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ABSTRACT
In this paper we introduce the problem of query covering as
a means to efficiently cache query results. The general idea
is to populate the cache with documents that contribute to
the result pages of a large number of queries, as opposed
to caching the top documents for each query. It turns out
that the problem is hard and solving it requires knowledge
of the structure of the queries and the results space, as well
as knowledge of the input query distribution. We formulate
the problem under the framework of stochastic optimiza-
tion; theoretically it can be seen as a stochastic universal
version of set multicover. While the problem is NP-hard to
be solved exactly, we show that for any distribution it can be
approximated using a simple greedy approach. Our theoret-
ical findings are complemented by experimental activity on
real datasets, showing the feasibility and potential interest
of query-covering approaches in practice.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Search process; F.2.m [Analysis
of Algorithms and Problem Complexity]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—Perfor-

mance measures.

General Terms
Algorithms, Measurement.
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1. INTRODUCTION
In this paper, we study the problem of query covering, a

strategy for caching query results in a document search en-
gine exploiting the fact that some documents are relevant
to a large number of queries. We do not refer to a spe-
cific application, but we believe that the problem that we
consider might be of potential interest in a number of dif-
ferent applications, some of which are briefly discussed in
Section 1.1. We assume a framework in which users submit
queries to a document retrieval system over time. The docu-
ment retrieval system hosts a document collection and each
document is either relevant or irrelevant for a given query.
Whenever a query is submitted, the document retrieval sys-
tem must return a set of at least k relevant documents for the
query. To improve response time, the system uses a cache,
hosting a collection of documents that are relevant for the
queries that users are most likely to submit. When a query
is submitted, the system either constructs a result page us-
ing a set of k documents in cache that are relevant for the
query, or it incurs a cache miss, that is, a penalty reflecting
the fact that constructing a result page will require a time-
expensive operation, such as accessing secondary storage or
retrieving contents from a back-end server.

Our goal is to use statistical information about past users’
behavior, so as to populate the cache with a set of documents
that in the average will maximize the number of user queries
that are entirely served in cache over a certain period of in-
terest. In more detail, we assume that time is split into time

periods (e.g., one day or one week) and statistical informa-
tion about the ith period is used to select a static collection
of documents for the cache to serve queries submitted during
the (i+1)th time period. Doing this assumes some amount
of stationarity of the distribution of user queries over con-
secutive time periods. As previous experimental evidence
suggests and as our results confirm, this is often the case
in applications, at least as long as the granularity of time
periods is not too coarse. For example, the analysis of Web
search engines’ query-logs shows [8] that the frequency dis-
tribution of queries is with good approximation stable on
a daily basis, though important statistical changes may oc-
cur at critical points (e.g., day versus night or week versus
weekend).

1.1 Motivating Scenarios
The general scenario we consider can be of interest in a

number of applications. We briefly discuss four different
scenarios below.



Web Search.
In this case, queries are those commonly placed by users,

while documents are the snippets and satellite information
forming page results returned to users in response to their
queries. At present, Web search engines are typically large-
scale distributed systems [4,7,11], in which the index is parti-
tioned among multiple processing clusters and local queries
are processed over smaller indices. In this way, users are
typically served by local search sites that are geographically
closer to them rather than a central site. This results in
gains in network latency experienced by users and in overall
bandwidth savings.
Serving a query entails a number of steps [7, 11]: a front-

end machine receives the query and checks the result cache.
If the query result (for example, the first page of results) is
cached, the query is answered without any processing. Oth-
erwise, the front-end has to submit the query to the local
cluster. Each machine fetches from disk the inverted lists
corresponding to query terms that are not already cached
in memory. Then, documents in the inverted lists satisfy-
ing the query are selected and scored using various scoring
techniques, and the top-scored documents are returned to
the master. Finally, the master sorts all results in decreas-
ing order of scores and returns the top k results to the user.
In our scenario, caching is performed at a snippet level. In

particular, a document is a snippet plus its satellite informa-
tion and the problem we consider becomes that of maintain-
ing in cache a set of documents that maximizes the average
number of queries for which we can build the first page of
results entirely from information contained in cache.

Content Delivery Networks.
A content delivery network (CDN) [10] is a collection

of network elements arranged for more effective delivery of
content to end-users. A CDN provides better performance
through caching or replicating content over some mirrored
servers (often called surrogate servers), strategically placed
at various locations in order to deal with the sudden spike in
Web-content requests. The users are redirected to the surro-
gate server that meets a given optimality criterion, typically
based on proximity in the network. This approach helps
to reduce network impact on the response time of user re-
quests. In the context of CDNs, content refers to any digital
data resources and it includes static, dynamic and continu-
ous media data (e.g. audio, video, documents, images, and
Web pages).
A CDN can be viewed as a mediator between content

providers and users. Content providers place all or part of
their contents (e.g., their Web sites) on a CDN, while users’
requests to content providers are transparently redirected to
the CDN(s) hosting their contents. More generally, CDNs
nowadays allow to efficiently publish a variety of Web ap-
plications and many important CDN providers exist on the
market, such as Akamai1 or Amazon’s CloudFront2.
A critical aspect in the operation of a CDN is how contents

are placed on surrogate servers. Ideally, the contents placed
on a surrogate server should be chosen, so as to maximize the
amount of requests served locally, without interaction with
back-end CDN servers or the origin server of the requested
contents. A number of techniques are used to address this

1http://www.akamai.com/.
2http://aws.amazon.com/cloudfront/.

issue, with the CDN provider typically pushing contents to
surrogate servers based on popularity, so that each surrogate
server ideally hosts contents that have appeared to be the
most popular among users in the region which it serves.

Although CDNs typically operate by serving user requests
for specific contents, they can prove extremely useful in im-
proving performance of search services over large document
corpora. One can envision a CDN-based media service,
where users can pose queries to the CDN and the CDN
returns a collection of objects matching the query. While
the top-k objects matching a given query should be fixed,
the collection of objects cached locally at a surrogate server
might depend on the statistical distribution of queries that
have been served by the surrogate server in the recent past.

Computational Advertising.
Yet another potential application is in the area of com-

putational advertising. Typically, when a user performs a
Web-search query (in the case of sponsored search) or vis-
its a content page (in the case of content match) the online
service provider (OSP), such as Google or Yahoo!, selects a
small number of ads to show to the user from a pool of sev-
eral hundred million ads. Choosing the appropriate ads is a
complicated procedure. Typically, there exists an informa-
tion retrieval system, that given the query (which consists
of the search query or the content page, information about
the user, etc.) retrieves a number of relevant ads (e.g., 300
ads). Then these ads compete against each other through
an auction process to deduce the winners that will be se-
lected for display. In particular, the information retrieval
process can be a rather expensive process, so there is need
for ad caching [12]—in such a way, the OSP might be able
to avoid the information-retrieval step and retrieve the ads
to be sent to the auction marketplace directly from a cache.
The ideas developed here can allow for efficient use of the
system cache. Note that the exact application of the model
presented here might not be perfectly suitable, and there
are several issues that need to be taken care of (e.g., if an
ad is being shown it might not be available in the future,
and in that case it should be removed from the cache); nev-
ertheless, the our ideas might be able to suggest ways to
improve cache usage. We discuss more later in this and in
the conclusions section.

Offline Search.
Finally, another application could be the creation of a

service that would allow for offline searching and browsing.3

Consider, for example, a tourist visiting a new city. She
might be interested in various information while in the city,
such as accommodation information, transportation infor-
mation, cultural or sports events, restaurants, history infor-
mation, practical information, related news, and so on. A
useful application would be a service that would allow her
to be able to search without connection (either because of
unavailability due to lack of infrastructure, or because of
high connection cost) and obtain the relevant information.
This is exactly the problem we consider here: for the poten-
tial queries that the user might have (gathered from historic
data) the application must have stored at least a number of

3Such a service was offered by the Webaroo startup
(http://webaroo.com) before the company changed its fo-
cus.



results; however, since the space is limited, the results must
be selected in such a way, so as to cover the user’s needs
with high probability. Such an application could also use
first this approach as a means to search offline and if the
information retrieved is not sufficient it could attempt an
online connection, incurring additional cost.

1.2 Related Work
We describe some areas related to query caching with re-

spect to Web caching, query-log analysis, query caching,
similarity caching and its potential use in content-match
advertising, and some theoretical work on set cover and its
stochastic variants.

Web Caching.
Caching is a useful technique on the Web: it allows to

reduce the overall amount of utilized bandwidth, the work-
load on back-end servers, and the average latency perceived
by users. The cache memory is both used at the client side
and server side. For example, Web browsers can cache Web
objects instead of retrieving them repeatedly. The cache
memory is also exploited at proxy level, so that frequently re-
quested Web objects are stored for subsequent requests [21].
Xie and O’Hallorn [25] analyzed query logs and they ob-
served that many popular queries are shared by different
users. This observation justifies the idea of exploiting a
server-side caching system: servers can cache pre-computed
answers or partial data used in computation of new answers.
For more discussion on Web caching, issues such as static
and dynamic caching, caching of terms or results, and so
on, we refer the reader to [5] and the references therein.

Query Logs.
Early work suggested exploiting the rich information con-

tained in search engines’ query logs so as to cache results and
boost system performance. Raghavan and Sever [22] exploit
user query history in order to build a set of persistent “opti-
mal” queries submitted in the past. This set is called “query
base” and it is used to improve the retrieval effectiveness for
similar future queries. Query logs are a valuable source of
information and the study of their statistical properties has
received considerable attention in the past. In many stud-
ies, the authors analyzed Query logs and they obtained sta-
tistical observations of user behavior. Silverstein et al. [23]
analyzed a query log of AltaVista, containing about a billion
queries submitted over more than a month. They analyzed
users’ query sessions, in particular the correlation among
terms of the query. Their results show that the 85% of users
visit only the first page, while 77% of users’ sessions end up
after just the first query. These aspects were also analyzed
in [16], where the authors perform a thorough analysis of
search engine users’ behavior. Beitzel et al. [8] analyzed a
query log from the AOL search engine, containing queries
submitted by a population of ten millions users. They par-
titioned this query log into groups of queries submitted in
different hours of the day and studied the temporal evolu-
tion of important aspects, such as popularity and uniqueness
of topically categorized queries within the different groups.
Further studies emphasized a degree of temporal locality in
query logs [13,19], in particular the fact that the interval of
submission of the same query is short in many cases [13].
Finally, query popularity typically follows an inverse power-
law distribution (see, for example [14]).

Query Caching.
The above-mentioned findings suggest the use of caching

strategies to cache results for queries that are likely to be
submitted by users in the next future. This aspect has re-
ceived considerable attention in the recent past. Standard
search engines’ query caching strategies are LRU (Least Re-
cently Used) or LFU (Least Frequently Used) based.

Fagni et al. [13] performed a statistical analysis of three
large query logs. Based on their findings and noting that
a simple, popularity-based caching policy may not address
satisfyingly the issue of temporal locality, they proposed a
new caching strategy, based on maintaining in cache both a
static set of the most popular queries over a recent period
of observation and a dynamic set, updated according to an
LRU-like strategy, thus reflecting temporal changes in topic
interest and so temporal locality. Combined or not with
prefetching strategies, the proposed heuristic was shown to
outperform standard ones on the datasets considered by the
authors. Subsequent work [14] addressed the case in which
queries have a weight, for instance reflecting the cost of serv-
ing a query, and the goal is maximizing the overall weight
of queries served entirely in cache.

Similarity Caching.
Chierichetti et al. [12] studied a related problem in con-

textual online advertisements associated to Web pages. In
this case, upon a user’s visit to a Web site, the online ser-
vice provider, e.g., Yahoo! or Google, must choose the
most relevant advertisement to display to the user based
on the user characteristics and the contents of the visited
page. This process can be seen as a querying procedure, in
which the user visiting a given page is the query and serving
the query means returning an advertisement that is rele-
vant for the (user, visited page) pair. The authors propose
caching strategies for online advertisement information that
are based on a notion of similarity between queries, so that a
query p is satisfied in cache whenever the system returns an
advertisement that was previously used for a query q that is
sufficiently similar to query p.

Set Cover and Its Variants.
The notion of relevance determines a relationship between

queries and documents, so that a query may be viewed as the
set of documents that are relevant to it or, conversely, a doc-
ument may be viewed as the set of queries to which it is rele-
vant. In this way, the problem considered in this paper turns
out to be a stochastic variant of the set-multicover problem,
itself generalizing the set-cover problem [24]. Both problems
are NP-hard and it is known that the natural greedy algo-
rithm provides logarithmic approximations for these prob-
lems and this bound is tight [24]. This problem has been also
studied in the online setting. As in the offline case, here the
input is given by a universe of items and a collection of sub-
sets thereof. In this case, items are released over time and
the online algorithm must incrementally maintain a collec-
tion of sets that covers all items released so far. Azar et
al. [2] proved an almost tight poly-logarithmic competitive
ratio for this problem, a result that was slightly improved
by Buchbinder and Naor [9]. Very often, items are released
online according to some stochastic process. Grandoni et
al. [15] studied the problem under the assumption that the
underlying stochastic problem is stationary and they pro-
posed online strategies that, on average, have performance



that is at most a logarithmic factor away from the offline
optimum.

1.3 Our Contribution
In this paper we propose and analyze online algorithms

for stochastic set multicover and assess their effectiveness in
practice as strategies to boost the performance of a docu-
ment search engine. To this aim, we perform experiments on
real data, namely on a large query log from the AOL search
engine [20].
Note that we examine the problem of query covering un-

der the simple information retrieval model [6] in which each
document is either relevant or irrelevant to a query. While,
of course, this model is not appropriate for some of the ap-
plications that we mention (e.g, Web search), where ranking
is of paramount importance, we believe that the ideas pre-
sented here are a first step to show the potential of smart
selection of documents to cover several queries; generalizing
the algorithm and extending the theoretical and empirical
studies is an area for future work.
Since our focus is on the power of query-covering we ignore

issues such as cache policies and instead we consider the case
of doing prefetching.
Next we describe the theoretical and empirical contribu-

tions of our work.

Stochastic Set Multicover.
On the theoretical side, we extend the work of [15] to

stochastic universal set multicover. In particular, we prove
that a heuristic based on the standard greedy strategy for
set multicover [24] allows to achieve an expected competi-
tive ratio O(k lnmn), where m and is the overall number
of documents, n is the number of possible queries and k is
the coverage requirement for each query. The theoretical
analysis in this paper is much more involved than the one
in [15] (one reason being that while there exist logarithmic
approximation algorithms for the partial set cover problem,
which are being used in [15], such an algorithm does not
exist for the corresponding partial set multicover problem;
in fact, the densest k-subgraph problem, for which finding
a polylogarithmic approximation is a famous open problem
and whose hardness is an assumption to some recent hard-
ness results [3], can be reduced to the partial set multicover
problem even with a coverage requirement of 2 sets).

Experimental Work.
Experimental evidence confirms that our approach allows

for serving a large fraction of the queries presented in a time
period by the use of a cache, where the cache is static and
has been populated by documents based on the distribution
observed during the previous time period. Further results
show that (i) covering all queries from the previous time
period is not necessary; in fact, even covering a smaller frac-
tion (e.g., 40% or 50%) allows to achieve a good coverage of
the current time period; (ii) the importance of this result is
magnified by another one, showing a superlinear increase in
the amount of memory required to cover increasing fractions
of queries observed in the previous time period, when the
fraction to cover grows above 40–50%. We do not explicitly
compare the hit ratios of our approach with those of query
caching policies, since the latter refer to a different problem,
in which we have a hit if and only if we host in cache the
entire result page for the query under consideration.

On the other hand, our approach relies on a coarse classifi-
cation in which a document is either relevant or irrelevant to
a query. So, the question arises, as to the average degree of
relevance of the results returned by our heuristics to submit-
ted queries. In particular, we want to assess to which degree,
on average, our approach returns the top-k relevant results
for a query. To this purpose, we conducted experimental
work, in which the queries present in the AOL’s query log
were submitted to the Yahoo! search engine and the top-k
results for each of them were collected. We then compare
these with the results returned to the same queries by our
heuristics. To this purpose, we used standard measures of
accuracy in Information Retrieval, such as precision and re-
call. Experimental evidence suggests that, while bringing
considerable savings in cache size, the results returned by
our covering algorithms on average exhibit a decent degree
of relevance, although relevance has to be incorporated to
the problem formulation to achieve results close to the top-k,
as we discuss in Section 6.

1.4 Roadmap
We discuss some preliminaries of our work in Section 2

and we present our model and assumptions in Section 3.
We develop the algorithm and our theoretical findings in
Section 4, while in Section 5 we present experimental work
assessing the potential interest of our approach in practice.
Finally, we conclude in Section 6 with some discussion on
our findings and with ideas for future work.

2. PRELIMINARIES
We are not focusing on a particular application or plat-

form. Therefore, we present a general description of a search
engine that can capture situations such as web text searches,
multimedia searching, web advertising, content delivery net-
works, and so on.

We assume a corpus of n documents that are indexed ap-
propriately by a search engine. Documents can be retrieved
by users by submitting queries. For each query q there is
a number of documents in the corpus that are relevant to
the query, while the rest are considered irrelevant4. To sim-
plify the discussion, and without sacrificing generality, we
furthermore assume that for each query there are at least k
relevant (for some parameter k defined later) documents5.

Users submit queries to the search engine. We assume
that, using historic data, we possess rich statistical infor-
mation about queries submitted in the past. When a user
submits a query the system has to return k relevant doc-
uments to the user. The search engine can access a cache

to retrieve k relevant documents for the query; if the cache
contains fewer than k relevant documents to the query, the
search engine has to perform a much more expensive opera-
tion, such as accessing secondary storage or a remote server,
thus incurring a significantly higher response time and/or
communication cost, depending on the particular platform.

There are two main cache architectures that a system can
use, and often a combination of them is being employed.
The first one is to cache queries and the entire set of their

4As we explain in Section 3 we do not consider the important
case of different amounts of relevance of each document to
a query; a document either is relevant or not.
5For queries that have fewer than k relevant documents we
only consider the subset of queries that have at least k rel-
evant documents in the corpus.



results. Then queries that are in cache can be answered
very efficiently from the search engine. A second architec-
ture is more document oriented: a cache is a collection of
documents indexed appropriately, and to respond to a query
a search engine can access first the cache index and subse-
quently, if required, the main memory. A drawback of the
latter approach with respect to the former is that query
cache response times will in general be higher, since result
pages must be constructed from documents in cache. On the
other hand, this approach presents the advantage that the
same document can be used to serve multiple queries, so that
the space is used more efficiently. As we mentioned, both
architectures can be employed. So, for example, one can use
a cache of the first type for the most frequent queries, while
a second level of cache can be used if the result page for a
query is not found in the first-level cache. Another way the
two architectures can be combined is, for example, by using
a cache of the first type for various queries that indicate the
IDs of the results. Then a cache of the second type can be
used to retrieve the contents of frequently used results (e.g.,
Web page snippets or photos) type can be used.

3. MODEL
Our formulation of the problem captures a few key ele-

ments. We make the reasonable assumption that we have
full knowledge of the document set, and in particular we
know what documents are relevant to what queries. Even-
tually, we might be interested in taking into account the
extent to which a document is relevant to a query. Here,
as a first approach in the study of query covering, we con-
sider the simple information retrieval model [6], in which
each document is either relevant or irrelevant to a query.
Furthermore, we assume no knowledge about queries that
are going to be submitted in the future, but we assume that
we have a relatively good estimate of their distribution.
We assume a ground set Q of n queries and a set U of m

documents. A sequence of t queries are being drawn inde-
pendently (with replacement) from the Q queries according
to a distribution Q. Each query is covered by a set of doc-
uments, which are the set of documents that are relevant to
the query. Conversely, each document u ∈ U covers a set of
queries Qu, which are those to which it is relevant. When a
user submits a query, we need to return k results. We want
to create a universal map (offline, which will be computed,
for example, during the night) from each query to a set of
k relevant documents for the query, so that when a query is
presented we can fetch the k documents returned from the
map to a cache and we can use them to serve the current
query as well as (possibly) future ones. We formalize this as
follows:

Problem 1 (Query Multicover(t)). Given a set Q
of queries, a distribution Q on Q, a set of U documents,

each covering a subset of the queries, and a sequence length

t, compute a mapping φ from each query q ∈ Q to a set

φ(q) ⊂ U of size k such that for each u ∈ φ(q) we have

q ∈ Qu, and our choice minimizes

E

[
∣

∣

∣

∣

∣

t
⋃

i=1

φ(qi)

∣

∣

∣

∣

∣

]

,

where expectation is taken over all the sequences of t queries
q1, q2, . . . , qt drawn independently from Q.

In other words, assuming that t queries are drawn inde-
pendently from the distribution Q, we need to populate the
cache with a set of documents, so that for each sampled
query we have at least k relevant documents. The goal is to
create a mapping from queries to documents so as to mini-
mize the expected number of documents in cache.

In practice, we have incomplete information for the dis-
tribution since we only have access to some samples from
it, and this lack of information is especially manifested in
rare and one-time queries. In the practical application of
our universal stochastic algorithms, we will only be able to
select a set of documents to cache that cover at least k times
a fair percentage of the queries that will be submitted. In
Section 4.2 we delve more into these issues.

Note also that the problem definition has the sequence
length t as part of the problem input (so that the mini-
mization problem is well defined); however, we would like
to have policies that perform well even when the value of
t is not known. Indeed, the algorithm that we present in
the next section creates a mapping that provides a small
cost (compared with the optimal solution) without any prior
knowledge of t, that is, the same mapping is competitive for
all values of t.

As we mentioned in the introduction, since our focus is on
the power of query-covering we ignore issues such as cache
policies and we consider the case of doing prefetching.

4. ALGORITHMS
The problem that we just described is a stochastic gen-

eralization of the set-cover problem, in which elements cor-
respond to queries and documents correspond to sets. The
stochastic online setting that we consider resembles the one
by Grandoni et al. [15], who studied the problem of stochas-
tic universal set cover. Observe that differently from the
traditional set cover problem we need to define a fixed map-
ping from elements to covering sets without knowledge of
the elements to cover, since we have no a priori knowledge
of the queries that will be submitted. We mention here that
in a deterministic setting we cannot achieve good results
(as is shown in [17]). Instead, we prove that knowing the
query distribution suffices to provide algorithms with log-
arithmic (expected) approximations. In particular, in Sec-
tion 4.1 we present a simple and efficient greedy algorithm
for the Query Multicover(t) problem and we prove that
it achieves logarithmic approximation ratio when k is con-
stant. Note that the proof in [15] for the set-cover problem
cannot be applied to our setting and that we need more so-
phisticated arguments to prove that our algorithm achieves
a good approximation.

4.1 Stochastic Query Multicover
Consider a sequence of t queries that are sampled from

the distribution Q. For a sequence ω = (q1, . . . , qt), where
qis are iid (independently and identically distributed) sam-
ples from Q, let Copt(ω) be the optimal offline cost, and let
C̄opt = E[Copt(ω)] be the expected offline cost. Similarly,
define C(ω) and C̄ as the cost and the expected cost, respec-
tively, induced by Algorithm multiCoverGreedy in Figure 1.
With respect to this setting, we are able to prove Theorem 2
below.



1. Function multiCoverGreedy(k)
2. /* Initially all queries are uncovered. */
3. foreach (q ∈ Q)
4. results(q)← ∅
5. while (exists q s.t. |results(q)| < k)
6. /* If there exists an uncovered query, find the most

cost-effective doc */
7. doc← mostCostEffectiveDoc()
8. foreach (q ∈ queries(doc))
9. results(q)← results(q) ∪ {doc}
10. end while

1. Function mostCostEffectiveDoc()
2. /* In the unweighted case, the most cost-effective doc

covers most queries */
3. foreach (u ∈ U)
4. costEffectiveness(u)←

1/ |{q ∈ Q : results(q) < k and u ∈ q}|
5. if (costEffectiveness(u) < costEffectiveness(doc))
6. doc← u
7. return doc

Figure 1: The greedy multicover algorithm.

Theorem 2. For any sequence of t queries the mapping

created by Algorithm 1 satisfies

C̄ = O(k lnmn) · C̄opt.

Due to space limitations we do not present the proof of the
theorem, which will appear in the full version of the paper.
The main part of the proof is showing the following lemma,
which, as we see in Section 4.2, also provides us with a lot
of intuition about the problem structure, and will be useful
when applying the algorithm in practice.

Lemma 3. The greedy algorithm needs at most 96kC̄opt lnnk
documents to cover k times all but 8n

t
C̄opt lnmn queries

from Q.

4.2 Discussion and Practical Considerations
In this section we will discuss the knowledge obtained by

our theoretical approach and we will leverage it to create a
practical algorithm. First, we comment on the assumption
that queries are drawn from a distribution. Note that to
obtain a strong theoretical result the stochastic assumption
is necessary to achieve a small approximation ratio; even for
the simple universal set cover problem (where k = 1) there
is a lower bound of Ω(

√
n) if no stochastic assumptions for

the input distribution are made [17]. On the other hand,
assuming that queries are sampled from a distribution is a
standard and reasonable assumption (describing the ensem-
ble of queries from all users) and can provide us with much
sharper bounds. An issue with the stochastic assumptions
is that results are more demanding technically; for example
the proof of Grandoni et al. [15] (who examine the stochastic
universal set cover, that is, when k = 1), which is already
technically involved, cannot be applied here and we need
further technical work.
In practice, however, we do not know the distribution, in-

stead we observe samples from it. In our experiments we
will use the knowledge from a given period (it can be a day,
or a given time period of a day) to obtain an estimate of

the distribution and apply the algorithm for the next period
(the same period next day, or the same period next week,
etc.). Another issue is that the distribution changes over
time, however for most of the queries, between two consec-
utive time periods we expect that most of the queries will
have similar probability to appear. This is one of the rea-
sons that to learn the distribution we use only the previous
time period, although another reasonable option would be
to accumulate queries over a longer period—we expect that
qualitatively our findings will be the same. In our experi-
mental results we study the overlap between queries in con-
secutive time periods; as expected, there is overlap between
queries with high frequency, while queries in the tail of the
distribution essentially do not overlap.

A careful examination of the proof can provide us also
with some intuition of the underlying picture. In particular,
Lemma 3 gives us information about the problem structure
that can allow us to apply the greedy algorithm even in the
case that the cache size is limited. At a high level, what the
lemma states is that there exists a set of documents that
covers a large fraction of the queries k times. Furthermore,
the greedy algorithm is able to find it. Thus, even if the
cache size is limited, we are able to apply the greedy algo-
rithm and populate the cache with those documents, using
prefetching. Note though that the proportion of queries that
are not covered according to Lemma 3 depends on the value
of the optimal solution (for t requests), C̄opt. If the ratio
C̄opt/t is small this implies that there is a large number
of documents that can cover several queries. This is both
because of overlap between the relevant documents among
various queries, as well as because of the skewness of the
query distribution. In practice, both of these situations are
true: the result sets of web search queries such as “hotel
rome,”“cheap hotel rome,”“rome accommodation,” and so
on, are expected to be highly overlapping, and similar is
the situation in other settings where we can apply query-
covering ideas (or at least where query covering is suitable).
Also it is a well documented fact that query frequencies fol-
low power law distributions (see for example [14,18]). Thus
we expect the ratio C̄opt/t to be small enough and thus the
greedy algorithm to be able to cover many queries that will
appear in the future by inserting documents in the cache.
Our experimental findings, reported in Section 5, confirm
the intuition obtained from our theoretical analysis.

5. EXPERIMENTAL RESULTS
We applied the greedy heuristic on real web query data,

and we compare it with various baselines. Next we describe
the dataset that we generated and our findings.

5.1 Dataset
In order to generate query requests we used the AOL

query-log dataset [20]. It consists of about 36M query records,
amounting to about 20M distinct queries submitted by 650K
users over a period of three months (from March to May
2006).

The records are sorted by anonymous user ID and, for
each ID, they are ordered by their submission times. Each
entry in the data set contains the following information:

• AnonID : anonymous user ID

• Query : keywords submitted by the user



• QueryTime: time at which the search query was sub-
mitted

• ItemRank and ClickURL: they are present only if the
user clicked on a search result, and represent the rank
and the domain portion of the clicked result; entries
are repeated if a user has clicked more than one result

In our experiments, we use the Query and the QueryTime

fields. In particular, we globally sort query records by time
and then analyze queries submitted during the first days
of March. We observe that an average day contains a bit
more than 250K queries, out of which the number of distinct
queries is about 200K.

5.2 Description of the Experiments
We used the query logs of some days of the AOL dataset

to assess the performance of our algorithms. The idea, as
we mentioned in Section 4.2, is to use statistical informa-
tion about queries submitted during a suitably defined time
interval to learn the query distribution for the next time in-
terval. For example, we can use the query log of a given
week day to cache documents to serve queries submitted in
the next day, or we can use queries submitted on a Satur-
day morning to serve queries submitted on the Saturday of
the next week, the underlying hypothesis being that queries
submitted at periodic (and not too distant) intervals will be
similar. In our experiments, we used statistics over queries
submitted on a day to select documents (URLs) to store in
cache, as to serve queries submitted the next day. In partic-
ular, we used the first days of March 2006 (from March 1st

(Wednesday) to March 4th (Saturday)), so that the query
log for March i was used to learn the distribution and pop-
ulate the cache to serve queries submitted on March i + 1
(i = 1, 2, 3). All results we give are averaged over the three
resulting experiments. We also conducted experiments with
different choices of time intervals, obtaining similar results.
For the sake of space, these will be reported in the full ver-
sion of the paper. Some statistics about the queries submit-
ted during these days are shown in Figure 2. In the rest
of the section we call training set the set of queries used in
one time interval to learn the distribution and populate the
cache and we denote it by Qtraining. We call test set the set
of queries submitted in the next time interval, used to assess
the performance of our algorithms and we denote this set by
Qtest.

1st 2nd 3rd 4th

Num Total Queries 267,887 272,935 246,136 266,687
Num Distinct Queries 197,651 202,926 183,567 198,063

Training Test Training Test Training Test

1st 2nd 2nd 3rd 3rd 4th

overlap overlap overlap
22,091 20,969 20,471

Figure 2: Number of total and distinct queries dur-
ing the period of observation. Overlap: number of
distinct queries in training set that appear in test
set.

Given a query of the training set, we retrieved its result
list using the Yahoo! Boss interface. We assume that the

first 30 results for each query are relevant and can be used to
cover it, and that the rest of the documents are irrelevant.
In Figure 3 we show some statistics about the documents
collected.

Day Total Docs Distinct Docs
1st 7,680,287 4,427,403
2nd 7,810,571 4,511,187
3rd 6,984,627 4,075,475
4th 7,578,400 4,417,791

Sum 30,053,885 17,431,856
Average 7,513,471.25 4,357,964
Union of Distinct Docs 14,559,154

Training Test Training Test Training Test

1st 2nd 2nd 3rd 3rd 4th

overlap overlap overlap
8,112,469 7,925,203 7,818,313

Figure 3: Number, average and sum of total and
distinct documents during the period of observation.
Overlap: number of distinct documents in training
set that appear in test set.

We implemented the main greedy algorithm presented in
Section 4 and we compared it with several variants. Vari-
ants of the main greedy algorithm are parameterized by two
parameters, k and x:

• k: parameter k is the coverage degree. Given a cover-
age degree k, a query q of the training set is considered
covered if the algorithm has selected at least k docu-
ments in the result list of q. We report for values of
k = 2, 6, and 10.

• x: the parameter x specifies the percentage of the
queries of the training set (i.e., the percentage of the
queries that arrived during the first period) that are
selected to be covered by inserting documents in the
cache. The way in which a fraction x% of the queries
is selected defines the variants of the algorithm we con-
sider (see below).

The performance of the greedy approach (in its different
versions) is compared against the simple approach that se-
lects the first k results for each query in a set consisting of
the x% of most frequent queries.

In more details, we tested the following algorithms (the
names in the parentheses are the names used to denote these
algorithms in the figures):

• Greedy (greedy): This is the greedy algorithm de-
scribed in Section 4 with the modification that we stop
adding new documents to the cache when we have cov-
ered x% of the queries. For x = 100%, the algorithm
is exactly the one described in Section 4, where the
cache size is unlimited.

• Top-k (top-k): This simple approach selects the first
k results of the x% most frequent queries in the train-
ing set. This algorithm, intuitively, should give an
upper bound on the performance of our algorithm, al-
though it is expected to be very costly in terms of space
used as it completely ignores the query-document struc-
ture.



• Greedy, most frequent queries (freq-queries):
Here we select the x% most frequent queries in the
training set and we select the documents to insert to
the cache greedily until we cover each of the queries k
times.

• Greedy, first queries (first-queries): This is the
same as the previous one, with the difference that we
cover greedily the first (earliest) x% of the queries of
the training set.

We evaluate our algorithms on the basis of three perfor-
mance metrics:

• recall: this is the percentage of covered queries in the
test set. For a given value of k, a query q ∈ Qtest is
considered covered if there are at least k documents in
the cache that are relevant to q (i.e., if at least k out of
the first 30 results of query q are in the cache).6 Note
that when computing the average recall, each query is
considered multiple times if it appears multiple times
in the test set.

• num_doc: this is the number of cached documents and
it determines the cache size. We are interested in (i)
how many documents are cached by each algorithm,
(ii) the increase in memory as the coverage degree
and the percentage of covered queries in Qtraining in-
creases, and (iii) the behavior of recall as the cache
size changes for the different algorithms.

• precision@n: as we have mentioned, we consider that
each document is either relevant or irrelevant, and the
generalization of query covering to models that include
ranking is an interesting open problem. Nevertheless,
it would be interesting to evaluate the performance of
the various algorithms taking the ranking into account.
As a measurement we use the precision-at-n (P@n).
For a given query in the test set, this is the proportion
of the top n results of the query that are found in the
cache. We then aggregate by averaging over all the
covered queries in the test set.

5.3 Results
In this section we report our experimental results. We

compare the performance of the greedy approach with the
other baselines.
Algorithm comparison. First we compared the algo-

rithms considered with respect to the extent to which they
cover a given percentage of queries. Results are shown in
Figure 4. In Figure 4(a), for each of the algorithms we
fix the fraction x of queries that are covered (k times) in
the training set, and we measure the number of covered
queries in the test set. As expected, top-k has the best
performance, however greedy is following closely. On the
other hand, algorithms freq-queries and first-queries

perform worse and, rather surprisingly, their behavior is very
similar. This is probably due to the fact that the distribu-
tion of the queries is stationary enough, in a small time
period, thus the statistics collected as time proceeds resem-
ble those of the entire period, leading to the performance of
first-queries being similar to that of freq-queries.

6We also considered a weaker notion of recall, which gives
partial credit if fewer than k documents are in the cache;
qualitatively the results are the same.
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(b) Number of cached documents vs. percentage
of covered queries from training set (x ).

Figure 4: Comparison of the 4 algorithms for k = 10.

Figure 4(b) summarizes the amount of space required to
cover the queries in the training set. Not surprisingly, top-k
has to pay for its good performance: the space required
grows linearly with the number of queries in the training set
that are covered. Algorithm freq-queries and first-queries

are also almost identical with respect to space usage. In-
stead, greedy has low space usage until coverage is 40% of
the documents, after which we observe a steep increase. This
is also in accordance with the theory developed in Section 4
and in particular with Lemma 3 and the discussion in Sec-
tion 4.2: greedy is able to find a small number of sets that
cover a good percentage of the queries.

Performance for different coverage degrees. To
delve more into the behavior of greedy we show in Figure 5
its performance for different values of k. The curves plot-
ted in Figures 5(a) and 5(b) show respectively the recall

and the num_doc as x varies, each curve corresponding to a
different value of the coverage degree k.

As we can observe in 5(a) if x < 30%, the curves for
k = 6 and for k = 10 are higher than the curve for k = 2.
Regarding the dimension of the cache required, num_doc is
limited fixing x to be less than 30%, while for different values
of k we can get an indication of the value of the sweet-spot
(the one to which the bound 8n

t
C̄opt lnmn in Lemma 3 refers

to), which we cannot compute otherwise due to the hardness
of computing the value C̄opt.
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Figure 5: greedy and different values of k.

Effectiveness in cache size use. To finish our compar-
ison of the various algorithms, we integrate the two plots in
Figure 4, and in Figure 6 we present the recall versus the
cache size used (for k = 10). The graph makes clear (as ex-
pected) the superiority of greedy in the use of the available
cache, especially for moderate cache sizes.
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Figure 6: Percentage of covered queries from test
set vs. number of cached documents for k = 10.

Precision@n. Finally, as we mentioned earlier in Sec-
tion 5.2, we computed the precision achieved by three of

the approaches (the results of first-queries are similar
to those of freq-queries and they are omitted). In Fig-
ure 7 we depict the precision at 1, 3, 5 and 10. Of course,
top-k achieves the highest precision for the same coverage
x. This is expected, for example, for queries whose results
are in the cache, the precision is 1. But we can also ob-
serve that greedy, although not optimized for precision, has
very close performance in finding the top document, at the
same time saving a significant amount of space. On the
other hand, it performs quite worse for precision at higher
values, indicating the need for explicitely optimizing for doc-
ument relevance when the application requires it (such as in
Web search). freq-queries (and first-queries) performs
slightly worse than greedy.
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Figure 7: Precision@n with k = 10. The x axes
denote the percentage of covered queries from the
training set (x).

6. CONCLUSIONS AND OPEN PROBLEMS
In this paper we introduced query covering as a prob-

lem of potential interest to the purpose of effectively and
efficiently caching query results. We formulated this prob-
lem in the framework of stochastic optimization. While this
problem is NP-hard to solve exactly, we proved that a simple
greedy approach can provide good expected approximation
of the optimal solution. We also provided evidence of the
potential practical effectiveness of our approach by extensive
simulation on real datasets.

This work represents a first approach to the problem with
a number of interesting open questions. The first and ob-
vious one concerns a more general model in which query
coverage is performed taking the ranking of the results into
account. Our experimental findings indicate that the ap-
proach we consider partially addresses this issue. It would
be interesting to design and analyze policies that explicitly
considered this aspect. While a theoretical result such as the
one presented in this paper would be ideal, even empirical
heuristics would be very interesting, if they could achieve
good performance.

Although we did not address this issue in the present pa-
per, some of our experimental results (in particular, the fact
that some heuristics can cover the same fraction of queries
using considerably fewer documents) suggest that the tech-
niques we propose or extensions thereof could prove useful



to the purpose of diversification [1] of search results. This
aspect deserves in our opinion further scrutiny.
Finally, we have assumed that the query distribution is

stationary, and this is a reasonable assumption for most of
the queries if the time periods are carefully chosen. Nev-
ertheless, very often there are spikes due to sudden events
that our approach handles only after the next time period
arrives. A more dynamic caching policy that could detect
spikes and change the caching and the mapping if necessary
is of both theoretical and practical interest.
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