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Abstract. In a classical online network design problem, traffic requirements are
gradually revealed to an algorithm. Each time a new request arrives, the algorithm
has to satisfy it by augmenting the network under construction in a proper way
(with no possibility of recovery). In this paper we study a natural generalization
of the problems above, where a fraction of the requests (theoutliers) can be dis-
regarded. Now, each time a request arrives, the algorithm first decides whether to
satisfy it or not, and only in the first case it acts accordingly; in the end at leastk
out of t requests must be selected. We cast three classical network design prob-
lems into this framework, theOnline Steiner Tree with Outliers, theOnline TSP
with Outliers, and theOnline Facility Location with Outliers.
We focus on the known distribution model, where terminals are independently
sampled from a given distribution. For all the above problems, we present bicri-
teria online algorithms that, for any constantε > 0, select at least(1− ε)k termi-
nals with high probability and pay in expectationO(log2 n) times more than the
expected cost of the optimal offline solution (selectingk terminals). These upper
bounds are complemented by inapproximability results.

1 Introduction
In a classicalonline network designproblem, traffic requirements are revealed gradually
to an algorithm. Each time a new request arrives, the algorithm has to satisfy it by
augmenting the network under construction in a proper way. An online algorithm is
α-competitive(or α-approximate) if the ratio between the solution computed by the
algorithm and the optimal (offline) solution is at mostα.

For example, in theOnline Steiner Treeproblem (OST), we are given ann-node
graphG = (V,E), with edge weightsc : E → R

+, and a root noder. Thent terminal
nodes (wheret is known to the algorithm) arrive one at a time. Each time a newter-
minal arrives, we need to connect it to the Steiner treeS under construction (initially
containing the root only), by adding a proper set of edges to the tree. The goal is min-
imizing the final cost of the tree. The input for theOnline TSPproblem (OTSP) is the
same as in OST. The difference is that here the solution is a permutationφ of the input
terminals. (Initially,φ = (r)). Each time a new terminal arrives, we can insert it into
φ at an arbitrary point. The goal is to minimize the length of shortest cycle visiting the
nodes inφ according to their order of appearance inφ. In theOnline Facility Location
problem (OFL), we are also given a set of facility nodesF , with associated opening
costso : V → R

+. Now, each time a new terminalv arrives, it must be connected
to some facilityfv: fv is opened if not already the case. The goal is to minimize the



facility location cost given as
∑

e∈F f(e) +
∑

v∈K distG(v, ev), whereF = ∪v∈Kfv
is the set of open facilities5.

When the input sequence is chosen by an adversary,O(log n)-approximation algo-
rithms are known for the problems above, and this approximation is tight [16, 26, 28].
Recently, the authors of [13] studied the case where the sequence of terminals is sam-
pled from a given distribution. For these relevant special cases, they provided online
algorithms withO(1) expected competitive ratio6. This shows a logarithmic approx-
imability gap between worst-case and stochastic variants of online problems.

Stochastic Online Network Design with Outliers. In this paper we study a natural
generalization of online network design problems, where a fraction of the requests (the
outliers) can be disregarded. Now, each time a request arrives, the algorithm first de-
cides whether to satisfy it or not, and only in the first case updates the network under
construction accordingly. Problems with outliers have a natural motivation in the ap-
plications. For example, mobile phone companies often declare the percentage of the
population which is covered by their network of antennas. Inorder to declare a large
percentage (and attract new clients), they sometimes placeantennas also in areas where
costs exceed profits. However, covering everybody would be too expensive. One option
is choosing some percentage of the population (say,90%), and covering it in the cheap-
est possible way. This type of problems is well-studied in the offline setting, but it was
never addressed before in the online case (to the best of our knowledge).

We restrict our attention to the outlier version of the threeclassical online network
design problems mentioned before:Online Steiner Tree with Outliers(outOST),Online
TSP with Outliers(outOTSP), andOnline Facility Location with Outliers(outOFL).
For each such problem, we assume that only0 < k < t terminals need to be connected
in the final solution.

It is easy to show that, fork ≤ t/2, the problems above are not approximable in
the adversarial model. The idea is providingk terminals with connection costM �
k. If the online algorithm selects at least an element among them, the next elements
have connection cost0. Otherwise, the next elements have connection costM2 and the
online algorithm is forced to pay a cost ofkM2. Essentially the same example works
also if we allow the online algorithm to select only(1 − ε)k ≥ 1 elements. For this
reason and following [13], from now on we focus our attentionon thestochasticsetting,
where terminals are sampled from a given probability distribution7. As we will see,
these stochastic online problems have strong relations with classical secretary problems.

There are two models for the stochastic setting: theknown-distributionand the
unknown-distributionmodels. In the former the algorithm knows the distribution from

5 For a weighted graphG, distG(u, v) denotes the distance between nodesu andv in the graph.
For the sake of simplicity, we next associate an infinite opening cost to nodes which are not
facilities, and letF = V .

6 Throughout this paper the expected competitive ratio, alsocalled ratio of expectations (RoE),
is the ratio between the expected cost of the solution computed by the online algorithm con-
sidered and the expected cost of the optimal offline solution. Sometimes in the literature the
expectation of ratios EoR is considered instead (which is typically more involving).

7 For the sake of shortness, we will drop the term stochastic from problem names.



which terminals are sampled. In the latter the algorithm does not have any information
about the distribution apart from the incoming online requests.

Our Results and Techniques.First, we give inaproximability results and lower bounds.
For the known-distribution model we show that the considered problems are inapprox-
imable if we insist on selecting exactlyk elements, fork = 1 and fork = t − 1. To
prove these results we need to carefully select input distributions that force the online
algorithm to make mistakes: if it decides to select a terminal then with sufficiently high
probability there will be cheap subsequent requests, inducing a large competitive ratio,
while if it has not selected enough terminals it will be forced to select the final terminals,
which with significant probability will be costly.

Furthermore, we prove anΩ(log n/ log logn) lower bound on the expected com-
petitive ratio even when the online algorithm is allowed to selectαk terminals only, for
a constantα ∈ (0, 1). To prove it we use results from urn models.

Finally, for the unknown-distribution model we show a lowerbound ofΩ(logn) for
k = Θ(t) if the online algorithm is required to selectk−O(kα) requests for0 ≤ α < 1.

Given the inapproximability results for the case that the online algorithm has to se-
lect exactlyk terminals, we study bicriteria algorithms, which select, for any given
ε > 0, at least(1 − ε)k terminals with high probability8, and pay in expectation
O(log2 n) times more than the expected cost of the optimal offline solution (selecting
at leastk terminals).

To obtain these results, we are first able to show that very simple algorithms provide
aO(k) expected competitive ratio. Henceforth, the main body of the paper is focused on
the casek = Ω(log n). Our algorithms crucially exploit the probabilistic embeddings of
graph metrics into tree metrics developed by Bartal et al. [4, 9]. A Bartal tree of the input
graph is used to partition the nodes into a collection of groups of sizeΘ(nt logn). Note
thatΘ(log n) terminals are sampled in each group with high probability. Next, in the
case of the outOST problem, we compute an anticipatory solution formed by a Steiner
tree onk out of t terminals sampled beforehand from the known distribution.The an-
ticipatory solution is deployed by the algorithm. When the actual terminals arrive, the
algorithm selects all terminals that belong to a group (which wemark) that contains at
least one terminal selected in the anticipatory solution, and connects the selected termi-
nals to the anticipatory solution itself. Roughly speaking, there areΘ(k/ logn) marked
groups and each such group collectsΘ(log n) actual terminals: altogether, the number
of connected terminals isΘ(k). A careful charging argument shows that the connection
cost to the anticipatory solution is in expectationO(log n) times the cost of the embed-
ding of the anticipatory solution in the Bartal tree. In expectation, this tree embedding
costs at mostO(log n) times more than the anticipatory solution itself, which in turn
costsO(1) times more than the optimal solution. Altogether, this gives aO(log2 n)
competitive ratio.

The results on outOST immediately generalize to the case of outOTSP, modulo con-
stant factors: for this reason we will describe the results for outOST only. The basic idea

8 Throughout this paper we use the termwith high probability(abbreviated whp.) to refer to
probability that approaches 1 ask, the number of selected terminals, grows. In particular, the
probability of failure is polynomially small fork = Ω(log n) in the cases considered.



is to construct a Steiner tree using an online algorithm for outOST, and to duplicate its
edges. This defines a multi-graph containing an Euler tour spanningΘ(k) terminals. By
shortcutting the Euler tour we obtain the desired permutationφ of selected terminals. In
each step the Euler tour can be updated preserving the the relative order of the terminals
in the permutation. The cost of the optimal Steiner tree is a lower bound on the cost of
the optimal TSP tour. Edge duplication introduces only a factor 2 in the approximation.
Summarizing the discussion above.

Lemma 1. Given an onlineα-approximation algorithm for outOST, there is an online
2α-approximation algorithm for outOTSP.

The situation for outOFL is more involved, as in addition to the connection cost we
need to take care of the facilities’ cost. In this case, as well, we deploy an anticipatory
solution onk out of t terminals sampled beforehand from the known distribution.In
order to be able to apply some charging arguments we create a new virtual metric space,
which can also capture the cost of opening the facilities: weconnect every vertex of the
graph to a virtual root in the tree metric with an edge of cost equal to the corresponding
facility opening cost. An additional complication is to decide when to open facilities
that are not opened in the anticipatory solution. We open a new facility if a selected
vertex is connected to the closest facility in the anticipatory solution through a path that
traverses the root in the tree embedding.

To summarize our results:

– We give inapproximability results and lower bounds for the known-distribution
model.

– We giveO(log2 n) approximation algorithms for the outOST (Section 3), the out-
OTSP, and the outOFL (Section 4) problems for the known distribution model. In
the case thatk = Θ(t) we giveO(log n log logn) approximations (details will
appear in the full version of the paper).

– We extend the upper and lower bounds to the unknown-distribution model (details
will appear in the full version).

The problems that we consider in this paper include as a special caseminimization
versions of thesecretaryproblem. In the classicalsecretaryproblem a set oft elements
(the secretaries), each one with an associated non-negative numerical value, are pre-
sented one by one to the algorithm (theemployer). The algorithm has to decide when to
stop and select the current element with the goal of maximizing the value of the selected
element. A well-known extension of the problem above is themultiple-choice secretary
problem, where the algorithm has to selectk < t elements of the sequence with the
goal of maximizing the sum of thek selected values (or, alternatively, the ranks of the
selected elements). While this problem dates back to the fifties, it has recently attracted
a growing interest given its connections to selecting winners in online auctions [2, 15].

In the classical secretary problem, it is easy to achieve a constant approximation
to the optimal expected value; for example, waiting until seeing half the elements and
then selecting the first element that has value higher than the maximum of the first half
achieves in expectation a value that is at least1/4 of the optimal offline value. Here
we show that the minimization version is strictly harder, the reason being that a wrong



choice might be very costly. The hardness arises from the fact that at leastk secretaries
must be hired: Intuitively, ifk − x secretaries have been hired aftert − x secretaries
have been sampled, the lastx secretaries must be hired irrespectively of their values.
So, in Theorem 2 we show that even in the simple case thatk = 1 the cost of the online
algorithm can be exponentially larger than the optimal offline cost.

For the same reason (that a wrong choice can be very costly) the online network
design problems with outliers are in general strictly harder than the versions without
outliers. For example, in [13] the authors show that for the known distribution model
the expected ratio of the online Steiner tree problem (without outliers, corresponding
to the case thatk = t) is constant. Instead, in Theorem 1 we show that even if we let
k = t− 1 the approximation ratio can be arbitrarily large.

Throughout this paper we useOPTto denote the optimal offline solution, andopt to
denote its expected cost. For a set of elementsA and a cost functionc defined on such
elements,c(A) :=

∑

a∈A c(a). For a graphA, we usec(A) as a shortcut forc(E(A)).

Related work. Competitive analysis of online algorithms has a long history (e.g., [5,
10, 29] and the many references therein). Steiner tree, TSP,and facility location can be
approximated up to a worst-caseΘ(log n) competitive factor in the online case [16,
26, 28]. There have been many attempts to relax the notion of competitive analysis for
classical list-update, paging andk-server problems (see [5, 10, 17, 18, 24, 27, 30]).

In many of the online problems studied in the literature, andin particular the ver-
sions of the online problems we study here without outliers (k = t), the case of known
distribution was easy. As we mentioned, in this case outOST,outOTSP and outOFL
reduce to the online stochastic version of Steiner tree, TSP, and facility location, for
which the ratio between the the expected online cost and the expected optimal cost
are constant for the known distribution model [13]. In the random permutation model,
Meyerson [26] shows for facility location an algorithm withO(1) ratio between the
expected online cost and the expected optimal cost. In the Steiner tree problem the
Ω(log n) lower bound is still retained in the random permutation model [13].

The offline versions of the problems considered here are known as theSteiner Tree
problem with Outliers(outST), theTSP problem with Outliers(outTSP) and theFa-
cility Location problem with Outliers(outFL). For these problems, worst-case constant
approximation algorithms are known [7, 12]9. We will exploit such (offline) approxi-
mation algorithms as part of our online algorithms.

As we mentioned, the problems that we study in this paper havestrong relations
with the secretary problem. Secretary problems have been studied under several models.
There is a rich body of research on secretary problems and thedetermination of optimal
stopping rules in the random permutation model since the early sixties [8, 11, 14, 25].
In this classical model a set oft arbitrary numerical values is presented to the algorithm
in random order. A strategy is known that selects the best secretary with probability
1/e [25]. For the multiple-choice secretary problem it has recently proposed [21] a
strategy that achieves a1 − O(

√

1/k) fraction of the sum of thek largest elements in
the sequence, i.e., a competitive ratio [5] that approaches1 for k → ∞.

9 The k-MST problem studied in [12] and the Steiner tree problem with outliers are equivalent
approximation-wise, modulo constant factors. The same holds for TSP with outliers.



In the known-distribution model, the numerical values are identical independent
samples from a known distribution (e.g., [14, 20]). These problems are also known as
house-selling problems (e.g., [19]), and generalizationshave appeared under the name
of dynamic and stochastic knapsack problems [1, 22]. In thismodel an online algorithm
that maximizes the expected revenue is obtained through dynamic programming even
for the multiple-choice version of the problem [14].

Secretary problems with an underlying graph structure havebeen recently studied
in the context of online matching problems and their generalizations [3, 23]. One can
define a minimization version of all the problems above, as wedo here. Minimization
secretary problems are much less studied in the literature,and most studies cover some
basic cases. In particular, researchers have studied the problems where the goal is to
minimize the expected rank of the selected secretary (as opposed to the actual expected
cost) or to minimize the expected cost if the input distribution is uniform in[0, 1] (look,
for example, the work of Bruce and Ferguson [6] and the references therein). However,
to our knowledge, there has not been any comparison of the online and offline solutions
for arbitrary input distributions. In particular, nothingto our knowledge was known on
the gap between their costs.

2 Lower Bounds
Let us start by proving inapproximability results for outOST in the known distribution
model, when we insist on selectingexactlyk terminals. Similar lower bounds hold for
outOTSP and outOFL. The proof of the following theorem will appear in the full version
of the paper.

Theorem 1. In the known distribution model, the expected competitive ratio for out-
OST can be arbitrarily large fork = t− 1.

The next theorem considers the somehow opposite case thatk is very small (proof
omitted). Note that the construction in the proof shows thatthe minimization version of
the secretary problem has an exponential competitive ratio.

Theorem 2. In the known distribution model, the expected competitive ratio for out-
OST can be exponentially large in the numbern of nodes fort = 3n/4 andk = 1.

Next we present anO( logn
log log n ) lower bound for outOST, outOTSP and outOFL,

which applies also to the case that the online algorithm is allowed to connect onlyαk
terminals, for a sufficiently large constantα ∈ (0, 1).

Theorem 3. Assume that an online algorithm for outOST (resp., outOTSP or outOFL)
is allowed to connectαk terminals, for a sufficiently large constantα ∈ (0, 1). Then

the expected competitive ratio isΩ
(

logn
log logn

)

.

Proof. We give the proof for outOST. The proof for the other two problems is analo-
gous. Consider the star graph with the rootr as center, and uniform edge weights1.
Suppose that each leaf is sampled with uniform probability1/(n − 1). Let t = n − 1
andk = lnn

c ln lnn , for a sufficiently large constantc. When a leaf is sampled at leastk
times, the optimum solution cost is1, and in any case it is not larger thann − 1. By



Figure 1 Algorithmoutost-large for outOST.

(Preprocessing Phase)

Step 1.Compute a Bartal treeB for the input graph. Partition the leaves ofB from left to right in
groupsV1, . . . , Vn/σ of sizeσ.

Step 2.Samplet nodesT̃ from the input probability distribution. Compute aρoutST -approximate
solutionS̃ to the (offline) outST problem induced bỹT . Let K̃ be the resulting set ofk terminals,
andK be the nodes of groups with at least one node inK̃, excluding the leftmost and rightmost
such groups. SetS = S̃.

(Online Phase)

Step 3.For each input nodev∈T , if v∈K, addv toK and augmentS with a shortest path tov.

standard balls-and-bins results, the probability that no leaf is sampled at leastk times is
polynomially small inn. Henceopt = O(1).

Take now any online algorithm. Suppose that at some point this algorithm connects
a terminalv for the first time. After this choice, the same terminalv will be sampled
O(1) times in expectation. Hence, the expected total number of connected terminals is
proportional to the number of distinct leaves which are connected. This implies that the
online algorithm is forced to connectΩ(k) distinct nodes in expectation, with a cost of

Ω(k). Therefore, the competitive ratio isΩ(k) = Ω
(

log n
log logn

)

. ut

We observe that the proof above applies to the case of small values ofk. Extending the
proof to large values ofk (or finding a better algorithm in that case) is an interesting
open problem. The next theorem (proof omitted) moves along these lines.

Theorem 4. In the unknown distribution model, the expected competitive ratio for out-
OST isΩ(logn) if the online algorithm is required to connect(1 − ε)k terminals for
ε < log n√

n
, t = n andk = t

2 .

3 Online Steiner Tree with Outliers
In this section we consider the Online Steiner Tree problem with Outliers (outOST).
We consider the case that the input distribution is the uniform distribution, while the
generalization for any distribution will appear in the fullversion of the paper.

First, let us assumek ≥ c logn for a large enough constantc > 0. We next describe
an algorithmoutost-large with O(log2 n) competitive ratio, which connects at
least(1− ε)k terminals with high probability, for any given constant parameterε > 0.

A crucial step is constructing a Bartal treeB over the input graphG using the
algorithm in [9]. We recall thatB = (W,F ) is a rooted tree, with edge costscB : F →
R

+, whose leaves are the nodesV , and such that the following two properties hold:

1. Edges at the same level in the tree have the same cost and given edgese andf at
level i andi+ 1, respectively (the root is at level zero),cB(e) = 2cB(f).

2. For any two leavesu, v ∈ B, 1
O(logn)E[distB(u, v)] ≤ distG(u, v) ≤ distB(u, v).

Algorithm outost-large is described in Figure 1. The algorithm starts with
two preprocessing steps. Initially it computes a Bartal tree B for G, and partitions its
leaves from left to right into groupsV1, V2, . . . , Vn/σ of sizeσ = αn

t logn each, for



a constantα to be fixed later10. Then the algorithm samplest nodesT̃ , and constructs
a Steiner treẽS (anticipatory solution) on k such nodes̃K, using aρoutST = O(1)
approximation algorithm for (offline) outST [12]11. We callazureandblue the nodes
in T̃ and K̃, respectively. We also callblue the groups containing at least one blue
node, andboundarythe leftmost and rightmost blue groups. The Steiner treeS under
construction is initially set tõS.

In the online part of the algorithm, each time a new terminalv ∈ T arrives,v is
added to the setK of selected terminals if and only ifv belongs to a non-boundary blue
group. In that case, the algorithm also adds toS a shortest path fromv to S. We call
orangeandred the nodes inT andK, respectively. It turns out that the connection of
orange nodes in blue groups can be conveniently charged to the cost of the anticipatory
solution (boundary blue groups are excluded for technical reasons).

Let us initially bound the number of red nodes, that is, the number of terminals
connected by the algorithm.

Lemma 2. For anyε > 0 andσ = αn
t logn, there is a choice ofα > 0 such that the

number of red nodes is at least(1− ε)k with high probability.

Proof. The numberNi of azure (resp., orange) nodes in a given groupVi, counting
repetitions, satisfiesE[Ni] =

t
n

n
t α logn = α logn. Let δ ∈ (0, 1) be a sufficiently

small constant. By Chernoff’s bounds, we know that there is avalue ofα > 0 such
that the probability of the event{Ni /∈ [(1− δ)α logn, (1 + δ)α logn]} is smaller than
any given inverse polynomial inn. Hence, from the union bound, with high probability
all the groups contain between(1 − δ)α logn and(1 + δ)α logn azure (resp., orange)
nodes. Let us assume from now on that this event happens. Recall that by assumption
k ≥ c logn for a sufficiently large constantc > 0.

Each blue group contains at most(1 + δ)α logn azure (and hence blue) nodes.
Therefore, there are at least k

(1+δ)α logn blue groups, and so the number of orange nodes
in non-boundary blue groups (i.e. the number of red nodes) isat least

(1− δ)α log n

(

k

(1 + δ)α logn
− 2

)

≥
1− δ

1 + δ
k − 2

(1− δ)α

c
k.

The latter quantity is at least(1− ε)k for proper constantsc andδ. ut

We continue by proving the following basic tool lemma that will be reused for
outOFL later on. Refer to Figure 2. Letrv (resp.,̀ v) be the first blue node to the right
(resp., left) of nodev ∈ K (with respect to the given ordering of leaves from left to
right). Note thatrv and`v are well defined, since the boundary blue groups are not used
to defineK.

Lemma 3. Let B̃ be any subtree inB spanning nodes iñK. Then

E
[
∑

v∈K distB(v, rv)
]

≤ 8σ t
n E[cB(B̃)].

10 To avoid inessential technicalities, we will always assumethatn is a multiple ofσ.
11 Since the cost of an MST spanning a set of verticesW is at most twice the corresponding cost

of the best Steiner tree connecting those vertices, we can obtain a constant approximation for
the outST problem if we have a constant approximation for thek-MST problem



Figure 2 Charging scheme in the analysis ofoutost-large. Bold edges indicate
the subtreẽB. Groups are enclosed into ellipses. Dashed arcs reflect the charging of red
nodes connections to the edges ofB̃.

blue

red

av

a′

v

ev

e′v

v`v rv

Proof. The idea of the proof it to charge the distancesdistB(v, rv) to a proper subset of
edgesẼ ⊆ E(B̃), so that each such edge is chargedO(σ t

n ) times in expectation. Let
av (resp.,a′v) be the lowest common ancestor of`v (resp.,v) andrv. Let moreoverev
(resp.,e′v) be the first edge along the path fromav (resp.,a′v) to rv. (See also Figure 2).
Sincev lies betweeǹv andrv, the level ofa′v is not higher than the level ofav. We can
conclude by Property 1 of Bartal trees thatcB(e

′
v) ≤ cB(ev). Property 1 also implies

thatdistB(v, rv) = distB(v, a
′
v) + distB(a

′
v, rv) ≤ 4cB(e

′
v). Altogether, we obtain

distB(v, rv) ≤ 4cB(ev). (1)

Let Ẽ := ∪v∈Kev ⊆ E(B̃). Consider any edgee = ew ∈ Ẽ. Any red nodeu to the left
of `w or to the right ofrw satisfieseu 6= ew. We conclude that the set̃Ve := {v ∈ K :
ev = e} is a subset of the red nodes contained in the groups ofrw and`w. Then

E

[

∑

v∈K

cB(ev)

]

= E





∑

e∈Ẽ

|Ṽe| · cB(e)



≤ 2σ
t

n
E





∑

e∈Ẽ

cB(e)



≤ 2σ
t

n
E
[

cB(B̃)
]

. (2)

The lemma follows by summing up overv the expectation of (1) and combining it
with (2). ut

We are now ready to bound the competitive ratio of the algorithm.

Lemma 4. The expected cost of the solution computed by algorithmoutost-large
isO(σ t

n logn) times the expected cost of the optimum offline solution.

Proof. The anticipatory problem instance is sampled from the same distribution as the
real problem instance, soE[c(S̃)] ≤ ρoutST · opt= O(opt).

Let us bound the costCon paid by the algorithm during the online phase. Consider
the minimal subtreẽB of B spanningK̃ ∪ {r}. Of course,B̃ is an optimal Steiner tree
overK̃ ∪ {r} with respect to graphB. It follows from Property 2 and the fact that the
cost of a minimum spanning tree is twice the cost of a Steiner tree that connects the
same vertices that

E[cB(B̃)] ≤ E[2O(logn)c(S̃)] = O(log n) · opt. (3)



We have

Con ≤
∑

v∈K distG(v, K̃)
Prop. 2
≤

∑

v∈K distB(v, K̃) ≤
∑

v∈K distB(v, rv). (4)

B̃ satisfies the conditions of Lemma 3, hence by putting everything together we obtain

E[Con]
(4)
≤ E

[

∑

v∈K

distB(v, rv)

]

Lem. 3
≤ 8σ

t

n
E[cB(B̃)]

(3)
= O

(

σ
t

n
logn

)

· opt. ut

Note that up to now we have assumed thatk = Ω(logn). The following simple
algorithm,outost-small, has competitive ratioO(k) (proof omitted), so it can be
applied in the case thatk = O(log n).

LetW be the set of the(1− δ)n k
t nodes which are closest to the root (breaking ties

arbitrarily). Hereδ ∈ (0, 1) is a proper constant. Whenever a new nodev ∈ T arrives,
outost-small adds it to the setK of selected nodes iffv ∈ W . In that case, the
algorithm connectsv to the current treeS via a shortest path.

Let outost be the (polynomial-time) algorithm for outOST which eitherruns
outost-small for k < c logn, or outost-large with σ = αn

t logn otherwise.
The following theorem easily follows from Lemmas 2 and 4.

Theorem 5. For any givenε > 0 and forσ = αn
t logn, Algorithmoutost connects

at least(1 − ε)k terminals with high probability. The expected cost of the solution is
O
(

σ t
n logn

)

= O(log2 n) times the expected cost of the optimum offline solution.

4 Online Facility Location with Outliers
In this section we consider the Online Facility Location problem with Outliers (out-
OFL). Like in the case of outOST, let us assume thatk ≥ c logn for a sufficiently large
constantc > 0, while again a simple algorithm can handle the case thatk ≤ c logn.

Our algorithmoutofl-large is described in Figure 3. LetGr = (V ∪ r, E′)
be a graph obtained fromG by adding a new vertexr and connecting it to all other
verticesv with edges of costo(v). We denote bycGr

the edge weights ofGr. Note
that every facility location solutionF = (F,K) in G can be mapped to a Steiner tree
TF in Gr spanningK ∪ {r} with the same cost: it is sufficient to augment the connec-
tion paths inF with the edges between open facilities andr. Unfortunately, solving a
outOST problem onGr is not sufficient to solve the original outOFL problem. This is
because not every tree inGr corresponds to a valid facility location solution. Never-
theless, the graphGr is very useful in our case as it allows to introduce a convenient
metric into the facility location problem. (See Figure 4 foran example of graphGr, and
a corresponding implementation of Steps 3.1 and 3.2).

First of all note that the set of nodes that are selected by thealgorithm are defined in
the same way as in Algorithmoutost-large, that is, by a constant approximation
to the (offline) outFL problem on a set of sampled terminalsT̃ , using, for example, the
algorithm of Charikar et al. [7]. Hence, Lemma 2 holds here aswell. Therefore, we only
need to show that the cost of the online solution is small. Theproof of the following
theorem will appear in the full version of the paper.



Figure 3 Algorithmoutofl-large for outOFL.

(Preprocessing Phase)

Step 1.Construct the graphGr and compute a Bartal treeB for Gr. Partition the leaves ofB
from left to right in groupsV1, . . . , Vn/σ of sizeσ.

Step 2.Samplet nodesT̃ from the input probability distribution. Compute aρoutFL-approximate
solutionF̃ = (F̃ , K̃) to the (offline) facility location problem with outliers induced byT̃ , where
F̃ andK̃ are the open facilities and the selected set ofk terminals, respectively. LetK be the
nodes of groups with at least one node inK̃, excluding the leftmost and rightmost such groups.
Open the facilities iñF .

(Online Phase)

Step 3.For each input nodev ∈ T , if v ∈ K, addv toK. Let rv be the first node from̃K to the
right of v. Consider the shortest pathπ from v to rv in Gr:

• Step 3.1.If π goes throughr, then let(fv, u) be the first edge onπ such thatu = r. Open
facility fv, if not already open, and connectv to fv .

• Step 3.2.Otherwise connectv to the facilityfv to which noderv is connected iñF .

Theorem 6. For any givenε > 0, Algorithm outofl connects at least(1 − ε)k
terminals with high probability. The expected cost of the solution is O(σ t

n logn) =

O(log2 n) times the expected cost of the optimum offline solution.
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