
Persistent Authenticated Dictionaries and Their

Applications?

Aris Anagnostopoulos1, Michael T. Goodrich2, and Roberto Tamassia1

1 Dept. Computer Science, Brown University. Email: {aris, rt}@cs.brown.edu
2 Dept. Computer Science, University of California, Irvine. Email: goodrich@acm.org

Abstract. We introduce the notion of persistent authenticated dictio-
naries, that is, dictionaries where the user can make queries of the type
“was element e in set S at time t?” and get authenticated answers. Appli-
cations include credential and certificate validation checking in the past
(as in digital signatures for electronic contracts), digital receipts, and
electronic tickets. We present two data structures that can efficiently
support an infrastructure for persistent authenticated dictionaries, and
we compare their performance.

1 Introduction

At its core, nonrepudiation involves making cryptographically strong statements
about the past. Although we digitally sign statements in the present, we only
worry about enforcing statements made in the past. Consider, for example, the
following scenarios:

– Alice executed a digital mortgage two years ago and now is in default. The
bank can only sue Alice if it can prove that she was in fact the one who
digitally signed the mortgage contract. (Moreover, the exact history of Alice’s
digital certificates may be crucial here, for her signature should remain valid
even if her private key was compromised and her digital certificate revoked
even just a few weeks after she signed the contract.)

– Bob signed a digital receipt for Alice’s electronic payment and then shipped
her a defective item. Alice must be able to prove that Bob truly was the one
who signed that receipt.

– A company, CryptoTicket.com, issued a signed digital ticket to Alice for
the opera, but Alice is refused entry to the performance. She needs to be
able to prove that indeed CryptoTicket.com issued that ticket and was also
authorized to do so.

– A company, CryptoNet.com, has published an online catalog that advertised
widgets at $1 a piece on the day they accepted a digital purchase order (PO)
for 100 widgets from Alice. Now the company has raised the price to $100
and is demanding $10,000 from Alice. She needs to be able to prove that $1
was the valid price for widgets on the day they accepted her digital PO.

? Research supported in part by DARPA Grant F30602-00-2-0509.



Thus, in order to enforce nonrepudiation on important contractual statements,
such as in these examples, we need to have in place a mechanism for checking
credentials, certificates, and published information in the past. Ideally, we would
like there to be a collection of potentially untrusted directories that can answer
historical queries about such items.

1.1 Problem Definition and Applications

Put more abstractly, the problem we address involves three types of parties:
a trusted source, untrusted directories, and users. The source defines a finite
set S of elements that evolves over time through insertions and deletions of
elements. Each directory, acting as a query agent for the source maintains a
copy of set S and receives time-stamped updates from the source together with
update authentication information, such as signed statements about the update
and the current elements of the set. A user performs membership queries on the
set S of the type “was element e in S at time t?” but instead of contacting the
source directly, it queries one of the directories. The contacted directory provides
the user with a yes/no answer to the query together with query authentication
information, which yields a cryptographic proof of the answer assembled by
combining statements signed by the source. The user then verifies the proof by
relying solely on its trust in the source and the availability of public information
about the source that allows the user to check the source’s signature. We call
the data structure used by the directory to maintain the set S, together with the
protocol for queries and updates a persistent authenticated dictionary (PAD).

The PAD abstract data type extends the usual notion of an authenticated
dictionary [15], where the queries are only of the form “is element e currently
in S?”. Thus, a PAD has the added burden of having to archive the entire history
of updates sent by the source to the directories. Moreover, the directories must
be able to provide answers and proofs for queries related to any time, past
or present. We show, in Fig. 1, a schematic view of a persistent authenticated
dictionary.

The design of a persistent authenticated dictionary should address the fol-
lowing goals:

– Low computational cost: The computations performed internally by each
entity (source, directory, and user) should be simple and fast. More impor-
tantly, the space needed to archive historical copies of S should be small.

– Low communication overhead: source-to-directory communication (update
authentication information) and directory-to-user communication (query au-
thentication information) should be kept as small as possible.

– High security: the authenticity of the data provided by a directory should
be verifiable with a high degree of certainty.

In addition to the motivating examples given above, applications of persis-
tent authenticated dictionaries include third-party publication of historical data
on the Internet [3] and historical certificate revocation checking in public key



user

query about

answer about
update,

auth. info

directory

directory

directory

directory

source

elemente
at timet

elemente
at timet,

auth. info

directory

Fig. 1. Persistent authenticated dictionary.

infrastructures [9, 15, 1, 2, 8, 5]. In the third-party publication application [3],
the source is a trusted organization (e.g., a stock exchange) that produces and
maintains historical integrity-critical content (e.g., stock prices) and allows third
parties (e.g., Web portals), to publish this content on the Internet so that it be-
comes widely disseminated. The publishers store copies of the content produced
by the source and process queries on such content made by the users.

In the certificate revocation application [9, 15, 1, 2, 8, 5], the source is a cer-
tification authority (CA) that digitally signs certificates binding entities to their
public keys, thus guaranteeing their validity. Nevertheless, certificates are some-
times revoked (e.g., if a private key is lost or compromised, or if someone loses
his authority to use a particular private key). Thus, the user of a certificate must
be able to verify that a given certificate used to validate someone for a historic
contract was not revoked at the time the contract was executed. To facilitate
such queries, certificate revocation directories process historic revocation status
queries on behalf of users. The results of such queries need to be trustworthy,
for they often form the basis for electronic commerce transactions.

In this paper, we present a new scheme for persistent authenticated dictio-
naries, based on efficient persistent data structures known as red-black trees and
skip lists. Our structures are secure, as well as being fast and space efficient in
terms of the parameters n, which denotes the current number of elements of
the set S, and m, which denotes the total number of updates the source has
performed.

1.2 Previous and Related Work

We are not aware of any previous work on persistent authenticated dictionaries.
We summarize prior work on ephemeral authenticated dictionaries, where only
the current version of S is maintained, and on persistent (non-authenticated)
dictionaries.



Ephemeral Authenticated Dictionaries. Work has been done on ephemeral au-
thenticated dictionaries primarily in the context of certificate revocation. The
traditional method for certificate revocation (e.g., see [9]) is for the CA (source)
to sign a statement consisting of a timestamp plus a hash of the list of all re-
voked certificates, called certificate revocation list (CRL), and periodically send
the signed CRL to the directories. A directory then just forwards that entire
signed CRL to any user who requests the revocation status of a certificate. This
approach is secure, but it is inefficient: the update and query authentication
information has size Θ(n). Moreover, to turn the CRL approach into a persis-
tent authenticated dictionary requires that every CRL ever issued be archived at
the directories. Thus, if m CRLs have been issued, this solution requires in the
worst case quadratic O(m2) storage space at each directory. In other words, the
CRL-based approach is a simple but very inefficient solution for the persistent
authenticated dictionary problem.

There are other more space-efficient methods for implementing ephemeral
authenticated dictionaries. But methods for adapting them to the persistent
context are not obvious. The hash tree scheme introduced by Merkle [13] can be
used to implement a static authenticated dictionary, which supports the initial
construction of the data structure followed by query operations, but not update
operations (without complete rebuilding). Still, the only obvious way to make a
hash tree persistent is to checkpoint the entire tree at each time quantum, which
is clearly not space efficient.

Kocher [12] also advocates a static hash tree approach for realizing an au-
thenticated dictionary, but simplifies somewhat the processing done by the user
to validate that an item is not in the set S. Using techniques from incremental
cryptography, Naor and Nissim [15] dynamize hash trees to support the inser-
tion and deletion of elements using 2-3 trees. Other certificate revocation schemes
based on variations of hash trees have been recently proposed in [2, 5, 10], as
well, but do not deviate significantly from the above approaches.

Goodrich and Tamassia [6, 7] have proposed an authenticated-dictionary
scheme based on the skip-list data structure that has asymptotically the same
performance as [15] but it is simpler to implement. Still, like other previous so-
lutions, their data structure is ephemeral—it only stores the most recent copy
of the set S.

Persistent Data Structures. Researchers have worked on persistent data struc-
tures for other abstract data types besides authenticated dictionaries. The idea
of path copying in a tree, for example, which is a component in some of our so-
lutions, has been used in non-authenticated contexts by several researchers (e.g.
Myers [14] and Reps, Teitelbaum and Demers [17]). Sarnak and Tarjan [18] pro-
posed the node-copying method and use persistent trees to solve the planar point
location problem, while Driscoll, Sarnak, Sleator and Tarjan [4] developed tech-
niques for making linked data structures persistent. Nevertheless, none of these
previous schemes for making data structures persistent have directly addressed
the need for authentication or directory distribution.



1.3 Summary of Results

We present two data structures for implementing PADs, based on the dictionary
data structures known as red-black trees and skip lists. Our solutions allow
for element insertions and removals in the current set S to run in O(log n)
time and queries in the past to run in O(log m) time. More importantly, our
solutions use only O(log n) additional space per update. (Recall that n is the
number of elements in the current set S and m is number of updates that have
occurred so far.) Thus, our solutions are significantly more efficient than the
CRL-based approach or checkpointing-based approaches, which require Θ(n)
additional space for archiving S at each historic time quantum. We describe
the theoretical foundations behind our solution to the persistent authenticated
dictionary problem in Section 2.

In addition, we claim that our methods are simple, which is an often ne-
glected, but important aspect of computer security solutions, for implementa-
tion correctness is as important as theoretic soundness. To support this claim, we
have implemented our solutions and have performed a number of benchmarking
tests, which we report on in Section 3.

2 Making Authenticated Dictionaries Persistent

We use and extend some ideas from previous work on persistent data structures
to create our solutions to the persistent authenticated dictionary (PAD) abstract
data type. Let us therefore begin with a quick review.

A Quick Review of Persistent Data Structures. Most of the data structures are
ephemeral in the sense that whenever the user performs an update to them he
destroys the previous version. If the previous version is retained and we can do
queries to them we talk about persistent data structures. We can even talk about
fully persistent data structures if we can make updates and not only queries to
previous versions.

In more detail, the operations that a persistent data structure S supports
are find(e, t), which determines whether element e was in S at time t, insert(e),
which inserts element e into S (at current time), and delete(e), which removes
element e from S (at current time).

In our case, we maintain the data structure in both the source and the di-
rectories. When the user queries a directory if an element e was in the source at
some time t, the directory returns “yes” if e existed in the source at time t along
with a proof of its existence, or “no” if e did not exist in the source at time t
along with a proof of its nonexistence. The proof must permit the user to verify
that the answer is authentic (i.e., it is as trustworthy as if it were directly signed
by the source) and that it is current (i.e., it corresponds to time t).

Depending on the application we can use one of the two versions of the PADs
which differ in the way they define time. In particular we can have:



– Discrete time where we can think that the dictionary holds several versions
whose time is numbered sequentially with integers starting at 0. When a user
performs a query, t equals the time of one of the versions, and the dictionary
searches the corresponding version and returns an answer that allows the
user to verify that indeed the dictionary searched version at time t.

– Continuous time where we can define the time over any set for which there
exist a complete order. The versions of the dictionary are ordered according
to that order. Whenever a user queries the directory about time t, the direc-
tory must provide an answer corresponding to the latest dictionary version
at time t′ that is earlier than t; moreover, it must provide information for the
user to verify that indeed t′ is the time of the version that should have been
queried and that does not exist a version at time t′′ such that t′ < t′′ ≤ t.

We have developed two data structures that implement PADs, one based on
the red-black tree and the other based on the skip-list data structures.

2.1 PADs Based on Red-Black Trees

We denote the element stored at a node v as elem(v).
The version of the red-black tree we use, has all the values stored only at the

external nodes. We use the internal nodes to make queries to the tree and to
store authentication information. The value stored at each internal node equals
the maximum value of the left subtree; the values at the right subtree are greater
than that value. When we want to make an insertion to the tree of an element
with value e that does not exist into the tree, first we find the external node
v containing the minimum element elem(v), such that elem(v) > e. We then
create a new internal node w to replace v and we set as the left child of w a
new external node u such that elem(u) = e and as the right child the node v.1

Finally we perform the necessary reconstructions and recolorings. A deletion of
a node is performed in the opposite manner.

The persistent red-black tree is a modification of the red-black tree. Each
node u has also a field time(u) where we store the timestamp of its creation.
Each addition or deletion to the tree does not change the current tree nodes but
instead it adds new nodes with timestamp value that of the current time.

In Fig. 2 we can see an example of an instance of a red-black tree. The bold
lines denote black nodes and edges, while the normal ones denote red. The label
at the top of each node (in Fig. 2 all are 0 for simplicity) denotes the timestamp
value.

Suppose we want to add a new element (e = 18). We can see the new tree
created in Fig. 3, where the timestamp of the new nodes has taken the current
time value (here just 1 for simplicity). Because at each update operation we copy
the whole path from a node up to the root, this method is called path-copying
method. Note that we have as many signed roots as update operations. Details
of the operations follow in the next paragraphs.
1 There is an exception for the value that is larger than the largest element at the tree.



6

6 10 15 20

6 15

0

0 0

0 0 0 0

Fig. 2. The tree before the inser-
tion.

6

6 10 15 20

6

15

18 20

6 15

18

0

0 0

0 0 0 0

1

1

1

1 1

Fig. 3. The tree after the insertion of ele-
ment 18.

In our scheme we use an authenticated persistent red-black tree. Each node
u has stored one more value, auth(u), that is used for authentication; auth(u)
equals elem(u) if u is an external node, and the concatenation of the auth()
values of u’s children if u is an internal node. h must be a collision-free hash
function. Finally the root of every version of the tree (for the different update
times) is signed. In summary, each node u contains three fields: elem(u), time(u),
and auth(u).

We describe now the details of the operations.

Insertion. At every insert operation, the old version of the tree doesn’t change
at all (except for the colors of the nodes and edges as we will see later). We find
the external node u that will be the father of the new node. Then we make a
copy of the nodes on the path, from the root down to u to which we assign a
timestamp value equal to the current time. We perform then the insertion by
creating a new node as we saw before. We denote here a node x as x0 for the
old version, and x1 for the new version that is copied. If along the path, a node
v that is copied has a child w that is also copied, we add the edge from the node
v1 to w1. For the rest of the edges of v0 to some other node z0 we add an edge
from v1 to z0. We can see an example in Figures 2, 3.

Since we have a red-black tree, we must color the new nodes. Every node
v1 will be colored with the same color with v0, and the insertion will be done
normally. After the insertion we may have to perform some transformations on
the tree, namely some rotations and recolorings. The recolorings are easy, since
we can overwrite the old colors of any node of any previous version of the tree.
The colors are used only for the update operations, so we do not need to keep
track of the old ones—we do not make updates in the past. Rotations are also
simple; they will be done only on the new version of the tree and they will affect
only the new nodes and the links originating from them.

Finally we must compute the values elem() and auth() for all the new nodes
created. These operations are straightforward and we can perform them as we
create the new nodes, in O(log n) time. In particular, we must compute only
two elem() values, the one of the new external node, and that of its parent
(which has the same value). We must compute the auth() values of all the
O(log n) new nodes. Finally, if r1 is the root of the last version of the tree



(just created) and r0 is the root of the just previous version, then the source
signs (auth(r1), time(r1), time(r0)). (The previous timestamp is necessary only
in the case of continuous time; we give more details later.)

Deletion. A delete operation is similar to an insert. We copy the path from
the root down to the node to be deleted, we remove the nodes (one external and
one internal node will be deleted), and then perform the necessary rotations and
recolorings. Here we must be careful, since the rotations in this case may also
affect nodes not existing in the new path created. So before the rotation, these
nodes must also be copied.

During the deletion we may require to perform in the worst case at most
a logarithmic number of recolorings and two rotations. In total, except for the
path of the node deleted, it may be necessary to copy at most 4 additional nodes;
therefore, we copy only a logarithmic number of nodes.

Finally we compute the necessary elem() and auth() values and sign the new
root, by the method we described in the Insertion paragraph. Again, we must
compute all the auth() values of the O(log n) new nodes, and the only internal
elem() value that we must alter is the value of the node that followed the removed
external node in the infix traversal of the tree.

Query. A find operation can query the PAD at any time in the past (or present)
to find if an element e existed at that time. Say that we want to query for
time t1 and we have the two consecutive tree versions for times t0 and t2, where
t0 ≤ t1 < t2, assuming that t2 exists. In the following, assume that r0 is the
root with timestamp t0, r2 is the root with timestamp t2 and r3 is the root with
the largest timestamp that is less than t0, if it exists. In order to search for e
we work on the tree originating from the root r0 of time t0. We distinguish two
cases:

– The element e exists in the tree at time t0: The dictionary returns
to the user the answer “yes”, the root r0 signed by the source (i.e., the
signature of (auth(r0), time(r0), time(r3))), the root r2 signed by the source,
that is, the signature of (auth(r2), time(r2), time(r0)), the element e, and the
sequence Q(e) of the hashes of the siblings of the nodes of the path from the
root of the tree to e. The user can verify that the answer is valid from the
sequence Q(e) and the source’s signature of the root.

– The element e does not exist in the tree at time t0: In this case, let e′

be the maximum element that exists in the tree and is smaller than e, and
e′′ the minimum element that exists in the tree and is greater than e. The
dictionary returns to the user the answer “no”, the root r0 with timestamp t0
and the root r1 with timestamp t1, signed by the source like in the previous
case, the elements e′ and e′′, and the sequences Q(e′) and Q(e′′) defined as
before. The user can verify now that both e′ and e′′ exist in the tree and
that they are consecutive external nodes (hence e is not between them).

The root r2 has to be included only in the case of continuous time. The
reason is to prove that there is not another version of the tree at time t4 such



that t0 < t4 ≤ t1 < t2 which may have different information concerning C.
The user can now verify that the version that immediately follows the one that
corresponds to time t0 is at time t2 since it is included in the signature.

Summarizing the above results, we have the following theorem:

Theorem 1. A persistent authenticated dictionary can be implemented with a
persistent authenticated red-black tree. The time needed for an update operation
is O(log n) and for a query operation is O(log m), where n is the number of
elements of the last version and m is the total number of versions. The total space
requirement is O (

∑m
i=1 log ni), where ni is the number of elements of version i.

Proof. We perform an update to the last version of the tree, which has n el-
ements. The update operation requires the addition of O(log n) new nodes,
O(log n) changes to the tree structure (including recolorings) and the computa-
tion of O(log n) new hash values. Therefore, it can be performed in time O(log n).

A query on version i requires a binary search on the root of the trees to
find the appropriate version of the tree, which takes time O(log m), a search in
the tree to find the appropriate node(s), which needs O(log ni) steps, and the
creation and return of the response, which is done in O(log ni) steps. Since ni

cannot be greater than m, the overall time requirement of a query is O(log m).
The space required for the i-th update is O(log ni): the insert operations need

to copy only the nodes of the path of the new node, while the delete operations
may need to copy at most 4 additional nodes. By the property of red-black trees
the total path length is O(log ni), hence, the total space is O (

∑m
i=1 log ni). 2

Note that the above time complexity results hold when we have continuous
time. In the case of discrete time, we can find the appropriate root for a query
just by a table lookup in constant time, and in this case the total query time is
O(log ni). Also, note that when we query the last version, the time is reduced
to O(log n), as in the ephemeral authenticated dictionary.

2.2 PADs Based on Skip Lists

The skip-list data structure [16] is an efficient means for storing a set S of
elements from an ordered universe. Briefly, a skip list consists of a collection of
linked lists S0, S1, . . . , Sk (where Si contains a randomly selected subset of the
items in Si−1, plus two additional values −∞ and +∞), and links between them.
We can see an example in Fig. 4. With high probability (whp2), skip lists have the
same asymptotic performance as red-black trees. However, experimental studies
(e.g., see [16]) have shown that they often outperform in practice 2-3 trees, red-
black trees, and other deterministic search tree structures.

2 We use “whp” to refer to a probability that is at least 1 − 1/nc for some constant
c ≥ 1.



22

17 31 38

555012 17 20 25 31 38 39 44

4412

17 5531

17

17 55

55

25

25

25

S5

S4

S3

S2

S1

S0 8-

8-

8-
8-

8-

8- 8+

8+

8+

8+

8+

8+

555012 17 20 25 31 38 398- 8+22

v1v2

v3v4

v5v6

v7v8

v9v10

v11

w3

u4

u6

w7

u8

u10

44

Fig. 4. (a) An example of a skip list. All the lines indicate links of the data structure.
(b) The answer authentication information for the presence of element x = 39 (and for
the absence of element 42) consists of the signed time-stamped value f(v11) of the source
element and the sequence Q(x) = (44, 39, 38, f(w3), f(u4), f(u6), f(w7), f(u8), f(u10)).
The user recomputes f(v11) by accumulating the elements of the sequence with the
hash function h, and verifies that the computed value of f(v11) is equal to the value
signed by the source [6, 7]. The arrows denote the flow of authentication information.

Commutative Hashing. To simplify the verification process, commutative crypto-
graphic hash functions are introduced in [6]. A hash function h is commutative
if h(x, y) = h(y, x) for all x and y. A commutative hash function is commu-
tatively collision resistant [6] if, given (a, b), it is difficult to compute a pair
(c, d) such that h(a, b) = h(c, d) while (a, b) 6= (c, d) and (a, b) 6= (d, c). Given a
cryptographic hash function g that is collision resistant in the usual sense, the
commutative hash function, h(x, y) = g(min{x, y}, max{x, y}) is commutatively
collision resistant if x and y have the same length [6].

Authenticated Dictionary Based on a Skip List. Using the skip-list data structure
and commutative hashing, we can design a scheme for authenticated dictionaries,
similar to the one based on balanced trees. It has the same asymptotic perfor-
mance but it avoids many complications that arise in the implementation of the
hash trees, leading to easier and less error-prone implementations. An example
of the data structure and of an authenticated query is in Fig. 4. For more details
refer to [6, 7].

PAD Based on a Skip List. We can apply the path-copying idea to the au-
thenticated skip list and create a persistent authenticated skip list. First, we
make the following observation, which allows us to have an efficient implemen-
tation: for the operations supported by the skip list, some of the nodes and links
are unnecessary and can be omitted. The skip list then looks like that of Fig. 5.
We can see now that in this form the skip list is essentially a binary tree (whose
root is the node in the highest-level list with the value −∞) and so we can apply
the path-copying method. We have to be careful however to copy all the nodes
whose out-links or authentication information change.



12 17 20

12

17

S5

S4

S3

S2

S1

S0 8-

8-

8-

17 20

17

8-

8-

31 38

555025 31 38 39 44

44

31

55

25

8+

8+2221

21

21

25

17

8-

Fig. 5. (a) A tree-like representation of a skip list. (b) Insertion of element 21 with
height 5. The new nodes and links are bold, while the dashed ones exist only in the
previous version.

It is important to mention that when we do an update, we do not change the
existing nodes of the skip list—we only add new nodes. Therefore, by storing
links to the appropriate root nodes we can make queries to any version of the
dictionary. We describe now in detail the operations.

Insertion. Assume that we want to insert element e and that e′ is the largest
element that is smaller than e. On the search path p we will reach element e′

that belongs to the list S0. We insert the element e and hence the authentication
data of e′ in S0 changes; the change of the authentication data propagates up
to the root node along the path p that we followed to reach e′. In other words,
the nodes of p (and of course the nodes of the new element) are the only nodes
whose authentication data changes. Finally, some of the links to the right of
the nodes on p—basically, those that belong to nodes that are lower than the
height of the new element—must be set to null and be replaced by links that
originate from the new elements. Therefore, the new nodes that we create are
exactly those that belong to p plus those of the new element e. Fig. 5 shows an
example of an insertion.

The number of the new nodes that we create equals the length of the search
path to the element e′ plus the number of the new nodes for the new element.
Both of these are O(log n) whp. The number of hashes that we have to compute
is at most equal to the number of the new nodes (although for some of the nodes
the authentication data is equal to that of the node below and does not have to
be recomputed).

Deletion. Assume that we want to remove element e from the skip list and that
e′ is the element immediately preceding e. We follow the path p to element e′.
Since we remove the element next to e′ (i.e., e), the authentication data of e′ in
S0 changes. Again, the change propagates up to the root node only along p, and
the only links to the right that must change are in p. Therefore, the only nodes
that we must duplicate are those in p, which with high probability are O(log n).
Also, the number of the hashes to compute equals at most the number of the
new nodes and so it is O(log n) whp.



Query. Assume that we want to find if element e existed in the skip list at time
t. First, we find the appropriate root node r of the skip list. Like in the red-black
trees implementation, in the case of discrete time, we can find the start node by
a table lookup in constant time, while for continuous time we can find it in time
O(log m) using, for example, binary search. Since in the update operations we
never change existing nodes but we only add new ones, the skip list originating
from r is exactly the one we had at time t. Therefore, we can perform the query
simply by following the procedure of the ephemeral authenticated skip list; the
time needed is O(log nt), where nt is the number of elements of the skip list of
version at time t.

Thus, the total time needed is O(log nt) for discrete time and O(log m) for
continuous-time.

Theorem 2. A persistent authenticated dictionary can be implemented with a
persistent authenticated skip list. With high probability, the time needed for an
update operation is O(log n) and for a query operation O(log m), where n is the
number of elements of the last version and m is the total number of versions.
After an update, the space used by the data structure increases by O(log n) whp.

2.3 Security

The security of both techniques for PADs is based on Merkle’s scheme for dig-
ital signatures [13] which is the cryptographic basis for previous approaches for
authenticated dictionaries as well [12, 15, 2, 5, 10, 6].

One possible way for the directory to cheat is to try to return to the user a
response corresponding to a different version than the specified. In the discrete-
time setting, the response of the directory must contain a signed statement of
the source that contains both the number of the version that the user specified at
his query and the hash value of the corresponding root. In the continuous-time
setting, as we explained in section 2.1, the response of the directory allows the
user to verify that indeed the hash of the correct root is returned. Hence, in both
cases, the user is assured (based only on the trust in the source) that the hash
value of the root that he received is that of the correct version.

Assuming that the directory returns the authentication information corre-
sponding to the correct version, our schemes for PADs are as secure as the
corresponding ephemeral ones: In order for the directory to cheat, it has to
find a sequence of O(log n) values, which, if are hashed in succession, produce
the same output as the values that actually exist in the dictionary; if we use a
collision-resistant cryptographic hash function, such as MD5 or SHA1, this task
is infeasible. For more details, refer to [13, 15, 6].

2.4 Extensions

We present here three useful extensions of the preceding schemes that can be
implemented with minor overhead.



First, instead of performing membership queries, we can have a value associ-
ated with each element to be returned by a query operation. The element defines
the position of the pair in the data structure, and the authentication data de-
pends on both the element and the value. The additional operation that we allow
is changing the value that corresponds to an element and we can implement it
easily by only copying the old nodes (no restructural operations are necessary).

Second, we can apply the path-copying technique to other types of authen-
ticated balanced trees, such as AVL or 2-3 trees.

Finally, we can combine the advantages of the PADs with the efficiency of-
fered by B-trees when we store them in secondary memory. This yields an ef-
ficient authenticated data structure that is persistent in two ways: it holds the
whole history of updates, and remains in permanent, external memory—usually
a disk. The idea is to allocate a whole new disk block when we create a new
node, and in some time instances to compact older versions, by putting two
small nodes in the same block, to save disk space.

3 Experimental Results

We have designed a comprehensive set of Java interfaces describing the PAD
abstract data type and auxiliary data types (source, directory, user, etc.). Also,
we have conducted an experiment on the performance of our data structures
on randomly generated sets of 256-bit integers in dictionaries ranging in size
from 0 to 500, 000. For each operation, the average was computed over 10, 000
trials. The experiment was conducted on a 400MHz Sun Ultra Enterprise with
2GB of memory running Solaris. The Java Virtual Machine was launched with
a 1GB maximum heap size. Cryptographic hashing was performed using the
standard Java implementation of the MD5 algorithm. The signing of the update
authentication information by the source and the signature verification by the
user were omitted from the experiment.

We compare the execution time of the ephemeral authenticated skip list
with that of the persistent one. The highest level of a tower was limited to 20.
The results are shown in Fig. 6. We can see that the query time is almost the
same for both the ephemeral and persistent versions, while the insertion time is
slightly lower for the ephemeral one, since it allows some optimizations in the
implementation.

After noticing that most of the update time (about 94%) is consumed by
the hashing computations, we have determined the number of hashes required
for an update in a skip list (it is the same for both the ephemeral and the
persistent versions) and in a red-black tree. We present the experimental results
in Fig. 6. Furthermore, we observe that the number of hashes computed at
each update equals the number of new nodes created in a red-black tree, and
is about 0.25 log2 n less than the number of new nodes created in a skip list.
Therefore, the number of hashes provides a measure of the space requirement
of our data structures. From Fig. 6, we can see that the red-black tree requires
fewer hashes than the skip list. This is justified theoretically, since for a skip



Fig. 6. (a) Average insertion and query times for ephemeral and persistent authenti-
cated skip lists. The results for deletions are similar to those for insertions. (b) Av-
erage number of hash computations per insertions for skip lists (both persistent and
ephemeral) and red-black trees.

list with n elements, the average number of comparisons performed in a search
(which is a lower bound of the number of hashes that we have to compute for
an update) is 3

2 log2 n + 7
2 [16], while for a balanced tree with n external nodes,

it is about log2 n [11].

4 Conclusions

We have introduced the notion of persistent authenticated dictionaries and jus-
tified their usefulness. We have also presented two techniques for implementing
persistent authenticated dictionaries that support updates in O(log n) time and
queries in O(log m) time, and use O(log n) space per update (n is the number
of elements in the current set S and m is the number of updates that have oc-
curred so far). The technique based on red-black trees has better running time
and space requirement than the one based on skip lists, but its implementation
is more complex. We leave as an open problem whether persistent authenticated
dictionaries can be implemented with constant space per update.

Acknowledgments

We would like to thank Andrew Schwerin for many useful conversations regarding
the contents of this paper.



References

[1] W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation. In
Advances in Cryptology – CRYPTO ’ 98, Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[2] A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management with
undeniable attestations. In ACM Conference on Computer and Communications
Security. ACM Press, 2000.

[3] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic third-party data
publication. In Fourteenth IFIP 11.3 Conference on Database Security, 2000.

[4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Comput. Syst. Sci., 38:86–124, 1989.

[5] I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and fresh certification. In
International Workshop on Practice and Theory in Public Key Cryptography ’2000
(PKC ’2000), Lecture Notes in Computer Science, pages 342–353, Melbourne,
Australia, 2000. Springer-Verlag, Berlin Germany.

[6] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip
lists and commutative hashing. Technical Report, Johns Hopkins Information
Security Institute, 2000.

[7] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenti-
cated dictionary with skip lists and commutative hashing. In Proc. 2001 DARPA
Information Survivability Conference and Exposition, volume 2, pages 68–82, 2001.

[8] C. Gunter and T. Jim. Generalized certificate revocation. In Proc. 27th ACM
Symp. on Principles of Programming Languages, pages 316–329, 2000.

[9] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private Commu-
nication in a Public World. Prentice-Hall, Englewood Cliffs, NJ, 1995.

[10] H. Kikuchi, K. Abe, and S. Nakanishi. Performance evaluation of certicate revo-
cation using k-valued hash tree. In Proc. ISW’99, volume 1729 of LNCS, pages
103–117. Springer-Verlag, 1999.

[11] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Program-
ming. Addison-Wesley, Reading, MA, 1973.

[12] P. C. Kocher. On certificate revocation and validation. In Proc. International
Conference on Financial Cryptography, volume 1465 of Lecture Notes in Computer
Science, 1998.

[13] R. C. Merkle. A certified digital signature. In G. Brassard, editor, Advances in
Cryptology—CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pages 218–238. Springer-Verlag, 1990.

[14] E. W. Myers. Efficient applicative data types. In K. Kennedy, editor, Confer-
ence Record of the 11th Annual ACM Symposium on Principles of Programming
Languages, pages 66–75, Salt Lake City, UT, Jan. 1984. ACM Press.

[15] M. Naor and K. Nissim. Certificate revocation and certificate update. In Proceed-
ings of the 7th USENIX Security Symposium (SECURITY-98), pages 217–228,
Berkeley, 1998.

[16] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

[17] T. Reps, T. Teitelbaum, and A. Demers. Incremental context-dependent analysis
for language-based editors. ACM Transactions on Programming Languages and
Systems, 5(3):449–477, July 1983.

[18] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Commun. ACM, 29(7):669–679, July 1986.


