds. We then evaluated the performance or our

approaches on a variety of synthetic and real data.

There are some problems that are open. First, there is a small gap

between the lower bounds and our algorithms, which we would

like to be closed. Note that for the output-independent bound, this

would require some significant theoretical improvement of the work

in [1], which is a component of our algorithms.

On a broader scope, in this work we followed a large tradition

in the analysis of algorithms in crowdsourcing, and we used the

comparison of two elements as a primitive. This allows for a clean

formulation of the problem and a theoretical analysis. Often, how-

ever, humans use different primitives. For instance, they may assign

some subjective score to some of the elements. How such an ap-

proach can be used to model finding the skyline is an interesting

modeling and algorithmic problem.

REFERENCES

[1] Ajtai, M., Feldman, V., Hassidim, A., and Nelson, J. Sorting and selection with

imprecise comparisons. ACM Trans. Algorithms 12, 2 (Nov. 2015).

[2] Alon, N., and Spencer, J. H. The Probabilistic Method, 4th ed. Wiley Publishing,

2016.

[3] Anagnostopoulos, A., Becchetti, L., Fazzone, A., Mele, I., and Riondato,

M. The importance of being expert: Efficient max-finding in crowdsourcing. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data (New York, NY, USA, 2015), SIGMOD ’15, Association for Computing

Machinery, p. 983–998.

[4] Asudeh, A., Zhang, G., Hassan, N., Li, C., and Zaruba, G. V. Crowdsourcing

pareto-optimal object finding by pairwise comparisons. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management

(New York, NY, USA, 2015), CIKM ’15, ACM, pp. 753–762.

[5] Borzsony, S., Kossmann, D., and Stocker, K. The skyline operator. In Proceed-

ings 17th International Conference on Data Engineering (April 2001), IEEE Comput.

Soc, pp. 421–430.

[6] Chomicki, J. Preference formulas in relational queries. ACM Trans. Database

Syst. 28, 4 (Dec. 2003), 427–466.

[7] Das Sarma, A., Lall, A., Nanongkai, D., and Xu, J. Randomized multi-pass

streaming skyline algorithms. Proc. VLDB Endow. 2, 1 (Aug. 2009), 85–96.

[8] Feige, U., Raghavan, P., Peleg, D., and Upfal, E. Computing with noisy infor-

mation. SIAM Journal on Computing 23, 5 (1994), 1001–1018.

[9] Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A., and Ver-

roios, V. Challenges in data crowdsourcing. IEEE Transactions on Knowledge &

Data Engineering 28, 04 (apr 2016), 901–911.

[10] Groz, B., Mallmann-Trenn, F., Mathieu, C., and Verdugo, V. Skyline compu-

tation with noisy comparisons. In Combinatorial Algorithms - 31st International

Workshop, IWOCA 2020, Bordeaux, France, June 8-10, 2020, Proceedings (2020),

L. Gasieniec, R. Klasing, and T. Radzik, Eds., vol. 12126 of Lecture Notes in Com-

puter Science, Springer, pp. 289–303.

[11] Groz, B., and Milo, T. Skyline queries with noisy comparisons. In Proceedings

of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (New York, NY, USA, 2015), PODS ’15, ACM, pp. 185–198.

[12] Kung, H. T., Luccio, F., and Preparata, F. P. On finding the maxima of a set of

vectors. J. ACM 22, 4 (Oct. 1975), 469–476.

[13] Lofi, C., El Maarry, K., and Balke, W.-T. Skyline queries in crowd-enabled

databases. In Proceedings of the 16th International Conference on Extending Data-

base Technology (New York, NY, USA, 2013), EDBT ’13, Association for Computing

Machinery, p. 465–476.

[14] Sacharidis, D., Papadopoulos, S., and Papadias, D. Topologically sorted sky-

lines for partially ordered domains. In 2009 IEEE 25th International Conference on

Data Engineering (2009), pp. 1072–1083.

[15] Thurstone, L. L. A law of comparative judgment. Psychological Review 34, 4

(1927), 273–286.

[16] Venetis, P., Garcia-Molina, H., Huang, K., and Polyzotis, N. Max algorithms

in crowdsourcing environments. In Proceedings of the 21st International Conference

on World Wide Web (New York, NY, USA, 2012), WWW ’12, Association for

Computing Machinery, p. 989–998.

[17] Wang, Y., Wang, L., Li, Y., He, D., and Liu, T.-Y. A theoretical analysis of ndcg

type ranking measures. In Proceedings of the 26th Annual Conference on Learning

Theory (Princeton, NJ, USA, 12–14 Jun 2013), S. Shalev-Shwartz and I. Steinwart,

Eds., vol. 30 of Proceedings of Machine Learning Research, PMLR, pp. 25–54.

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Problem Definition
	3.1 The Skyline Problem
	3.2 The Threshold-Error Model
	3.3 Basic Results on the Threshold Model
	3.4 Skyline Under the Threshold Model

	4 Algorithms
	4.1 All-Play-All Algorithm
	4.2 Naive Algorithm
	4.3 Algorithm SortedDims
	4.4 Algorithm SingleDim
	4.5 2-Sort Algorithm and QuickSort

	5 Lower Bounds
	6 Experiments
	6.1 Datasets
	6.2 Evaluation Metrics
	6.3 Experimental Results

	7 Conclusion and Future Work
	References

