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Abstract—We present here an IoT-based platform that provides
an integrated solution for real-time monitoring and management
of educational buildings at a national scale. The proposed
system follows the Fog Computing paradigm so that sensor data
processing takes place at the edge devices of the network. In this
way, the system significantly reduces the network traffic across
the network core layers. The architecture and implementation of
the system are presented in details in relation to existing use-
case scenaria. The performance of the prototype architecture
is evaluated in a real-world environment using a range of edge
devices available in a pilot deployment spanning across 18 school
buildings. The evaluation indicates that existing resources are
sufficient to accommodate traffic that can increase up to 5 times
higher from the existing one even in sites where low-end devices
(e.g., such as Raspberry Pi) are available. The results provide
evidence that Fog Computing can address the ever-increasing
amount of data that is inherent in an IoT world by effective
communication among all elements of the architecture.

I. INTRODUCTION

Public educational systems on a national level involve the
operation and management of a massive number of build-
ings that possess vastly different characteristics in terms of
size, age, location, construction, thermal behavior and user
communities, among other, while at the same time such
buildings can be situated in a very fragmented manner. At
national level, public educational systems operate thousands of
buildings, i.e., one could envision a system to handle energy-
related aspects at a massive scale. In many cases, the size of
such institutions’ assets outclasses even those of multinational
corporations. The energy and environmental impact caused by
public educational buildings via their complex activities and
operations in teaching and research, as well as provision of
support services could be considerably reduced by an effective
choice of organizational and managerial measures. To design
and operate a set of sustainable public educational buildings
it is necessary to factor a number of parameters such as the
interaction of indoor-outdoor environment, strategic planning
and operational processes.

An interesting aspect regarding the energy efficiency of
schools is the fact that historically, energy expenses in public
educational systems have been treated as relatively fixed

and inevitable. Evidence shows that a focus on energy use
in schools yields an array of important rewards in concert
with educational excellence and a healthful learning environ-
ment [1]. Since energy costs are the second largest expenditure
within public educational systems budgets, exceeded only by
personnel costs [2], significant savings can be carved out,
if energy consumption can be reduced. We expect that an
IoT infrastructure can help improve the organizational and
managerial measures that will lead to a reduction of energy
consumption by actively involving the school staff (e.g., school
directors, building managers, custodial staff and teachers) in
fostering a culture of energy conservation. If empowered to
do so, building managers and custodial staff can offer critical
insights about ways to lower a buildings energy footprint
through effectively managing building operations [3]–[5].

The dominant approach followed by large industries focused
SMEs and startups is the development of cloud-based IoT
platforms that simplify the interconnection of smart devices,
the collection of data generated to the cloud, and the central
processing of the information utilizing other cloud-based ser-
vices [6]. This work studies a cutting-edge IoT infrastructure
deployed over 18 educational buildings across 3 countries,
comprising over 900 IoT monitoring points, providing data for
energy consumption in several points in each building, as well
as outdoor and indoor environmental data [7]. The energy con-
sumption meters monitor the overall electricity consumption
in these buildings, as well as in specific building sectors/floors,
or teaching rooms. The electricity data are complemented by
indoor/outdoor environmental data for temperature, humidity,
room occupancy, noise levels, and other sensors that can paint
an accurate picture of the environmental conditions inside and
outside the aforementioned buildings. In its current setup, this
pilot deployment produces daily over 400MB of data, resulting
in a yearly data volume of approximately 140GB. However,
the current setup uses averaging to minimize the required
storage space. For obtaining near real-time information on
the building status, it is necessary to shorten the averaging
period (now set to 5 minutes), an approach that will lead
to significant data volume increase. In this context, sensors
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comprising an IoT infrastructure deployed at a national level
over a large number of public educational buildings will
generate, handle, transfer and store a tremendous amount of
data, which cannot be processed in an efficient manner using
current cloud platforms and techniques.

It is evident that the cloud-based approach needs to ad-
dress multiple performance issues appearing at all levels of
the network architecture while transferring massive datasets
collected from the sensors and delivered to distant machine
clouds: (a) network bandwidth issues at the network edge,
(b) network energy consumption as traffic flows through the
network core, (c) continuous I/O operations on the data centers
where datasets are stored, (d) increased exposure of data across
third-party cloud-based services. As stated in [8] minimal
possible latency, network bandwidth preservation, increased
security and enhanced reliability are elements of paramount
importance for any IoT-related application. The necessity for
data collection, storage and availability across large areas, the
demand for uninterrupted services even with intermittent cloud
connectivity and resource constrained devices [9], along with
the necessity of sometimes near-real-time data processing in
an optimal manner, create an amalgam of challenges where
only radical and holistic solutions apply.

Fog computing was conceived as a distributed computing
paradigm delivering computational resources, storage and con-
trol to consumers, through an intermediate operations layer
strategically placed between the secluded cloud data centers
and end-user equipment. This approach greatly alleviates
bandwidth consumption, increases the data processing capacity
of isolated nodes, reduces latency and provides additional se-
curity and reliability while accelerating system responsiveness.

In this paper, a Fog Computing based approach is presented
that takes advantage of the resources available at the edge
of the network. Data arriving from the sensors are analyzed
directly at the edges of the network and only aggregated
information are forwarded to the cloud. The prototype archi-
tecture proposed is generic enough to cover a broad range
of applications. The performance of the solution is evaluated
based on a real-world deployment of 18 school buildings
using the edge devices available. The results indicate that
the resources are sufficient to process even 5 times higher
traffic than the one currently accommodated by the real-world
deployment even in cases where low-end devices (e.g., such
as Raspberry Pi) are available.

II. RELATED WORK

Obtaining reliable access to the potentially huge number
of sensor data originating from the IoT domain has always
been a challenging issue. Since several low-end devices are
involved, the notion of in-network aggregation and on-the-
spot data management was considered as a viable solution
due to its inherent ability to combine heterogeneous datasets
from a broad spectrum of sources within a specific timeframe
and deliver an elevated end-user quality of experience [10],
[11]. The aforementioned techniques were always considered
working in parallel with lower-level medium access control

protocols as well as network-level routing ones. An overview
of different techniques and existing protocols is presented in
[12].

With the advent of Big Data, several map-reduce-related
approaches were introduced [13] (e.g., Apache Spark1) that
essentially conduct the overall analysis in distinct batches.
A survey of possible stream processing optimizations and
variations is presented in [14]. These solutions take into
consideration the internal logic of the components that con-
stitute the high-level application [15] and appear capable of
confronting several of the intrinsic limitations of cloud thus
alleviating the deployment of services with low or even zero
tolerance for latency delays.

In addition to sensor-originating traffic management and
dataset handling, precise energy monitoring and conservation
methods are aspects of great interest, mostly due to the imbal-
ance between power generation and demand. Smart Grids [16]
appear to be an excellent playground for smart power meters
based on advanced sensors and IoT-related technologies, there-
fore an independent layer of communication and information
handling like the one existing in the Fog Computing paradigm
would enhance the monitoring frameworks’ overall robustness
and efficiency. When it comes to private residential energy
monitoring solutions, several prototypes for domestic power
consumption estimation have been presented [17], unfortu-
nately with the limited ability to calculate expenditure pat-
terns and relatively small-scale deployment capabilities. Other
prototypes such as [18] only focus on low price, therefore
offer a limited set of features, totally lacking the ability of
data manipulation and local storage. A more holistic approach
to real-time building energy modeling through IoT device
integration along with structural information extraction per
building from dedicated databases is presented in [19], [20].
This work exploits the advances in physical and environmental
information sensing, communication and processing offered
by IoT together with the now available digital repositories
of buildings and districts. The authors present an interesting
prototype which supports near-real-time energy consumption
visualization, yet with limited scaling ability without an ex-
plicit provisioning process.

The notion of local data pre-processing to reduce data
transfer between nodes was considered by [21], [22]. This
approach appears to be much more suitable for the somehow
limited transfer capacity intermediate layer of Fog Computing,
where the vastly increased number of interconnected nodes
will render dataset transmission inefficient and significantly
expensive in terms of resources. This is the compelling reason
that our approach fully exploits local preprocessing thus alle-
viating the shortages in both bandwidth and throughput every
network occasionally faces.

III. PROTOTYPE ARCHITECTURE FOR
FOG-COMPUTING-AWARE DEPLOYMENTS

Designing an IoT infrastructure deployment over Public
Education Systems on a national level entails a broad range

1http://spark.apache.org/
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Fig. 1: Fog Computing IoT architecture

of functional and non-functional requirements. The platform
will be deployed over literally thousands of buildings spread
throughout a country (multi-site deployments). It is reasonable
to expect a diverse set of device providers working under
the same interoperability framework (device heterogeneity).
A number of different sensors will be installed ranging from
energy sensors to indoor and outdoor environmental sensors,
motion sensors, etc., generating different data (data variety).
Such a platform will be used by a broad variety of people-
centric applications [23] that will facilitate the educational
sector towards improving the energy efficiency of school build-
ings (user diversity). Certain users (e.g., building managers)
will require real-time monitoring of the buildings while other
users (e.g., students, teachers) will require aggregated numbers
as educational material and student projects (data velocity).

A. Use-case Scenaria & Data Access

The availability of actual measurements of environmental
parameters, such as energy consumption, indoor and outdoor
luminosity, temperature, noise, pollution, etc., can feed a
plethora of people-centric information, education, and involve-
ment initiatives in order to effectively change the ways people
live and work inside school buildings and achieve better energy
efficiency. This means, on the one hand, to better inform
people and enable them to make educated decisions, and on
the other hand to enable a whole different set of applications,
like gamification apps that bridge the virtual world with the
real one, towards the end-goal of such systems. We here focus
on three specific use-case scenaria:
Education: Teachers use collected data and analytics during
the class to explain to pupils basic phenomena related to the
parameters monitored.
Students’ engagement: Teachers organize student projects
where students (or group of students) monitor specific envi-
ronmental parameters.
Building management: Collected data are analyzed and used
to profile the energy performance of the building and specific
equipment. The availability of data from similar schools and/or
similar equipment allows to do some benchmarking and sup-

porting decisions for preventive maintenance or substitution of
existing equipment.

B. Data Engineering on the Fog layer

Given the heterogeneity of the hardware devices, data
collected from the sensors are in different units, measure
slightly different physical phenomena (e.g., carbon dioxide
CO2 vs equivalent carbon dioxide eCO2) and with different
calibrations. It is usual for sensor devices to experience
transient disconnections leading to missing data over certain
periods. In other cases, the low-quality of the sensors produce
erroneous data that may affect studies of any time series.
It is thus important that data received from the sensors are
continuously processed and curated automatically. A graphical
representation of the internal services of the fog layer is
included in Fig. 2.
Stream Processing Pipeline: All data messages retrieved from
the IoT end-devices are circulated within the edge device over
a message bus system that is responsible for distributing the
information gathered to the various subsystems responsible
for storing and processing the data or generating alerts. The
message bus system offers us the flexibility to introduce data
processing, transformation, and aggregation mechanisms at
different layers of the architecture depending on the needs of
the high-end application. Internally the message bus assigns
a dedicated stream processing pipeline for each separate
sensor supported by each end device. Sensor data streams
are assigned unique names that are derived from the unique
network address of the sensor device producing the data, the
type of sensor and the unique ID of the edge device.

The message bus layer offers us the ability to store data in
a scalable way at different layers of the architecture: (a) data
are formatted for near-instantaneous retrieval, thus avoiding
time-consuming queries and aggregations; (b) a cache-like
mechanism is available for providing recent data for a specific
sensor devices or collection of end-devices using a single
lookup in near-located storage service; (c) older historical
measurements are stored in a deep storage service that is used
only when measurements that are older than the ones provided
by the first service. This decoupling of the data generators and
the data storage services allows us to implement a broad range
of services that need to optimize different performance criteria.
Generic Data Processing: After the creation of the stream
processing pipeline, all data received are initially processed
based on a set of generic data processing functions. In this
sense the edge device becomes the “primary” processing point
for the curation and aggregation of all data arriving from the
end devices (see Fig. 2). The first step of the processing
pipeline is to identify the presence of erroneous data that
adversely affects the study of any time series. At this step, we
identify outliers (i.e., new observation points that are distant
from the historic values) that may be due to transient errors
occurring on the sensor device and should be excluded from
the data set. The second step applies a 5-minute moving
window to average and smooth out short-term fluctuations.
The third step is used to address temporary disconnections



Fig. 2: High-level Architecture, Data analytics at the Fog layer and Data flow

Fig. 3: Histogram of indoor temperature for the evaluation
of thermal comfort of two different classrooms

of the sensor devices that lead to missing values. A simple
local algorithm identifies the absence of data and based on the
historic values introduces mean values to fill in the missing
data.
Continuous Data Analysis: As soon as the 5-minute values are
processed for each separate sensor stream, they are aggregated
based on a variety of functions (e.g., min/max/mean), and
different intervals (e.g., 1-hour, 1-day). Furthermore first-order
and second-order analysis is applied to each separate stream
to identify local maxima/minima and basic measures on the
slope of the data. The resulting data are persisted in the storage
available at the edge device and are also forwarded to the
cloud layer. As an example of the continuous data aggregation,
Fig. 3 depicts a histogram of the indoor temperature of a
specific classroom that is generated automatically as part of
the evaluation of the thermal comfort of each classroom.
Application Specific Processing: Depending on the application
different data processing is required. Users specify the rules for
data-driven processing and event-based response using JSR-
000335 lambda expressions2. These specifications are injected
into the edge device and decomposed based on the sensor
data that they process as well as the time-windows used for
processing the stream of data. As part of educational activities,
teachers need to examine the relationship between indoor and

2https://jcp.org/aboutJava/communityprocess/final/jsr335/index.html

Fig. 4: Application specific sensor data processing that are
included in classroom educational material

outdoor environmental conditions to address topics related
insulation, air quality, etc. A common approach is to apply a
linear regression for modeling the relationship between scalar
dependent variables and one or more explanatory variables
(or independent variables). For example, in Fig. 4 indoor
and outdoor temperature are compared to explain how the
orientation of a building affects the thermal comfort.

C. Services on the Cloud layer

The cloud layer is providing certain features to facilitate
uniformity of security and information exchanges across all
edge devices and in general facilitate the overall compliance
of the prototype to the fog computing principles of security,
efficiency, and enhanced reliability.
Identity Management. The Identity Management service is
used to provide authentication to all users and covers a number
of aspects involving users’ access to services and applications,
including secure and private authentication from mobile de-
vices and the web application or user profile management and
privacy-preserving disposition of personal data. Generating a
new identity requires providing a minimum set of information
that is stored on an encrypted database. The information
associated with the account is only accessible by the user and



TABLE I: Technical specifications of edge devices

Raspberry Zotac VPS
Processor BCM2836 Arm7 i3-3120M E5-2630V4
Frequency 900MHz 2.2GHz 2.2GHz
Cores 1 2 6
Memory 736 MB 8 GB 24 GB
Disk 64GB 120GB 600GB
Type SD Card class10 SSD SSD

those users that are authorized to do so. All other services (and
users) cannot decrypt the information and thus all information
accessed is anonymized.
Historic Events: Accessing historical data is crucial for build-
ing monitoring applications, e.g., when comparing historical
data from different time spans and building areas. This cloud
service ensures that data from different buildings (i.e., arriving
from different edge devices) are stored on a common logical
place and can be accessed without delays independently of the
targeted time interval.
Telemetry: Monitoring and managing multiple buildings of a
Public Educational System also requires real-time access to
remote buildings. The Telemetry service allows the interaction
with specific edge devices in order to provide a direct link
to the raw sensor data collected. This interaction is two-way,
allowing building managers to remotely operate devices (e.g.,
switch off/on lights, HVAC).
Data Analysis: The Data Analysis service allows to organize
large volumes of data and visualize them from different
points of view. In order to improve the flexibility of business
intelligence this service stores sensor annotations and their
metadata (e.g., observed properties, units of measurements or
locations) as part of a graph database and thus allows to do
complex relation queries like retrieving the list of available
temperature sensors in multiple locations simply by running
a graph traversal query. In this way, we completely avoid the
need for the preconfiguration of the IoT infrastructure and the
fixed routing of data through the various cloud-based services
that constitute the resulting system.

IV. PERFORMANCE EVALUATION

We evaluate the prototype architecture by deploying an
experimental implementation on the edges of the pilot IoT
deployment of 18 school buildings provided spread in 7
locations [7]. Three different edge devices were used: two low-
power single-board devices (a Raspberry PI and a Zotac a low-
end Intel-based system), and also an off-the-shelf Intel-based
edge-based server box. Their exact specifications are summa-
rized in Table I. The software deployed on the devices is
bundled using a collection of Docker containers that guarantee
that the exact same software (and configuration parameters) is
executed on each edge device regardless of the actual operating
system type and version used. The software is configured to
use only 1 core so that we can produce comparable results
among the three different edge devices used. For the case of
the Zotac and VPS devices we can improve the performance by
increasing the number of cores. However this requires further
analysis that due to the space limitations are not included.

TABLE II: NET I/O in MB

Service Raspberry I/O Zotac I/O VPS I/O
Stream Procesing Pipeline 101 / 26.9 88.6 / 17.3 89.1 / 15.9
Generic Data Processing 79.8 / 82 78.2 / 79.9 79.4 / 80.4
Continuous Data Analysis 6.62 / 5.37 2.03 / 1.97 0.45 / 0.46

On the pilot IoT deployment, on average 15 sensing devices
are available on each school. Each of them is equipped
with 1 to 5 sensors, providing data for attributes like energy
consumption, outdoor and indoor environmental data [7] in
several points in each building. The actual sensing rate is
30sec thus on average each edge device is receiving 2.5 sensor
updates every second. Given this real-world deployment, we
record a total of 70000 actual messages containing sensor
data generated from 100 different end devices located at
different places in the pilot IoT deployment. These recordings
of message traffic are organized in one data set that is injected
on the incoming message queues of each individual edge
device. In order to stress the performance of each edge device,
the sampling rate is increased to 12 messages per second -
which is almost 5 times higher than the actual requirements
of the existing IoT deployment. The experiment is repeated
for each different type of edge device available.

The first goal of the evaluation is to measure the network
bandwidth required, the average processing rate, and the
processing latency of services executed on the Fog layer
per sensor measurement. Table II indicates the values of the
network I/O traffic for each individual service operated at the
Fog layer. Recall from Sec. III that the Stream Processing
Pipeline organizes the exchange of the sensor data across the
rest of the services. The Generic Data Processing module does
the hard part of calculating the updates on the sensor data
in real time. Finally, the Continuous Data Analysis module
finalizes the computation and coordinates the persistence of the
resulting data in a uniform way across all levels of the edge
and the cloud, as needed. Observe that all services achieve
very similar traffic levels. Since the same message traffic is
replayed to each edge device and since all three devices are
executing exactly the same software stack, it is reasonable to
expect that some minor fluctuations will exist.

The second goal is to assess the CPU utilization of the edge
devices. During the experiment, we record the CPU utilization
time of the processors of each edge device. As expected, the
Raspberry Pi is processing the message stream at its maximum
capacity - the CPU utilization is continuously at 100% while
for the Zotac and the VPS this is not the case, as the CPU
utilization is always around 10% − 25%. Furthermore, the
average processing rate of the Fog layer is recorded for each
edge device. The results are depicted in Table III. In the case
of Raspberry Pi the average processing rate is 15.36, slightly
above the message injection rate used and well above the
actual sensing rate used in the actual deployment. The Zotac
and VPS have a much larger processing rate, 2, 692.31 and
5, 833.33 messages per second respectively.

The last objective is to quantify the processing latency



TABLE III: Processing Rate in Messages per Second

Device Processing Rate
Raspberry 15,36
Zotac 2,692.31
VPS 5,833.33

TABLE IV: Services Processing latency (ms)

Service Raspberry Zotac VPS
Stream Processing Pipeline 1.620 0.016 0.004
Generic Data Processing 52.183 0.400 0.244
Continuous Data Analysis 63.817 0.186 0.145

of each different service of the Fog Layer. In Table IV the
processing latency is measured (in ms) for each different
service and for each edge device. In the case of the Raspberry
Pi, both the Generic Data Processing and Continuous Data
Analysis are dominating the CPU usage. On the other hand,
for the Zotac and VPS, the more powerful processor provides
faster integer and floating point calculations thus leading to
a much shorter processing latency for the Continuous Data
Analysis module.

V. CONCLUSIONS

The paper presented a prototype architecture for IoT deploy-
ments where the processing of the sensor data is conducted
at the edges of the network. The prototype architecture is
applied on a real-world deployment for monitoring a fleet of
educational building at a national level. The performance of the
prototype is evaluated using the available infrastructure, indi-
cating that even low-power edge devices such as the Raspberry
Pi platform, can easily accommodate existing network loads.
The results provide evidence that Fog Computing, even when
using edge devices of very limited resources, can address the
current need of IoT deployments and sustain up to 5 times
higher amount of traffic by effective communication among
all elements of the architecture.
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