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Abstract. Existing models of information diffusion assume that peer in-
fluence is the main reason for the observed propagation patterns. In this
paper, we examine the role of authority pressure on the observed infor-
mation cascades. We model this intuition by characterizing some nodes
in the network as “authority” nodes. These are nodes that can influence
large number of peers, while themselves cannot be influenced by peers.
We propose a model that associates with every item two parameters
that quantify the impact of the peer and the authority pressure on the
item’s propagation. Given a network and the observed diffusion patterns
of the item, we learn these parameters from the data and characterize
the item as peer- or authority-propagated. We also develop a random-
ization test that evaluates the statistical significance of our findings and
makes our item characterization robust to noise. Our experiments with
real data from online media and scientific-collaboration networks indicate
that there is a strong signal of authority pressure in these networks.

1 Introduction

Most of the existing models of information propagation in social networks focus
on understanding the role of peer influence on the observed propagation pat-
terns. [2,3,6,8,13]. We use the term peer models to collectively refer to all such
information-propagation models. In peer models, as more neighbors (or peers) of
a node adopt an information item, it becomes more probable that the node itself
adopts the same item. For example, users adopt a particular instant-messenger
software because their friends use the same software; using the same platform
makes communication among friends more convenient.

Figure 1(a) depicts a small network of peers and their connections. A di-
rected link from node u to v denotes that v can be influenced by u. The key
characteristic of peer models is that all nodes are treated on an equal footing.
That is, each node can equally well influence its neighbors or be influenced by
them. However, the strength of each agent’s influence on others is not the same
in reality. For example, mass media can strongly affect the opinions of individu-
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als, whereas the influence of any one individual on the mass media is most likely
infinitesimal. This distinction is often modeled with the use of edge weights.

In this paper we focus on this distinction and we apply a simple way to model
it: we posit that some agents are authorities (such as the mass media). These
nodes have high visibility in the network and they typically influence a large
number of non-authority nodes. We call these latter nodes the peer nodes. Peers
freely exchange information among themselves and therefore there are influence
links between them. Peers have no influence on authorities. That is, an influence
link that joins an authority to a peer is unidirectional from the authority to the
peer. In our model, we also ignore the influence that one authority node might
have on another. At a global level, the network of authorities and peers looks as
in Figure 1(b). That is, peers and authorities are clustered among themselves,
and there are only directed one-way links from authorities to peers.

The existence of authority nodes allows us to incorporate the authority influ-

ence (or pressure) into the classic information-propagation models. Given a net-
work of peers and authorities and the observed propagation patterns of different
information items (e.g., products, trends, or fads) our goal is to develop a frame-
work that allows us to categorize the items as authority- or peer-propagated.
To do so, we define a model that associates every propagated item with two
parameters that quantify the effect that authority and peer pressure has played
on the item’s propagation. Given data about the adoption of the item by the
nodes of a network we develop a maximum-likelihood framework for learning
the parameters of the item and use them to characterize the nature of its prop-
agation. Furthermore, we develop a randomization test, which we call the time-

shuffle test. This test allows us to evaluate the statistical significance of our
findings and increase our confidence that our findings are not a result of noise in
the input data. Our extensive experiments on real data from online media and
collaboration networks reveal the following interesting finding. In online social-
media networks, where the propagated items are news memes, there is evidence
of authority-based propagation. On the other hand, in a collaboration network
of scientists, where the items that propagate are themes, there is evidence that
peer influence governs the observed propagation patterns to a stronger degree
than authority pressure.

The main contribution of this paper lies in the introduction of authority
pressure as a part of the information-propagation process. Quantifying the effect



that peer and authority pressure plays in the diffusion of information items will
give us a better understanding of the underpinnings of viral markets. At the same
time, our proposed methodology will allow for the development of new types
of recommendation systems, advertisement strategies and election campaigns.
For example, authority nodes are better advertisement targets for authority-
propagated products. On the other hand, election campaign slogans, might gain
popularity due to the network effect and therefore be advertised accordingly.

Roadmap: The rest of the paper is organized as follows: In Section 2 we give
a brief overview of the related work. Sections 3 and 4 give an overview of our
methodology for incorporating authority pressure into the peer models. We show
an extensive experimental evaluation of our framework in Section 5 and we
conclude the paper in Section 6.

2 Related Work

Despite the large amount of work on peer models and on identification of au-
thority nodes, to our knowledge, our work is the first attempt to combine peer
and authority pressure into a single information-propagation model. Also, con-
trary to the goal of identifying authority nodes, our goal is to classify propagated
trends as being peer- or authority-propagated.

One of the first models to capture peer influence was by Bass [4], who de-
fined a simple model for product adoption. While the model does not take into
account the network structure, it manages to capture some commonly-observed
phenomena, such as the existence of a “tipping point.” More recent models such
as the linear-threshold model [9,10] or the cascade model [10] introduce the de-
pendence of influence on the set of peers, and since then there has been a large
number of generalizations.

In a series of papers based on the analysis of medical data and offline social
networks Christakis, Fowler, and colleagues showed the existence of peer influ-
ence on social behavior and emotions, such as obesity, alcoholism, happiness,
depression, loneliness [5, 7, 14]. An important characteristic in these analyses is
the performance of statistical tests through modifying the social graph to provide
evidence for peer influence. It was found that in general influence can extend up
to three degrees of separation. Around the same time, Anagnostopoulos et al. [2]
and Aral et al. [3], provided evidence that a lot of the correlated behavior among
peers can be attributed to other factors such as homophily, the tendency of indi-
viduals to associate and form ties with similar others. The time-shuffle test that
we apply later is a randomization test used in [2] to rule out influence effects
from peers. Although clearly related, the above work is only complementary to
ours: none of the above papers considers authorities as a factor that determines
the propagation of information.

Recently, there have been many studies related to the spreading of ideas,
news and opinions in the blogosphere. Authors refer to all these propagated
items as memes. Gomez-Rodriguez et al. [8] try to infer who influences whom
based on the time information over a large set of different memes. Contrary to
our work where the underlying network is part of the input, Gomez-Rodrigues



et al. assume that the network structure is unknown. In fact, their goal is to
discover this hidden network and the key assumption of the method is that a
node only gets influenced by its neighbors. Therefore, they do not account for
authority influence.

More recently, Yang and Leskovec [16] applied a nonparametric modeling
approach to learn the direct or indirect influence of a set of nodes (e.g. news
sites) to other blogs or tweets. Although one can consider the discovered set of
nodes as authority nodes, the model of Yang and Leskovec does not take into
account the network of peers. Our work is mostly focused on the interaction and
the separation of peer and authority influence within a social-network ecosystem.

Recent work by Wu et al. [15] focuses on classifying twitter users as “elite”
and “ordinary”; elite users (e.g., celebrities, media sources, or organizations) are
those with large influence on the rest of the users. Exploiting the twitter-data
characteristics the authors discover that a very small fraction of the popula-
tion (0.05%) is responsible for the generation of half of the content in twitter.
Although related, the focus of our paper is rather different: our goal is not to
identify the authorities and the peers of the network. Rather, we want to clas-
sify the trends as those that are being authority-propagated versus those being
peer-propagated.

Related in spirit is also the work of Amatriain et al. [1]; their setting and
their techniques, however, are entirely different than ours: they consider the
problem of collaborative filtering and they compare the information obtained by
consulting “experts” as opposed to “nearest neighbors” (i.e., nodes similar to the
node under consideration). The motivation for that work is the fact that data
on nearest neighbors is often sparse and noisy, as opposed to the more global
information of experts.

3 Peer and Authority Models

An information-propagation network can be represented by a directed graph.
The graph consists of a set of n nodes, denoted by V . We refer to these nodes
as peers (or agents). These nodes are organized in a directed graph G = (V,E).
The edges of the graph represent the ability of a node to influence another node.
That is, a directed link from node u to node v, (u → v) denotes that node u can
influence node v. We call the graph G the peer influence graph. Given a node
u we refer to all the nodes that can influence u, that is, the nodes that have
directed links to u as the peers or neighbors of u.

In addition to the n peer nodes, our model assumes the existence ofN globally
accepted authorities, represented by the set A. Every authority a ∈ A has the
potential to influence all the nodes in V . Intuitively, this means that there are
directed influence edges from every authority in a ∈ A to every peer v ∈ V ; we
use F to represent the directed edges from authorities to peers. For simplicity
we assume that there are no edges amongst authorities. We refer to the graph
H = (V ∪ A,E ∪EA) as the extended influence graph.

Fashion trends, news items or research ideas propagate amongst peers and
authorities. We collectively refer to all the propagated trends as information



items (or simply items). We call the nodes (peers or authorities) that have
adopted a particular item active and the nodes that have not adopted the same
item as inactive.

We assume that the propagation of every item happens in discrete time
steps; we assume that we have a limited observation period from timestamp
1 to timestamp T . At every point in time t ∈ {1, . . . , T }, each inactive node
u decides whether to become active. The probability that an inactive node u

becomes active is a function P (x, y) of the number x of peers that can influence
u that are already active and the number y of active authorities. In principle,
function P can be any function that is increasing in both x and y. As we will
see in the next section, we will focus on a simple function that fits our purposes.

4 Methodology

In this section, we present our methodology for measuring peer and authority
pressure in information propagation. Based on that we offer a characterization
of trends as peer- or authority-propagated trends. Peer-propagated trends are
those whose observed propagation patterns can be largely explained due to peer
pressure. Authority-propagated trends are those that have been spread mostly
due to authority influence.

We start in Section 4.1 by explaining how logistic regression can be used to
quantify the extent of peer and authority pressure. In Section 4.2 we define a
randomization test that we use in order to quantify the statistical significance
of the logistic regression results.

4.1 Measuring Social Influence

The discussion below focuses on a single propagated item. Assume that at some
point in time, there are y active authorities. At this point in time, a node with x

active peers becomes active with probability P (x, y). As it is usually the case [2],
we use the logistic function to model the dependence of the probability P (x, y)
as a function of the independent variables x and y. That is,

P (x, y) =
eα ln(x+1)+β ln(y+1)+γ

1 + eα ln(x+1)+β ln(y+1)+γ
, (1)

where α, β and γ are the coefficients of the logistic function. The values of α
and β capture respectively the strength of peer and authority pressure in the
propagation of item i. More specifically α, β take values in R. Large values of α
provide evidence for peer influence in the propagation of item i. Large values of
β provide evidence for authority influence in the propagation of i. For every item
i, we call α the peer coefficient and β the authority coefficient of i. Parameter
γ models the impact of factors other than peer and authority pressure in the
propagation of the item. For example, the effect of random chance is encoded
in the value of the parameter γ. We call γ the externality coefficient since it
quantifies the effect of external parameters.



The logit function of probability P (x, y) (Equation (1)) gives

ln

(

P (x, y)

1− P (x, y)

)

= α ln(x + 1) + β ln(y + 1) + γ. (2)

We estimate α, β and γ using maximum likelihood logistic regression. More
specifically, for each t = 1, 2, . . . , T , let N(x, y, t) be the number of users who at
the beginning of time t had x active neighbors and they themselves became active
at time t when y authorities were active. Similarly, let N(x, y, t) be the number
of users who at the beginning of time t had x active neighbors, but did not
become active themselves at time t when y authorities were also active. Finally,
let N(x, y) =

∑

t N(x, y, t) and N(x, y) =
∑

t X(x, y, t). Then, the maximum-
likelihood estimation of parameters α, β are those that maximize the likelihood
of the data at time t, namely,

∏

x,y

P (x, y)N(x,y) (1− P (x, y))
N(x,y)

. (3)

While in general there is no closed form solution for the above maximum likeli-
hood estimation problem, there are many software packages that can solve such
a problem quite efficiently. For our experiments, we have used Matlab’s statistics
toolbox.

We apply this analysis to every propagated item and thus obtain the maximum-
likelihood estimates of the peer and authority coefficients for each one of them.

4.2 Randomization Test

One way of inferring whether item i’s propagation is better explained due to peer
or authority influence is to obtain the maximum-likelihood estimates of peer and
authority coefficients (α, β) and conclude the following: if α > β, then i is a peer-
propagated item. Otherwise, if β > α then i is an authority-propagated item.
Although this might be a reasonable approach towards the categorization of the
item, the question of how much larger should the value of α (resp. β) be in order
to characterize i as peer- (resp. authority-) propagated item. Even if α � β (or
vice versa), we still need to verify that this result is due to strong evidence in
the data.

In order to reach conclusions based on strong evidence in the data, we devise
a randomization test which we call the time-shuffle test. Let H be the input
influence graph and let D be the dataset that associates every node in V ∪ A

that becomes active with its activation time. The time-shuffle test permutes the
activation times of the nodes in D. In this way, a randomized version D′ of D
is obtained. Note that D′ contains the same nodes as D (those that eventually
become active), however the activation times are permuted.

Assume that the maximum-likelihood estimation method for input 〈H,D〉 es-
timates the peer and authority coefficients (α, β). Also, denote by (α(D′), β(D′))
the peer and authority coefficients computed running maximum-likelihood esti-
mation on input 〈H,D′〉. Let D be the set of all possible randomized versions



that can be created from the input dataset D via the time-shuffle test. Then we
define the strength of peer influence Sα to be the fraction of randomized datasets
D′ ∈ D for which α > α(D′), namely,

Sα = PrD (α > α(D′)) . (4)

Note that the probability is taken over all possible randomized versions D′ ∈ D
of the original dataset D.

Similarly, we define the strength of authority influence Sβ , to be the fraction
of randomized datasets D′ for which β > β(D′), namely,

Sβ = PrD (β > β(D′)) . (5)

Both the peer and the authority strengths take values in [0, 1]; the larger the
value of the peer (resp. authority) strength the stronger the evidence of peer
influence (resp. authority influence) in the data.

5 Experimental Results

In this section, we present our experimental evaluation both on real and synthetic
data. Our results on real data coming from online social media and computer-
science collaboration networks reveal the following interesting findings: In on-
line social-media networks the fit of our model indicates a stronger presence of
authority pressure, as opposed to the scientific collaboration network that we
examine. Our results on synthetically-generated data show that our methods
recover the authority and peer coefficients accurately and efficiently.

5.1 Datasets and Implementation

We experiment with the following real-world datasets:

The MemeTracker dataset [12].3 The original dataset tracks commonly used
memes across online (mostly political) blogs and news sources. The dataset con-
tains information about the time a particular meme appeared on a given webpage
as well as links from and to each listed webpage.

In order to analyze the data with our approach, we assume that each meme
is an information item that propagates through the network of peers. The influ-
ence graph G = (V,E) consists of directed relationships between the blog sites
in the dataset. That is, the peer nodes (the set V ) are the blog sites in the
dataset. In our version of the data we only consider blogs from wordpress.com
and blogspot.com since their URL structure makes it easy to identify the same
blogger across posts. There is a directed link (inlfuence) from blog b to blog b′ if
there exist at least one hyperlink from b′ to b. That is, b′ refers to b and therefore
b can influence b′. Such directed links constitute the edges in E.

The authority nodes A in our dataset are the news-media sites available
in the original dataset. In total, the processed dataset consists of 123,400 blog
sites, 13,095 news sites and 124,694 directed links between the blogs (edges).

3 The dataset is available at http://snap.stanford.edu/data/memetracker9.html.



Although the dataset contains 71,568 memes, their occurrence follows a power-
law distribution and many memes occur very infrequently. In our experiments,
we only experiment with the set of 100 most frequently-appearing memes. We
denote this set of memes by MF . For every meme m ∈ MF we construct a
different extended influence graph. The set of authorities for this meme Am is
the subset of the top-50 authorities in A that have most frequently used this
particular meme.

The Bibsonomy dataset [11]. BibSonomy is an online system with which in-
dividuals can bookmark and tag publications for easy sharing and retrieval. In
this dataset, the influence graph G = (V,E) consists of peers that are scientists.
There is a link between two scientists if they have co-authored at least three
papers together. The influence links in this case are bidirectional since any of
the co-authors can influence each other. The items that propagate in the net-
work are tags associated with publications. A node is active with respect to a
particular tag if at least one of the node’s publications has been associated with
the tag. For a given tag t, the set of authorities associated with this tag, At,
are the top-20 authors with the largest number of papers tagged with t. These
authors are part of the extended influence graph of tag t, but not part of the
original influence graph.

For our experiments, we have selected papers from conferences. There are a
total of 62,932 authors, 9,486 links and 229 tags. Again, we experiment with the
top-100 most frequent tags.

Implementation. Our implementation consists of two parts. For each item, we
first count the number of users who were active and inactive at each time period;
that is, we evaluate the matrices N(x, y) and N(x, y) in Equation (3). Then, we
run the maximum likelihood regression to find the best estimates for α, β, and γ

in Equation (1). We ran all experiments on a AMD Opteron running at 2.4GHz.
Our unoptimized MATLAB code processes one meme from the MemeTracker

dataset in about 204 seconds. On average, the counting step requires 96% of this
total running time. The rest 4% is the time required to run the regression step.
For the Bibsonomy dataset, the average total time spent on a tag is 38 seconds.
Again, 95% of this time is spent on counting and 5% on regression.

−0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

Recovered α

F
re

q
u

e
n

cy

 

 

Peer and authority model
Peer only model

(a) α coefficients

−16 −14 −12 −10 −8 −6 −4 −2
0

5

10

15

20

25

30

35

Recovered γ

F
re

q
u

e
n

cy

 

 

Peer and authority model
Peer only model

(b) γ coefficients

Fig. 2. MemeTracker dataset. Histogram of the values of the peer and externality co-
efficients α and γ recovered for the pure peer (β = 0) and the integrated peer and
authority model.



5.2 Gain of Authority Integration

The goal of our first experiment is to demonstrate that the integration of au-
thority influence in the information-propagation models can help to explain ob-
served phenomena that peer models had left unexplained. For this we use the
MemeTracker and the Bibsonomy datasets to learn the parameters α, β and γ

for each of the propagated items. At the same time, we use the peer-only version
of our model by setting β = 0 and learn the parameters α′ and γ′ for each one
of the propagated items. This way, the peer-only model does not attempt to
distinguish authority influence, and is similar to the models currently found in
the literature.

The results for the MemeTracker dataset are shown in Figure 2. More specif-
ically, Figure 2(a) shows the histogram of the recovered values of α and α′ we
obtained. The two histograms show that the distribution of the values of the
peer coefficient we obtain using the two models are very similar. On the other
hand, the histogram of the values of the externality coefficients obtained for the
two models (shown in Figure 2(b)) are rather distinct. In this latter pair of his-
tograms, we can see that the values of the externality coefficient obtained in the
peer-only model are larger than the corresponding values we obtain using our
integrated peer and authority model. This indicates that the peer-only model
could only explain a certain portion of the observed propagation patterns asso-
ciating the unexplained patterns to random effects. The addition of an authority
parameter explains a larger portion of the observed data, attributing much less
of the observations to random factors. The results for the Bibsonomy dataset
(Figure 3) indicate the same trend.
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Fig. 3. Bibsonomy dataset. Histogram of the values of the peer and externality co-
efficients α and γ recovered for the pure peer (β = 0) and the integrated peer and
authority model.

5.3 Analyzing the MemeTracker Dataset

In this section, we show the results of our analysis for the MemeTracker dataset.
The results show that the majority of the memes we consider are authority-
propagated. This means that the bloggers adopt memes by authoritative online
news media sites more than by their fellow bloggers.
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and authority influence.
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The above result is illustrated in Figure 4. These histograms show the number
of memes that have a particular strength of peer (Figure 4(a)) and authority
influence (Figure 4(b)). We obtain these results by estimating the strength of
peer and authority influence using 100 random instances of the influence graph
generated by the time-shuffle test (see Section 4.2). The two histograms shown
in Figures 4(a) and 4(b) indicate that for most of the memes in the dataset,
authority pressure is a stronger factor affecting their propagation compared to
peer influence. More specifically, the percentage of memes with peer strength
greater than 0.8 is only 18% while the percentage of memes with authority
strength greater than 0.8 is 45%. Also, 46% of memes have peer strength below
0.2, while only 22% of of memes have authority strength below 0.2.
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i barack hussein obama do solemnly swear

mark my words it will not be six months before the 
world tests barack obama like they did john kennedy

i think we should all be fair and balanced don’t you

Fig. 5. MemeTracker dataset. Peer strength (x-axis) and authority strength (y-axis) of
the top-100 most frequent memes. The size of the circles indicate is proportional to the
frequency of the meme.



We demonstrate some anecdotal examples of peer- and authority-propagated
memes in Figure 5. The plot is a two-dimensional scatterplot of the peer and
authority strength of each one of the top-100 most frequent memes. The size of
the marker associated with each meme is proportional to the meme’s frequency.

Table 1. MemeTracker dataset. Examples of memes with different peer and authority
strengths. Bucketization was done using equi-depth histograms.

Group 1: Top-5 frequent memes with low peer and low authority strength.

1. life liberty and the pursuit of happiness
2. hi how are you doing today
3. so who are you voting for
4. are you kidding me
5. of course not

Group 2: Top-5 frequent memes with high peer and high authority strength.

1. joe the plumber
2. this is from the widows the orphans and those who were killed in iraq
3. our opponent is someone who sees america it seems as being so imperfect

imperfect enough that he’s palling around with terrorists who would target their
own country

4. yes we can yes we can
5. i guess a small-town mayor is sort of like a community organizer

except that you have actual responsibilities

Group 3: Top-5 frequent memes with low peer and high authority strength.

1. i need to see what’s on the other side
i know there’s something better down the road

2. i don’t know what to do
3. oh my god oh my god
4. how will you fix the current war on drugs in

america and will there be any chance of decriminalizing marijuana
5. i barack hussein obama do solemnly swear

Group 4: Top-5 frequent memes with high peer and low authority strength.

1. we’re in this moment and if we fail to do the right thing heaven help us
2. if you know what i mean
3. what what are you talking about
4. i think we should all be fair and balanced don’t you
5. our national leaders are sending u s soldiers on a task that is from god

A lot of the memes in the lower left, that is, memes with both low peer and
authority strength, are commonly seen phrases that are arguably not subject to
social influence. The memes in this category tend to be short and generic. For
example, “are you kidding me” and “of course not” were placed in this category.
The meme “life liberty and the pursuit of happiness” is also placed in the same
category. Although this last quote is not as generic as the others, it still does



not allude to any specific event or controversial political topic. The low social
correlation attributed to these memes indicates that they sporadically appear
in the graph, without relation to each other. Using an equi-depth histogram we
extract the the top-5 most frequent memes with low peer and low authority
strength and show them in Group 1 of Table 1.

Diagonally opposite, in the upper right part of the plot, are the memes with
high peer and high authority strength. These are particularly widely-spread
quotes that were pertinent to the 2008 U.S. Presidential Election, and that
frequently appeared in both online news media sites and blog posts. Examples
of memes in this category include “joe the plumber” and President Obama’s
slogan, “yes we can.” Finally, the meme “this is from the widows the orphans
and those who were killed in iraq” is also in this category. This is a reference to
the much-discussed incident where an Iraqi journalist threw a shoe at President
Bush. The top-5 most frequent memes with high peer and authority strengths
are also shown in Group 2 of Table 1. Comparing the memes in Groups 1 and
2 in Tables 1, one can verify that, on average, the quotes with high peer and
high authority strength are much longer and more specific than those with low
peer and low authority strengths. As observed before, exceptions to this trend
are the presidential campaign memes “joe the plumber” and “yes we can”.

Memes with low peer and high authority strength (left upper part of the
scatterplot in Figure 5) tend to contain quotes of public figures, or refer to
events that were covered by the news media and were then referenced in blogs.
One example is “I barack hussein obama do solemnly swear,” the first line of
the inaugural oath. The inauguration was covered by the media, so the quotes
originated in news sites and the bloggers began to discuss it immediately after.
Typically, memes in this group all occur within a short period of time. In con-
trast, memes with both high peer and high authority influence are more likely to
gradually gain momentum. The top-5 most frequent memes with low peer and
high authority strength are also shown in Group 3 of Table 1.

We expect that memes with high peer and low authority strength (right lower
part of the scatterplot in Figure 5) are mostly phrases that are not present in
the mainstream media, but are very popular within the world of bloggers. An
example of such a meme, as extracted by our analysis, is “mark my words it
will not be six months before the world tests barack obama like they did john
kennedy.” This is a quote by Joe Biden that generates many more high-ranked
blog results than news sites on a Google search. Another example is “i think we
should all be fair and balanced don’t you,” attributed to Senator Schumer in an
interview on Fox News, which was not covered by mainstream media but was
an active topic of discussion for bloggers. The top-5 most frequent memes with
high peer and low authority strength are also shown in Group 4 of Table 1.

5.4 Analyzing the Bibsonomy Dataset

In this section, we show the results of our analysis for the Bibsonomy dataset.
The results show that the majority of the items we consider here are peer-
propagated. Recall that in the case of the Bibsonomy dataset the propagated



items are tags associated with papers written by the scientists forming the col-
laboration network. One should interpret tags as research topics or themes. Our
findings indicate that when choosing a research direction, scientists are more
likely to be influenced by people they collaborated with rather than experts in
their field.

The above result is illustrated in Figure 6. These histograms show the num-
ber of tags that have a particular strength of peer (Figure 6(a)) and authority
influence (Figure 6(b)). We obtain these results by estimating the strength of
peer and authority influence using 100 random dataset instances generated by
the time-shuffle test (see Section 4.2).
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Fig. 6. Bibsonomy dataset. Frequency distribution of the recovered strength of peer
and authority influence.

Overall, we observe stronger peer influence than authority influence in the
Bibsonomy dataset, as illustrated in Figures 6(a) and 6(b). The percentage
of tags with peer strength greater than 0.8 is 67% while the percentage of tags
with authority strength greater than 0.8 is only 15%. Also, 41% of the tags have
authority strength below 0.2, while only 11% of the tags have peer strength
below 0.2.

5.5 Experiments on Synthetic Data

We conclude our experimental evaluation by showing the performance of our
model using synthetically generated data. The sole purpose of the experiments
reported here is to demonstrate that in such data the maximum-likelihood pa-
rameter estimation and the time-shuffle randomization test lead to conclusions
that are consistent with the data-generation process.

Accuracy of Recovery: To verify that the recovery for α and β is accurate, we
randomly generate a synthetic power-law graph, and simulate the propagation
of an item over this graph using the logistic function with predetermined values
for α, β, and γ. In particular, we used the Barabasi model to generate graphs
with 10000 peers and 50 authorities. We used α, β ∈ {1, 2, 3, 4, 5, 6}, and γ =
−10. Higher values for α and β cause all the nodes to become active almost



β

α

 

 

1 2 3 4 5 6

1

2

3

4

5

6 −0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(a) of peer coefficient α

β

α

 

 

1 2 3 4 5 6

1

2

3

4

5

6
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(b) Authority coefficient β

Fig. 7. Synthetic data. Relative error for the peer coefficient α and the authority
coefficient β.

immediately, so it becomes very difficult to observe how the items propagate.
To quantify the accuracy with which a parameter x is recovered, we define the
relative recovery error. If x is the value of the coefficient used in the generation
process and x̂ is the recovered value, then the relative error is given by

RelErr(x, x̂) =
|x− x̂|

x
.

The relative error takes values in the range [0,∞), where a smaller value indicates
better accuracy of the maximum-likelihood estimation method.

Figure 7 shows the relative recovery errors for different sets of values for
α and β in this simulated graph, where darker colors represent smaller relative
errors. In most cases, for both the peer and the authority coefficients, the relative
error is below 0.2 indicating that the recovered values are very close to the ones
used in the data-generation process.
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Fig. 8. Synthetic data. Recovering the peer coefficient α and the authority coefficient
β for the real data and the data after time-shuffle randomization.

Time-Shuffle Test on Synthetic Data: Figures 8(a) and 8(b) show the
recovered value of peer and authority coefficient respectively, as a function of the
value of the same parameter used in the data-generation process. One can observe



that in both cases the estimated value of the parameter is very close to the input
parameter. Visually this is represented by the proximity of the recovered curve
to the y = x curve; curve y = x represents ideal, errorless recovery. Second,
the recovered values follow the trend of the values used in the data-generation
process. That is, as the values of α and β used in the data generation increase,
the recovered values of α and β also increase. This indicates that even if the
maximum-likelihood estimation does not recover the data-generation parameters
exactly, it correctly identifies the types of influence (peer or authority).

In addition to the recovered values of peer and authority coefficient we also
report the average of the corresponding parameters obtained in 100 randomized
instances of the originally generated dataset; the randomized instances are all
generated using the time-shuffle test. These averages are reported as the dashed
line in both Figures 8(a) and 8(b). We observe that the values of peer and
authority coefficients obtained for these randomized datasets are consistently
smaller than the corresponding recovered and actual values. This means that
the time-shuffle test is consistently effective in identifying both peer and au-
thority influence. Observe that as the values of α and β parameters used in the
data-generation process increase, the difference between the average randomized
value of the parameter and the recovered value increases. This suggests that
as the dependence of the propagation on a particular type of influence (peer
or authority) becomes larger, it becomes easier to identify the strength of the
corresponding influence type using the time-shuffle test.

6 Conclusions

Given the adoption patterns of network nodes with respect to a particular item,
we have proposed a model for deciding whether peer or authority pressure played
a central role in its propagation. For this, we have considered an information-
propagation model where the probability of a node adopting an item depends
on two parameters: (a) the number of the node’s neighbors that have already
adopted the item and (b) the number of authority nodes that appear to have
the item. In other words, our model extends traditional peer-propagation mod-
els with the concept of authorities that can globally influence the network. We
developed a maximum-likelihood framework for quantifying the effect of peer
and authority influence in the propagation of a particular item and we used this
framework for the analysis of real-life networks. We find that accounting for au-
thority influence helps to explain more of the signal which many previous models
classified as noise. Our experimental results indicate that different types of net-
works demonstrate different propagation patterns. The propagation of memes in
online media seems to be largely affected by authority nodes (e.g., news-media
sites). On the other hand, there is not evidence for authority pressure in the
propagation of research trends within scientific collaboration networks.

There is a set of open research questions that arise from our study. First,
various generalizations could fit in our framework: peers or authorities could
influence authorities, nodes or edges could have different weights indicating
stronger/weaker influence pressures, and so on. More importantly, while our



methods compare peer and authority influence, it would be interesting to ac-
count for selection effects [2, 3] that might affect the values of the coefficients
of our model. Such a study can give a stronger signal about the exact source
of influence in the observed data. Furthermore, in this paper we have consid-
ered that the set of authority nodes are predefined. It would be interesting to see
whether the maximum-likelihood framework we have developed can be extended
to automatically identify the authority nodes, or whether some other approach
(e.g., one based on the HITS algorithm).
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