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Abstract. In a classical online network design problem, traffic reguients are
gradually revealed to an algorithm. Each time a new requeses, the algorithm
has to satisfy it by augmenting the network under constoadih a proper way
(with no possibility of recovery). In this paper we study dural generalization
of the problems above, where a fraction of the requestsatitieers) can be dis-
regarded. Now, each time a request arrives, the algorittatndiécides whether to
satisfy it or not, and only in the first case it acts accordingl the end at leagt
out of t requests must be selected. We cast three classical net@sidindprob-
lems into this framework, th®nline Steiner Tree with Outliershe Online TSP
with Outliers and theOnline Facility Location with Outliers

We focus on the known distribution model, where terminats iadependently
sampled from a given distribution. For all the above protdemwe present bicri-
teria online algorithms that, for any constant 0, select at leadtl — €)k termi-
nals with high probability and pay in expectatiGr{log? n) times more than the
expected cost of the optimal offline solution (selectingrminals). These upper
bounds are complemented by inapproximability results.

1 Introduction

In a classicabnline network desigproblem, traffic requirements are revealed gradually
to an algorithm. Each time a new request arrives, the alguoritas to satisfy it by
augmenting the network under construction in a proper wayoAline algorithm is
a-competitive(or a-approximatg if the ratio between the solution computed by the
algorithm and the optimal (offline) solution is at mest

For example, in th@nline Steiner Tregroblem (OST), we are given amrnode
graphG = (V, E), with edge weights : £ — R, and a root node. Thent terminal
nodes (where is known to the algorithm) arrive one at a time. Each time a tew
minal arrives, we need to connect it to the Steiner $aender construction (initially
containing the root only), by adding a proper set of edgekedree. The goal is min-
imizing the final cost of the tree. The input for tmline TSPproblem (OTSP) is the
same as in OST. The difference is that here the solution israygationg of the input
terminals. (Initially,¢ = (r)). Each time a new terminal arrives, we can insert it into
¢ at an arbitrary point. The goal is to minimize the length adrsbst cycle visiting the
nodes ing according to their order of appearancepinn the Online Facility Location
problem (OFL), we are also given a set of facility nodeéswith associated opening
costso : V. — R™T. Now, each time a new terminalarrives, it must be connected
to some facility f,: f, is opened if not already the case. The goal is to minimize the



facility location cost given a3 .. f(e) + >, c dista(v, e,), WhereF = Uyek fo
is the set of open faciliti€s

When the input sequence is chosen by an adveré¥tyg n)-approximation algo-
rithms are known for the problems above, and this approxanas tight [16, 26, 28].
Recently, the authors of [13] studied the case where theeseguof terminals is sam-
pled from a given distribution. For these relevant speciaes, they provided online
algorithms withO(1) expected competitive rafio This shows a logarithmic approx-
imability gap between worst-case and stochastic varidrdalne problems.

Stochastic Online Network Design with Outliers. In this paper we study a natural
generalization of online network design problems, whemaetion of the requests (the
outliers) can be disregarded. Now, each time a request arrives, doeitaim first de-
cides whether to satisfy it or not, and only in the first casdates the network under
construction accordingly. Problems with outliers have turad motivation in the ap-
plications. For example, mobile phone companies oftenadethe percentage of the
population which is covered by their network of antennasorater to declare a large
percentage (and attract new clients), they sometimes plaemnas also in areas where
costs exceed profits. However, covering everybody wouldbexpensive. One option
is choosing some percentage of the population @&fy,), and covering it in the cheap-
est possible way. This type of problems is well-studied adffline setting, but it was
never addressed before in the online case (to the best ohowl&dge).

We restrict our attention to the outlier version of the thetsessical online network
design problems mentioned befo€@nline Steiner Tree with Outlie(®@utOST),Online
TSP with OutliergoutOTSP), andnline Facility Location with OutlierfoutOFL).
For each such problem, we assume that only & < ¢ terminals need to be connected
in the final solution.

It is easy to show that, fok < t/2, the problems above are not approximable in
the adversarial model. The idea is providibderminals with connection cost/ >
k. If the online algorithm selects at least an element amoemththe next elements
have connection co$t Otherwise, the next elements have connection &H%tand the
online algorithm is forced to pay a cost bfi/2. Essentially the same example works
also if we allow the online algorithm to select only — ¢)k > 1 elements. For this
reason and following [13], from now on we focus our attentarthestochasticetting,
where terminals are sampled from a given probability distior’. As we will see,
these stochastic online problems have strong relatiotsoldssical secretary problems.

There are two models for the stochastic setting: khewn-distributionand the
unknown-distributiormodels. In the former the algorithm knows the distributiconf

® For a weighted graply, distc(u, v) denotes the distance between nodesidv in the graph.
For the sake of simplicity, we next associate an infinite ampeost to nodes which are not
facilities, and letF = V.

® Throughout this paper the expected competitive ratio, eddied ratio of expectations (RoE),
is the ratio between the expected cost of the solution coeaploy the online algorithm con-
sidered and the expected cost of the optimal offline solutBmmetimes in the literature the
expectation of ratios EoR is considered instead (whichgggily more involving).

" For the sake of shortness, we will drop the term stochasiin foroblem names.



which terminals are sampled. In the latter the algorithrmsdu® have any information
about the distribution apart from the incoming online resjse

Our Results and Techniques.First, we give inaproximability results and lower bounds.
For the known-distribution model we show that the considgm®blems are inapprox-
imable if we insist on selecting exactlyelements, foik = 1 and fork = ¢ — 1. To
prove these results we need to carefully select input Higions that force the online
algorithm to make mistakes: if it decides to select a terifthnen with sufficiently high
probability there will be cheap subsequent requests, induclarge competitive ratio,
while if it has not selected enough terminals it will be fatt¢e select the final terminals,
which with significant probability will be costly.

Furthermore, we prove af?(log n/ loglogn) lower bound on the expected com-
petitive ratio even when the online algorithm is alloweddtestak terminals only, for
a constant € (0, 1). To prove it we use results from urn models.

Finally, for the unknown-distribution model we show a loveeund off2(log n) for
k = ©(t) if the online algorithm is required to seldet O(k*) requests fof < a < 1.

Given the inapproximability results for the case that thenenalgorithm has to se-
lect exactlyk terminals, we study bicriteria algorithms, which select, &ny given
e > 0, at least(1 — ¢)k terminals with high probabilif; and pay in expectation
O(log” n) times more than the expected cost of the optimal offline &niuselecting
at leastk terminals).

To obtain these results, we are first able to show that verglsialgorithms provide
aO(k) expected competitive ratio. Henceforth, the main body eftaper is focused on
the cas& = 2(logn). Our algorithms crucially exploit the probabilistic emloéngs of
graph metrics into tree metrics developed by Bartal et af][4A Bartal tree of the input
graph is used to partition the nodes into a collection of geof sized (% logn). Note
that©(log n) terminals are sampled in each group with high probabiliggxiNin the
case of the outOST problem, we compute an anticipatoryisolfiirmed by a Steiner
tree onk out of ¢t terminals sampled beforehand from the known distributidre an-
ticipatory solution is deployed by the algorithm. When tlotual terminals arrive, the
algorithm selects all terminals that belong to a group (Whie mark) that contains at
least one terminal selected in the anticipatory solutiod,@nnects the selected termi-
nals to the anticipatory solution itself. Roughly speakihgre are9(k/ log n) marked
groups and each such group colleetog n) actual terminals: altogether, the number
of connected terminals B(k). A careful charging argument shows that the connection
cost to the anticipatory solution is in expectati@flog n) times the cost of the embed-
ding of the anticipatory solution in the Bartal tree. In eggion, this tree embedding
costs at mosO(log n) times more than the anticipatory solution itself, which unrt
costsO(1) times more than the optimal solution. Altogether, this gieeO(log® 1)
competitive ratio.

The results on outOST immediately generalize to the caset@f TSP, modulo con-
stant factors: for this reason we will describe the resolt®ttOST only. The basic idea

8 Throughout this paper we use the tewith high probability (abbreviated whp.) to refer to
probability that approaches 1 asthe number of selected terminals, grows. In particula, th
probability of failure is polynomially small fok = 2(logn) in the cases considered.



is to construct a Steiner tree using an online algorithm taO&ST, and to duplicate its
edges. This defines a multi-graph containing an Euler toamsing® (k) terminals. By
shortcutting the Euler tour we obtain the desired permanatiof selected terminals. In
each step the Euler tour can be updated preserving the ttizvesdrder of the terminals
in the permutation. The cost of the optimal Steiner tree @t bound on the cost of
the optimal TSP tour. Edge duplication introduces only &fiaZ in the approximation.
Summarizing the discussion above.

Lemma 1. Given an onlinexv-approximation algorithm for outOST, there is an online
2a-approximation algorithm for outOTSP.

The situation for outOFL is more involved, as in addition e ttonnection cost we
need to take care of the facilities’ cost. In this case, a$, wel deploy an anticipatory
solution onk out of ¢ terminals sampled beforehand from the known distributian.
order to be able to apply some charging arguments we cre&i® girtual metric space,
which can also capture the cost of opening the facilitiescarmect every vertex of the
graph to a virtual root in the tree metric with an edge of costat to the corresponding
facility opening cost. An additional complication is to d#& when to open facilities
that are not opened in the anticipatory solution. We openvafaeility if a selected
vertex is connected to the closest facility in the antiagpasolution through a path that
traverses the root in the tree embedding.

To summarize our results:

— We give inapproximability results and lower bounds for theown-distribution
model.

— We giveO(log? n) approximation algorithms for the outOST (Section 3), the ou
OTSP, and the outOFL (Section 4) problems for the knownitigion model. In
the case that = O(t) we give O(logn loglogn) approximations (details will
appear in the full version of the paper).

— We extend the upper and lower bounds to the unknown-disioibmodel (details
will appear in the full version).

The problems that we consider in this paper include as aapeseminimization
versions of thesecretaryproblem. In the classicalecretaryproblem a set of elements
(the secretarie}, each one with an associated non-negative numerical vareepre-
sented one by one to the algorithm (#raploye}. The algorithm has to decide when to
stop and select the current element with the goal of maxigittie value of the selected
element. A well-known extension of the problem above isthétiple-choice secretary
problem, where the algorithm has to seléck ¢ elements of the sequence with the
goal of maximizing the sum of thee selected values (or, alternatively, the ranks of the
selected elements). While this problem dates back to thesfift has recently attracted
a growing interest given its connections to selecting wiatire online auctions [2, 15].

In the classical secretary problem, it is easy to achievenstaat approximation
to the optimal expected value; for example, waiting untdieg half the elements and
then selecting the first element that has value higher themtximum of the first half
achieves in expectation a value that is at léast of the optimal offline value. Here
we show that the minimization version is strictly hardee thason being that a wrong



choice might be very costly. The hardness arises from thetiatat leask secretaries
must be hired: Intuitively, ift — x secretaries have been hired after = secretaries
have been sampled, the lassecretaries must be hired irrespectively of their values.
So, in Theorem 2 we show that even in the simple caseithatl the cost of the online
algorithm can be exponentially larger than the optimal iodficost.

For the same reason (that a wrong choice can be very coséyjriline network
design problems with outliers are in general strictly hattian the versions without
outliers. For example, in [13] the authors show that for thevitn distribution model
the expected ratio of the online Steiner tree problem (witloutliers, corresponding
to the case that = t) is constant. Instead, in Theorem 1 we show that even if we let
k =t — 1 the approximation ratio can be arbitrarily large.

Throughoutthis paper we u§€#Tto denote the optimal offline solution, angdtto
denote its expected cost. For a set of elemdnésd a cost function defined on such
elementse(A) := > . 4 c(a). For a graphd, we usec(A) as a shortcut foe(£(A)).

Related work. Competitive analysis of online algorithms has a long his{exg., [5,
10, 29] and the many references therein). Steiner tree, arssHacility location can be
approximated up to a worst-casflogn) competitive factor in the online case [16,
26, 28]. There have been many attempts to relax the notionrapetitive analysis for
classical list-update, paging akeserver problems (see [5, 10,17, 18, 24,27, 30]).

In many of the online problems studied in the literature, anparticular the ver-
sions of the online problems we study here without outliérs-(t), the case of known
distribution was easy. As we mentioned, in this case out@8¥OTSP and outOFL
reduce to the online stochastic version of Steiner tree, a8& facility location, for
which the ratio between the the expected online cost andxpected optimal cost
are constant for the known distribution model [13]. In thedam permutation model,
Meyerson [26] shows for facility location an algorithm wi@(1) ratio between the
expected online cost and the expected optimal cost. In thmeSttree problem the
2(logn) lower bound is still retained in the random permutation m@He].

The offline versions of the problems considered here are krasitheSteiner Tree
problem with OutliergoutST), theTSP problem with OutlieroutTSP) and théa-
cility Location problem with OutliergoutFL). For these problems, worst-case constant
approximation algorithms are known [7, 22We will exploit such (offline) approxi-
mation algorithms as part of our online algorithms.

As we mentioned, the problems that we study in this paper baeag relations
with the secretary problem. Secretary problems have badiestunder several models.
There is arich body of research on secretary problems araktieemination of optimal
stopping rules in the random permutation model since thiy eadties [8, 11, 14, 25].
In this classical model a set ofrbitrary numerical values is presented to the algorithm
in random order. A strategy is known that selects the besetey with probability
1/e [25]. For the multiple-choice secretary problem it has ntigeproposed [21] a
strategy that achievesla— O(+/1/k) fraction of the sum of th& largest elements in
the sequence, i.e., a competitive ratio [5] that approatliesi — occ.

% The k-MST problem studied in [12] and the Steiner tree probleith outliers are equivalent
approximation-wise, modulo constant factors. The saméshfolr TSP with outliers.



In the known-distribution model, the numerical values aentical independent
samples from a known distribution (e.g., [14, 20]). Thesebgms are also known as
house-selling problems (e.g., [19]), and generalizatiteng appeared under the name
of dynamic and stochastic knapsack problems [1, 22]. Intttadel an online algorithm
that maximizes the expected revenue is obtained througardignprogramming even
for the multiple-choice version of the problem [14].

Secretary problems with an underlying graph structure &en recently studied
in the context of online matching problems and their geleatibns [3, 23]. One can
define a minimization version of all the problems above, aslbere. Minimization
secretary problems are much less studied in the literamebmost studies cover some
basic cases. In particular, researchers have studied thxdepns where the goal is to
minimize the expected rank of the selected secretary (assgoito the actual expected
cost) or to minimize the expected cost if the input distiiais uniform in[0, 1] (look,
for example, the work of Bruce and Ferguson [6] and the refare therein). However,
to our knowledge, there has not been any comparison of tlireeoaahd offline solutions
for arbitrary input distributions. In particular, nothing our knowledge was known on
the gap between their costs.

2 Lower Bounds

Let us start by proving inapproximability results for oufOa the known distribution
model, when we insist on selectiegactlyk terminals. Similar lower bounds hold for
outOTSP and outOFL. The proof of the following theorem wilpaar in the full version
of the paper.

Theorem 1. In the known distribution model, the expected competitati® rfor out-
OST can be arbitrarily large fok = ¢ — 1.

The next theorem considers the somehow opposite casg thaery small (proof
omitted). Note that the construction in the proof shows thaiminimization version of
the secretary problem has an exponential competitive.ratio

Theorem 2. In the known distribution model, the expected competitat rfor out-
OST can be exponentially large in the numbhesf nodes fort = 3n/4 andk = 1.

Next we present am(h)‘g"l%) lower bound for outOST, outOTSP and outOFL,

which applies also to the case that the online algorithmlisv&ld to connect only &
terminals, for a sufficiently large constamtc (0, 1).

Theorem 3. Assume that an online algorithm for outOST (resp., outOTISFRItDFL)
is allowed to connectk terminals, for a sufficiently large constante (0,1). Then

the expected competitive ratio s ( lolg‘.’lgog n) :

Proof. We give the proof for outOST. The proof for the other two pesbs is analo-
gous. Consider the star graph with the reds center, and uniform edge weights
Suppose that each leaf is sampled with uniform probabhility. — 1). Lett = n — 1

andk = -2 for a sufficiently large constart When a leaf is sampled at ledst

clnlnn?

times, the optimum solution cost is and in any case it is not larger than— 1. By



Figure 1 Algorithm out ost - | ar ge for outOST.

(Preprocessing Phase)
Step 1.Compute a Bartal treB for the input graph. Partition the leaves®from left to right in
groupsVi, ..., V, . of sizeo.

Step 2.Sample: nodes!” from the input probability distribution. Computeg.:sT-approximate
solutions to the (offline) outST problem induced By, Let K be the resulting set df terminals,
and K be the nodes of groups with at least one nod&irexcluding the leftmost and rightmost
such groups. Sef = S.

(Online Phase)
Step 3.For each input nodee T, if ve K, addv to K and augmens with a shortest path to.

standard balls-and-bins results, the probability thaembis sampled at leakttimes is
polynomially small inn. Henceopt = O(1).

Take now any online algorithm. Suppose that at some poisitigiorithm connects
a terminalv for the first time. After this choice, the same terminakill be sampled
O(1) times in expectation. Hence, the expected total numbermfected terminals is
proportional to the number of distinct leaves which are emted. This implies that the
online algorithm is forced to conne€(k) distinct nodes in expectation, with a cost of

2(k). Therefore, the competitive ratio {3(k) = 2 ( log n ) O

loglogn

We observe that the proof above applies to the case of sniawvafk. Extending the
proof to large values of (or finding a better algorithm in that case) is an interesting
open problem. The next theorem (proof omitted) moves albegé lines.

Theorem 4. In the unknown distribution model, the expected competititio for out-
OST isf2(logn) if the online algorithm is required to connegt — ¢)k terminals for

€< %82 ¢ =pandk = §.
n

3 Online Steiner Tree with Outliers

In this section we consider the Online Steiner Tree probldth @utliers (outOST).
We consider the case that the input distribution is the umifdistribution, while the
generalization for any distribution will appear in the fudirsion of the paper.

First, let us assumke > clogn for a large enough constant> 0. We next describe
an algorithmout ost - | ar ge with O(log? n) competitive ratio, which connects at
least(1 — ¢)k terminals with high probability, for any given constanta@eter > 0.

A crucial step is constructing a Bartal trékover the input graplG using the
algorithm in [9]. We recall tha8 = (W, F') is a rooted tree, with edge costs : F' —
R, whose leaves are the nodésand such that the following two properties hold:

1. Edges at the same level in the tree have the same cost amdagiges and f at
leveli andi + 1, respectively (the root is at level zereg(e) = 2¢a(f).
1

2. For any two leaves,v € B, mE[dz‘stB(u, v)] < distg(u,v) < distg(u,v).

Algorithm out ost - | ar ge is described in Figure 1. The algorithm starts with
two preprocessing steps. Initially it computes a Barta 8efor GG, and partitions its
leaves from left to right into group®;, Vz, ...,V /, of sizec = a% logn each, for



a constanty to be fixed latet®. Then the algorithm samplesiodesT’, and constructs
a Steiner treeS (anticipatory solutiof on k such nodesk, using apoust = O(1)
approximation algorithm for (offline) outST [1¥] We callazureandblue the nodes
in T and K, respectively. We also cabilue the groups containing at least one blue
node, ancdboundarythe leftmost and rightmost blue groups. The Steiner &asder
construction is initially set tc.

In the online part of the algorithm, each time a new termina 7T arrives,v is
added to the s&k of selected terminals if and only4fbelongs to a non-boundary blue
group. In that case, the algorithm also addsSta shortest path from to S. We call
orangeandred the nodes irl” and K, respectively. It turns out that the connection of
orange nodes in blue groups can be conveniently charged tm#t of the anticipatory
solution (boundary blue groups are excluded for techngagons).

Let us initially bound the number of red nodes, that is, thenber of terminals
connected by the algorithm.

Lemma 2. For anye > 0 ando = a7 logn, there is a choice ofe > 0 such that the
number of red nodes is at leadt — ¢)k with high probability.

Proof. The numberN; of azure (resp., orange) nodes in a given grdjpcounting
repetitions, satisfieE[N;] = LZalogn = alogn. Letd € (0,1) be a sufficiently
small constant. By Chernoff’'s bounds, we know that there alae ofa > 0 such
that the probability of the eveRtV; ¢ [(1 — §)alogn, (1 4+ §)alogn]} is smaller than
any given inverse polynomial in. Hence, from the union bound, with high probability
all the groups contain betweéh — 6)a logn and(1 + §)a logn azure (resp., orange)
nodes. Let us assume from now on that this event happensll Retdy assumption
k > clogn for a sufficiently large constamat> 0.

Each blue group contains at mddt + 6)alogn azure (and hence blue) nodes.
Therefore, there are at Iea@m’;w blue groups, and so the _number of orange nodes
in non-boundary blue groups (i.e. the number of red nodes)lesast

k 1-9 (1-9)a
1-90)al —_— =2 > k—2 k.
( o Ogn<(1+6)alogn >_1+6 ¢
The latter quantity is at leagt — ¢)k for proper constantsando. O

We continue by proving the following basic tool lemma thatl wie reused for
outOFL later on. Refer to Figure 2. Let (resp.,/,) be the first blue node to the right
(resp., left) of noder € K (with respect to the given ordering of leaves from left to
right). Note that, and/,, are well defined, since the boundary blue groups are not used
to defineK.

Lemma 3. Let 5 be any subtree i#8 spanning nodes it . Then
E [ZUGK distg(v, rv)] <8oi E[cs(B)).
10 To avoid inessential technicalities, we will always assuhatn is a multiple ofo.
1 Since the cost of an MST spanning a set of vertidéss at most twice the corresponding cost

of the best Steiner tree connecting those vertices, we dainad constant approximation for
the outST problem if we have a constant approximation fokthéST problem



Figure 2 Charging scheme in the analysisaiit ost - | ar ge. Bold edges indicate
the subtred. Groups are enclosed into ellipses. Dashed arcs reflechtirgiag of red
nodes connections to the edged3f

® blue

Proof. The idea of the proofit to charge the distandés s (v, r,,) to a proper subset of
edgesE C E(B), so that each such edge is chargk(dr%) times in expectation. Let
a, (resp.,al) be the lowest common ancestor&f(resp.,v) andr,. Let moreovee,
(resp.e}) be the first edge along the path frem (resp.a.) tor,. (See also Figure 2).
Sincew lies betweert,, andr,, the level ofa!, is not higher than the level af,. We can
conclude by Property 1 of Bartal trees thate,) < cz(e,). Property 1 also implies
thatdistp(v,r,) = distg(v,al) + distg(al,ry) < 4ep(el). Altogether, we obtain

distg(v, 1) < 4dep(ey). (1)

Let £ := Uyexe, C E(B). Consider any edge= e,, € E. Any red nodex to the left
of ¢,, or to the right ofr,, satisfiese,, # e,,. We conclude that the s&t := {v € K :
e, = e} is a subset of the red nodes contained in the groups @nd/,,. Then

=E

Elz cg(ey)

veEK

IAE cs(e)] < 20% E[Z cB(e)] < 20%E[CB(B)} )

ecE ecE

The lemma follows by summing up overthe expectation of (1) and combining it
with (2). O

We are now ready to bound the competitive ratio of the algorit

Lemma 4. The expected cost of the solution computed by algorithhost - | ar ge
is O(o% log n) times the expected cost of the optimum offline solution.

Proof. The anticipatory problem instance is sampled from the sastgliition as the
real problem instance, Qb[c(S‘)] < poutsT - Opt= O(0pY).

Let us bound the cost,,, paid by the algorithm during the online phase. Consider
the minimal subtred of B spanningk U {r}. Of course /5 is an optimal Steiner tree
over K U {r} with respect to grapi. It follows from Property 2 and the fact that the
cost of a minimum spanning tree is twice the cost of a Steireggr that connects the
same vertices that

Eles(B)] < E[20(logn)e(S)] = O(logn) - opt 3)



We have

. Prop.2 -
Con <Y per dista(v, K) < Y cpdistp(v,K) <> distg(v,ry).  (4)

B satisfies the conditions of Lemma 3, hence by putting evargtiogether we obtain

4 . Lem. 3 t ) t
< < — = — .
E[Con) < E LEGK distp(v, rv)] < 80n Eleg(B)] = O (an log n) opt O

Note that up to now we have assumed that 2(logn). The following simple
algorithm,out ost - smal | , has competitive rati® (k) (proof omitted), so it can be
applied in the case that= O(logn).

Let W be the set of thél — 5)”7’C nodes which are closest to the root (breaking ties
arbitrarily). Heres € (0, 1) is a proper constant. Whenever a new node T arrives,
out ost -smal | adds it to the seK of selected nodes iff € W. In that case, the
algorithm connects to the current tre€ via a shortest path.

Let out ost be the (polynomial-time) algorithm for outOST which eithreins
outost-snal | fork < clogn, orout ost -1 ar ge with o = % log n otherwise.
The following theorem easily follows from Lemmas 2 and 4.

Theorem 5. For any givene > 0 and foro = a7 logn, Algorithmout ost connects
at least(1 — €)%k terminals with high probability. The expected cost of theiton is
(0] (cr% log n) = O(log® n) times the expected cost of the optimum offline solution.

4 Online Facility Location with Outliers

In this section we consider the Online Facility Location geon with Outliers (out-
OFL). Like in the case of outOST, let us assume that clog n for a sufficiently large
constant: > 0, while again a simple algorithm can handle the caseihaiclog n.

Our algorithmout of | - | ar ge is described in Figure 3. Leé®, = (V Ur, E')
be a graph obtained fro¥ by adding a new vertex and connecting it to all other
verticesv with edges of cosb(v). We denote by, the edge weights ofr,.. Note
that every facility location solutiotF = (F, K) in G can be mapped to a Steiner tree
Tr in G, spanningk U {r} with the same cost: it is sufficient to augment the connec-
tion paths inF with the edges between open facilities andJnfortunately, solving a
outOST problem o1, is not sufficient to solve the original outOFL problem. Tlss i
because not every tree @, corresponds to a valid facility location solution. Never-
theless, the grap&',. is very useful in our case as it allows to introduce a conugnie
metric into the facility location problem. (See Figure 4 forexample of grap&'’,., and
a corresponding implementation of Steps 3.1 and 3.2).

First of all note that the set of nodes that are selected bgltwrithm are defined in
the same way as in Algorithmut ost - | ar ge, that is, by a constant approximation
to the (offline) outFL problem on a set of sampled termiffalsising, for example, the
algorithm of Charikar et al. [7]. Hence, Lemma 2 holds herevels Therefore, we only
need to show that the cost of the online solution is small. gitef of the following
theorem will appear in the full version of the paper.



Figure 3 Algorithmout of | - | ar ge for outOFL.

(Preprocessing Phase)

Step 1.Construct the graplds, and compute a Bartal tre@ for G,.. Partition the leaves oB
from left to right in groupsi, ..., V,,,, of sizeo.

Step 2.Sample nodes!” from the input probability distribution. Computeya.; 7 .-approximate
solutionF = (I, K) to the (offline) facility location problem with outliers inded byT", where

F and K are the open facilities and the selected set ¢érminals, respectively. Le€ be the
nodes of groups with at least one nodefin excluding the leftmost and rightmost such groups.
Open the facilities irF".

(Online Phase)

Step 3.For each input node € T, if v € K, addv to K. Letr, be the first node fronk to the
right of v. Consider the shortest pathfrom v to r,, in G

e Step 3.1.If = goes throughr, then let(f,, u) be the first edge om such that. = r. Open
facility f,, if not already open, and connecto f,. 3
e Step 3.2.0therwise conneat to the facility f,, to which noder,, is connected inF.

Theorem 6. For any givene > 0, Algorithm out of | connects at leasfl — ¢)k
terminals with high probability. The expected cost of thieithon is O(cr% logn) =

O(log? n) times the expected cost of the optimum offline solution.
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