
Noname manuscript No.

(will be inserted by the editor)

Online Network Design with Outliers

Aris Anagnostopoulos · Fabrizio Grandoni ·

Stefano Leonardi · Piotr Sankowski

Abstract In a classical online network design problem, traffic requirements are
gradually revealed to an algorithm. Each time a new request arrives, the algorithm
has to satisfy it by augmenting the network under construction in a proper way
(with no possibility of recovery). In this paper we study a natural generalization
of online network design problems, where a fraction of the requests (the outliers)
can be disregarded. Now, each time a request arrives, the algorithm first decides
whether to satisfy it or not, and only in the first case it acts accordingly. We cast
three classical network design problems into this framework:

• Online Steiner Tree with Outliers. In this case a set of t terminals that belong
to an n-node graph is presented, one at a time, to an algorithm. Each time a
new terminal arrives, the algorithm can either discard or select it. In the latter
case, the algorithm connects it to the Steiner tree under construction (initially
consisting of a given root node). At the end of the process, at least k terminals
must be selected.

• Online TSP with Outliers. This is the same problem as above, but with the
Steiner tree replaced by a TSP tour.

• Online Facility Location with Outliers. In this case, we are also given a set of
facility nodes, each one with an opening cost. Each time a terminal is selected,
we have to connect it to some facility (and open that facility, if it is not already
open).

A preliminary version of this work was presented in the Proceedings of the 37th International
Colloquium on Automata, Languages and Programming (ICALP 2010) [1]

Partially supported by the EU FET projects MULTIPLEX 317532 and SIMPOL 610704, the
ERC Starting Grants NEWNET 279352 and PAAl 259515, and the Google Focused Research
Award Algorithms for Large-Scale Data Analysis.

A. Anagnostopoulos and S. Leonardi
Sapienza University of Rome, Rome, Italy. E-mail: {aris, leonardi}@dis.uniroma1.it

F. Grandoni
DSIA, University of Lugano. E-mail: fabrizio@idsia.ch

P. Sankowski
Sapienza Univerity of Rome, Rome, Italy and University of Warsaw, Warsaw, Poland. E-mail:
sankowski@dis.uniroma1.it

Aris Anagnostopoulos et al.

We focus on the known distribution model, where terminals are independently
sampled from a given distribution. For all the above problems, we present bicriteria
online algorithms that, for any constant ǫ > 0, select at least (1−ǫ)k terminals with
high probability and pay in expectation O(log2 n) times more than the expected
cost of the optimal offline solution (selecting k terminals).

These upper bounds are complemented by inapproximability results for the
case that one insists on selecting exactly k terminals, and by lower bounds including
an Ω(logn/ log logn) lower bound for the case that the online algorithm is allowed
to select αk terminals only, for a sufficiently large constant α ∈ (0, 1).

1 Introduction

In a classical online network design problem, traffic requirements are revealed grad-
ually to an algorithm. Each time a new request arrives, the algorithm has to
satisfy it by augmenting the network under construction in a proper way. An on-
line algorithm is α-competitive (or α-approximate) if the ratio between the solution
computed by the algorithm and the optimal (offline) solution is at most α.

In this paper we study a natural generalization of online network design prob-
lems, where a fraction of the requests (the outliers) can be disregarded. Now, each
time a request arrives, the algorithm first decides whether to satisfy it or not,
and only in the first case it updates the network under construction accordingly.
Problems with outliers have a natural motivation in the applications. For exam-
ple, mobile phone companies often declare the percentage of the population that
is covered by their network of antennas. In order to declare a large percentage
(and attract new clients), they sometimes place antennas also in areas where costs
exceed profits. However, covering everybody would be too expensive. One option
is to choose some percentage of the population (say, 90%), and to cover it in the
cheapest possible way. This type of problems is well-studied in the offline setting,
but it was never addressed before in the online case (to the best of our knowledge).

We restrict our attention to the outlier version of three classical online network
design problems, which we define later: Online Steiner Tree with Outliers (outOST),
Online TSP with Outliers (outOTSP), and Online Facility Location with Outliers

(outOFL).

In more detail, in the Online Steiner Tree problem (OST), we are given an n-
node graph G = (V,E), with edge weights c : E → R

+, and a root node r. Then
t terminal nodes (where t is known to the algorithm) arrive one at a time. Each
time a new terminal arrives, we need to connect it to the Steiner tree S under
construction (initially containing the root only), by adding a proper set of edges
to the tree. The goal is to minimize the final cost of the tree. The input for the
Online Traveling Salesman Problem (OTSP) is the same as in OST. The difference is
that here the solution is a permutation φ of the input terminals. (Initially, we have
φ = (r)). Each time a new terminal arrives, we can insert it into φ at an arbitrary
point. The goal is to minimize the length of shortest cycle visiting the nodes in φ

according to their order of appearance in φ. In the Online Facility Location problem
(OFL), we are also given a set of facility nodes F , with associated opening costs
o : V → R

+. Now, each time a new terminal v arrives, it must be connected to
some facility fv: fv is opened if not already the case. The goal is to minimize the

Online Network Design with Outliers

facility location cost given as
∑

e∈F f(e) +
∑

v∈K distG(v, fv), where F = ∪v∈Kfv

is the set of open facilities1.
When the input sequence is chosen by an adversary, O(logn)-approximation

algorithms are known for the problems above, and this approximation is tight [19,
29,32]. Garg et al. [15] studied the case where the sequence of terminals is sampled
from a given distribution. For these relevant special cases, they provided online
algorithms with O(1) expected competitive ratio2. This shows a logarithmic ap-
proximability gap between worst-case and stochastic variants of online problems.

In the generalization of the above problems with outliers, we assume that
only 0 < k < t terminals need to be connected in the final solution. It is easy to
show that, for k ≤ t/2, the problems above are not approximable in the adversarial
model. The idea is to present k terminals with connection cost M ≫ k. If the online
algorithm selects some element among them, the next elements have connection
cost 0. Otherwise, the next elements have connection cost M2. Essentially the same
example works also if we allow the online algorithm to select only (1 − ǫ)k ≥ 1
elements.

For this reason and following [15], from now on we focus our attention on the
stochastic setting, where terminals are sampled from a given probability distribu-
tion3. When a request for a node v arrives according to the input distribution, we
say that node v is sampled. As we will see, these stochastic online problems have
strong relations with classical secretary problems.

There are two models for the stochastic setting: the known-distribution and the
unknown-distribution models. In the former the algorithm knows the distribution
from which terminals are sampled. In the latter the algorithm does not have any
information about the distribution apart from the incoming online requests.

Our Results and Techniques. First, we give inaproximability results and lower
bounds. For the known-distribution model we show that the considered problems
are inapproximable if we insist on selecting exactly k elements, for k = 1 and for
k = t−1. To prove these results we need to carefully select input distributions that
force the online algorithm to make mistakes: if it decides to select a terminal then
with sufficiently high probability there will be cheap subsequent requests, inducing
a large competitive ratio, whereas if it has not selected enough terminals it will
be forced to select the final terminals, which with significant probability will be
costly.

Furthermore, we prove a Ω(logn/ log logn) lower bound on the expected com-
petitive ratio even when the online algorithm is allowed to select αk terminals
only, for a constant α ∈ (0,1). To prove this result we use results from urn models.

Finally, for the unknown-distribution model we show a lower bound of Ω(logn)
for k = Θ(t) if the online algorithm is required to satisfy k − O(kα) requests for
0 ≤ α < 1.

1 For a weighted graph G, distG(u, v) denotes the distance between nodes u and v in the
graph. For the sake of simplicity, we next associate an infinite opening cost to nodes that are
not facilities, and let F = V .

2 Throughout this paper the expected competitive ratio, also called ratio of expectations
(RoE), is the ratio between the expected cost of the solution computed by the online algorithm
considered and the expected cost of the optimal offline solution. Sometimes in the literature
the expectation of ratios EoR is considered instead (which is typically more complicated).

3 For the sake of brevity, we will drop the term stochastic from problem names.

Aris Anagnostopoulos et al.

Given the inapproximability results for the case that the online algorithm has
to select exactly k terminals, we study bicriteria algorithms, which select, for
any given ǫ > 0, at least (1 − ǫ)k terminals with high probability4, and pay in
expectation O(log2 n) times more than the expected cost of the optimal offline
solution (selecting at least k terminals).

To obtain these results, we are first able to show that very simple algorithms
provide an O(k) expected competitive ratio. Henceforth, the main body of the
paper is focused on the case k = Ω(logn). Our algorithms crucially exploit the
probabilistic embeddings of graph metrics into tree metrics developed by Bartal
and subsequent researchers [6,11]. A Bartal tree of the input graph is used to
partition the nodes into a collection of groups of size Θ(nt logn) each. Note that
because t requests arrive overall, Θ(logn) terminals are sampled in each group
whp. Next, in the case of the outOST problem, we compute an anticipatory so-
lution formed by a Steiner tree on k out of t terminals sampled beforehand from
the known distribution. The anticipatory solution is deployed by the algorithm.
When the actual terminals arrive, the algorithm selects all terminals that belong
to a group (which we mark) that contains at least one terminal selected in the
anticipatory solution, and connects the selected terminals to the anticipatory so-
lution itself. Roughly speaking, there are Θ(k/ logn) marked groups and each such
group collects Θ(logn) actual terminals: altogether, the number of connected ter-
minals is Θ(k). A careful charging argument shows that the connection cost to the
anticipatory solution is in expectation O(logn) times the cost of the embedding
of the anticipatory solution in the Bartal tree. In expectation, this tree embed-
ding costs at most O(logn) times more than the anticipatory solution itself, which
in turn costs O(1) times more than the optimum solution. Altogether, this gives
a O(log2 n) competitive ratio. In this ratio, the factor O(logn) originating from
tree embeddings seems inherent in our algorithmic approach, and therefore hard
to remove. The extra factor O(logn) is due to the use of probability concentra-
tion bounds in the analysis: here a refined analysis (and slight adaptation of the
algorithm) might give an improvement.

The results on outOST immediately generalize to the case of outOTSP, modulo
constant factors. The idea is to construct a Steiner tree using an online algorithm
for outOST, and to duplicate its edges. This defines a multi-graph containing an
Euler tour spanning Θ(k) terminals. By shortcutting the Euler tour one obtains
the desired permutation φ of selected terminals. The Euler tour can be updated in
each step such that the new permutation obtained preserves the relative order of
the terminals in the starting permutation. The cost of the optimal Steiner tree is a
lower bound on the cost of the optimal TSP tour. Edge duplication introduces only
a factor 2 in the approximation. The following lemma summarizes the discussion
above.

Lemma 1 Given an online α-approximation algorithm for outOST, there is an online

2α-approximation algorithm for outOTSP.

The situation for outOFL is more involved, as in addition to the connection cost
we need to take care of the facility costs. In this case, as well, we deploy an
anticipatory solution on k out of t terminals sampled beforehand from the known

4 Throughout this paper we use the term with high probability (abbreviated whp) to refer
to probability that approaches 1 as k, the number of selected terminals, grows. In particular,
the probability of failure is polynomially small for k = Ω(log n) in the considered cases.

Online Network Design with Outliers

distribution. To be able to apply some charging arguments we create a new virtual
metric space, which can also capture the cost of opening the facilities: we connect
every facility of the graph to a virtual root in the tree metric with an edge of cost
equal to the facility opening cost. An additional complication is to decide when
to open facilities that are not opened in the anticipatory solution. We open a new
facility if a selected vertex is connected to the closest facility in the anticipatory
solution through a path that traverses the root in the tree embedding.

To summarize our results:

– We give inapproximability results and lower bounds for the known and the
unknown distribution models (Section 2).

– We give O(log2 n) approximation algorithms for the outOST (Section 3), the
outOTSP, and the outOFL (Section 4) problems for the known distribution
model. First we present the results for the uniform input distribution and then
we extend them to any distribution.

– We extend our algorithms to the unknown-distribution model (Section 5).

Online network design problems with outliers are in general strictly harder
than their counterpart without outliers. Intuitively, this is because of the fact that
a wrong choice can be very costly. Indeed, in [15] the authors show that for the
known distribution model the expected ratio of the online Steiner tree problem
(without outliers, corresponding to the case that k = t) is constant. Instead, in
Theorem 1 we show that even if we let k = t − 1 the approximation ratio can be
arbitrarily large.

Throughout this paper we use OPT to denote the optimal offline solution, and
opt to denote its expected cost. For a set of elements A and a cost function c defined

on such elements, c(A)
△
=

∑

a∈A c(a). For a graph A, we use c(A) as a shortcut for
c(E(A)).

1.1 Related Work

The problems in this paper are generalizations of various online problems where
irrevocable decisions are being made. We elaborate on the most related areas,
namely the problems of online network design and the secretary problems.

1.1.1 Online Network Design

Competitive analysis of online algorithms has a long history (see, for example, [7,
12,33] and the many references therein). Steiner tree, TSP, and facility location
can be approximated up to a worst-case Θ(logn) competitive factor in the online
case [19,29,32]. There have been many attempts to relax the notion of competitive
analysis for classical list-update, paging and k-server problems (see [7,12,20,21,
27,31,35]).

In many of the online problems studied in the literature, and in particular the
versions of the online problems we study here without outliers (k = t) the case of
known distribution was easy. As we mentioned, in this case outOST, outOTSP and
outOFL reduce to the online stochastic version of Steiner tree, TSP, and facility

Aris Anagnostopoulos et al.

location, for which the ratio between the expected online cost and the expected
optimal cost are constant for the known distribution model [15]. In the random
permutation model, Meyerson [29] shows for facility location an algorithm with
O(1) ratio between the expected online cost and the expected optimal cost. In
the Steiner tree problem the Ω(logn) lower bound is still retained in the random
permutation model [15].

The offline versions of the problems considered here are known as the Steiner

Tree problem with Outliers (outST), the TSP problem with Outliers (outTSP) and
the Facility Location problem with Outliers (outFL). For these problems, worst-case
constant approximation algorithms are known [9,14]5. We will exploit such (offline)
approximation algorithms as part of our online algorithms.

We remark that none of the above mentioned approximation algorithms ex-
ploits tree embeddings at an algorithmic level: this is a novelty of our approach.
On the other hand, the idea of constructing an anticipatory solution is not new.
For example, it is used frequently in the design of approximation algorithms for
2-stage stochastic optimization problems (see e.g. [34] and references therein).

1.1.2 Secretary Problems and Prophet Inequalities

The problems that we consider in this paper include as a special case minimization

versions of the secretary problem. In the classical secretary problem a set of t ele-
ments (the secretaries), each one with an associated non-negative numerical value,
are presented one by one to the algorithm (the employer). The algorithm has to
decide when to stop and select the current element with the goal of maximizing
the value of the selected element. A well-known extension of the problem above is
the multiple-choice secretary problem, where the algorithm has to select k < t ele-
ments of the sequence with the goal of maximizing the sum of the k selected values
(or, alternatively, the ranks of the selected elements). This problem dates back to
the fifties and it has recently attracted a growing interest given its connections to
selecting winners in online auctions [4,17].

In the classical secretary problem, it is easy to achieve a constant approxi-
mation to the optimal expected value; for example, one can observe that waiting
until seeing half of the elements and then selecting the first element that has value
higher than the maximum of the first half will select the best element with prob-
ability at least 1/4 and thus achieves in expectation a value that is at least 1/4 of
the optimal offline value. Here we show that the minimization version is strictly
harder, the reason being that a wrong choice might be very costly. The hardness
arises from the fact that at least k secretaries must be hired: Intuitively, if k − x

secretaries have been hired after t − x secretaries have been sampled, the last x

secretaries must be hired irrespectively of their values. So, in Theorem 2 we show
that even in the simple case that k = 1 the cost of the online algorithm can be
exponentially larger than the optimal offline cost.

Secretary problems have been studied under several models. There is a rich
body of research on secretary problems and the determination of optimal stopping
rules in the random permutation model since the early sixties [10,13,16,28]. In this
classical model a set of t arbitrary numerical values is presented to the algorithm in

5 The k-MST problem studied in [14] and the Steiner tree problem with outliers are equiv-
alent approximation-wise, modulo constant factors. The same holds for TSP with outliers.

Online Network Design with Outliers

random order. A strategy is known that selects the best secretary with probability
1/e [28]. For the multiple-choice secretary problem it has been recently proposed
[24] a strategy that achieves a 1 − O(

√

1/k) fraction of the sum of the k largest
elements in the sequence, that is, a competitive ratio [7] that approaches 1 for
k → ∞.

In the known-distribution model the numerical values are identical indepen-
dent samples from a known distribution. The known-distribution model has been
considered in several works (e.g., [16,23]). These problems are also known as house-
selling problems (e.g., [22]), and generalizations have appeared under the name of
dynamic and stochastic knapsack problems [3,25]. In this model an online algo-
rithm that maximizes the expected revenue is obtained through dynamic program-
ming even for the multiple-choice version of the problem [16]. The more general
setting with nonidentical distributions is referred to as prophet inequalities in the
theory of optimal stopping (see, e.g., [2,18]).

In the unknown-distribution model each element of the sequence is drawn from
an unknown distribution. The unknown-distribution model is more general than
the random permutation model if we disregard repetitions. The latter can be simu-
lated by sampling from an unknown distribution that is uniform on the secretaries
that will arrive, and zero otherwise.

Secretary problems with an underlying graph structure have been recently
studied in the context of online matching problems and their generalizations [5,
26].

One can define a minimization version of all the problems above, as we do
here. Minimization secretary problems are much less studied in the literature, and
most studies cover some basic cases. In particular, researchers have studied the
problems where the goal is to minimize the expected rank of the selected secretary
(as opposed to the actual expected cost) or to minimize the expected cost if the
input distribution is uniform in [0,1] (look, for example, the work of Bruce and
Ferguson [8] and the references therein). However, to the best of our knowledge,
there has not been any comparison of the online and offline solutions for arbitrary
input distributions.

2 Lower Bounds

In this section we provide some lower bounds for online network design with out-
liers. We focus on outOST, but similar counterexamples can work for outOTSP
and outOFL. First we deal with the known-distribution model. We first prove, in
Theorem 1, that for k = t − 1 the competitive ratio can be arbitrariliy bad. Con-
trast this example with the results of Garg et al. [15] who showed that for k = t

the competitive ratio is constant. Instead, here we show that allowing for just one
request to be dropped can make the competitive ratio arbitrarily bad. Next we
look into the other extreme, k = 1 (Theorem 2). We show that in that case the
competitive ratio is exponentially bad in n. As we mentioned in the introduction,
this setting can be seen as a minimization version of the classical secretatry prob-
lem, and our result shows that (not surprisingly) minimization is much harder than
maximization. Our final result on lower bounds (Theorem 3) addresses the case in
which we allow the online algorithm to select only αk requests, for some constant
α < 1, and comparing it with the offline algorithm that selects k requests. In that

Aris Anagnostopoulos et al.

case we prove a lower bound of Ω(logn/ log logn). This theorem complements our
upper bounds, in which we show the existence of an algorithm with competitive
ratio of O(log2 n) in the case that the online algorithm is required to select (1−ǫ)k
requests, for ǫ being an arbitrarily small constant.

Let us start by proving inapproximability results for outOST in the known
distribution model, when we insist on selecting at least k terminals.

Theorem 1 In the known distribution model, the expected competitive ratio for out-

OST can be arbitrarily large for k = t− 1.

Proof Consider the star graph whose center is the root and with three terminals v,
u, and w (which can be repeatedly sampled), connected to the root with edges of
weight c(v) = 0, c(u) = C, and c(w) = C3. Here C ≫ t. The sampling probabilities
are p(v) = 1− 1/C − 1/C2, p(u) = 1/C and p(w) = 1/C2. OPT selects one copy of
w only if w is sampled at least twice. Otherwise, it selects one copy of u only if u is
sampled at least twice or u and w are sampled exactly once each. The probability of

the first and second event is at most Θ(t2

C4) and Θ(t2

C3 +
t2

C2) = Θ(t2

C2), respectively.
Hence

opt ≤ C3Θ

(

t2

C4

)

+ CΘ

(

t2

C2

)

= Θ

(

t2

C

)

.

Consider now any given online algorithm selecting a multiset K of k terminals.
The probability that within t/2 samplings, node u and w are sampled at least once
is Θ(t

2C) and Θ(t
2C2), respectively. If the first event happens within the first t/2

samples, the algorithm can either select u or select all the following t/2 sampled
terminals. In the first case the algorithm pays at least C. In the second case it
pays at least C3 with probability Θ(t

2C2). Hence

E[c(K)] ≥ Θ
(

t

2C

)

·min
{

C,C3Θ
(

t

2C2

)}

= Θ(t).

The overall competitive ratio is Ω
(

C
t

)

, which becomes arbitrarily large as C in-
creases.

The next theorem considers the somehow opposite case that k is very small.
Note that the construction in the proof shows that the minimization version of
the secretary problem has an exponential competitive ratio.

Theorem 2 In the known distribution model, the expected competitive ratio for out-

OST can be at least 1.46n, where n is the number of nodes, for t = 3n/4 and k = 1.

Proof Consider the star graph with root r and with n nodes connected v1, v2, . . . , vn,
with the edge {r, vi} having weight di = 2i. Another view of the problem is the
following. Let di = 2i for i = 1, 2, . . . , n, X be a random variable distributed uni-
formly at random in {di}, and assume that t mutually independent copies of X

are drawn. The optimal offline solution V off
t is the minimum out of t draws from

the distribution. Then

E[V off
t] =

∞
∑

x=1

Pr(V off
t ≥ x)

(a)
= Pr(V off

t ≥ 1) +
n
∑

i=1

2i−1

(

n− i+ 1

n

)t

= 1 +
n−1
∑

i=0

2i
(

1−
i

n

)t

≤ 1 +
n−1
∑

i=0

2i · e−
it

n = 1+
n−1
∑

i=0

ei ln 2− it

n ,

Online Network Design with Outliers

where (a) follows from the fact that, to have V off
t ≥ x ≥ 2, for all the t copies of

X it must hold X ≥ 2⌊log x⌋. In particular, for t = 3n/4,

E[V off
t] = 1 +

n−1
∑

i=0

e(ln 2− 3

4
)i = O(1).

Now let us compute the expected value V on
t of the optimal online solution. Note

that the problem can be modeled as a finite-horizon Markov decision process [30],
and we can compute the expected value of the optimal online strategy as follows.
Let vt = E[V on

t], then we have that v1 = E[X] and

vt+1 = vt · Pr(X ≥ vt) + E[X | X < vt] · Pr(X < vt).

In fact, the optimal strategy when (t + 1) terminals have still to be sampled is
to look at the first terminal, discard it if its value is larger than vt, and selects
it otherwise. The first event happens with probability Pr(X ≥ vt), and in that
case the expected future value is vt. The second event happens with probability
Pr(X < vt), and in that case the expected value is E[X | X < vt]. Thus the
expected value vt+1 is given by the above expression. From the theory of Markov
decision processes [30] it follows that this is the optimal online stategy.

To conclude the proof we only have to show that v3n/4 is exponential in n.
Note that vt is a decreasing function of t and define t0 to be the smallest t for
which vt ≤ 2n/4. Define also ṽt = vt for t ≤ t0 and

ṽt+1 =
3

4
ṽt,

for t > t0. Then we have that ṽt ≤ 2n/4 for t ≥ t0. Note also that for t ≥ t0 we
have

Pr(X ≥ ṽt) = 1−
⌈log ṽt⌉ − 1

n
≥

3

4
, (1)

where the equality follows from the definition of the distribution, and the inequality
follows from the fact that ṽt ≤ 2n/4 for t ≥ t0, and thus

⌈log ṽt⌉ − 1

n
≤

1

4
.

Now we show that vt ≥ ṽt for all t ≥ 1. By definition it is true for t ≤ t0, and
we use induction to prove it for t ≥ t0+1. So, assuming that it holds for t ≥ t0 we
have

vt+1 = vt · Pr(X ≥ vt) + E[X | X < vt] · Pr(X < vt)

(a)
≥ vt · Pr(X ≥ vt)

(b)
≥ ṽt · Pr(X ≥ ṽt)

(c)
≥

3

4
ṽt

= ṽt+1,

Aris Anagnostopoulos et al.

where (a) follows from the fact that E[X | X < vt] · Pr(X < vt) is nonnegative,
(b) follows from the fact that v · Pr(X ≥ v) is an increasing function of v for our
distribution, and (c) follows from Equation (1). Finally we have that

ṽt0 = vt0 ≥ vt0−1

(

1−
⌈log vt0−1⌉ − 1

n

)

≥ 2
n

4

(

1−
n− 1

n

)

=
2

n

4

n
,

since 2n/4 < vt0−1 ≤ v1 = E[X] < 2n. Therefore, for sufficiently large n,

vt ≥ ṽt =

(

3

4

)t−t0

ṽt0 ≥

(

3

4

)t
2

n

4

n
= 2

n

4
−t log 3

4
−logn,

and so we obtain

v3n/4 ≥ 2(
1

4
− 3

4
log 3

4
)n−logn ≥ 1.46n.

We can conclude that the expected online value is exponentially higher (in n) than
the expected offline value.

Finally, we present an Ω(logn
log logn) lower bound for outOST, outOTSP and

outOFL, which applies also to the case that the online algorithm is allowed to
connect only αk terminals, for a sufficiently large constant α ∈ (0, 1).

Theorem 3 Assume that an online algorithm for outOST (resp., outOTSP or out-

OFL) is allowed to connect αk terminals, for a sufficiently large constant α ∈ (0,1).

Then the expected competitive ratio is Ω
(

logn
log logn

)

.

Proof We give the proof for outOST. The proof for the other two problems is
analogous. Consider the star graph with the root r as center, and uniform edge
weights 1. Suppose that each leaf is sampled with uniform probability 1/(n− 1).
Let t = n − 1 and k = lnn

c ln lnn , for a sufficiently large constant c. When a leaf is
sampled at least k times, the optimum solution cost is 1, and in any case it is not
larger than n− 1. By standard balls-and-bins results, the probability that no leaf
is sampled at least k times is polynomially small in n. Hence opt = O(1).

Take now any online algorithm. Suppose that at some point this algorithm
connects a terminal v for the first time. After this choice, the same terminal v
will be sampled O(1) times in expectation. Hence, the expected total number
of connected terminals is proportional to the number of distinct leaves which are
connected. This implies that the online algorithm is forced to connect Ω(k) distinct
nodes in expectation, with a cost of Ω(k). Therefore, the compatitive ratio is

Ω(k) = Ω
(

logn
log logn

)

in the case considered.

3 Online Steiner Tree with Outliers

In this section we consider the Online Steiner Tree problem with Outliers (out-
OST). We first consider the case that the input distribution is uniform, and in
Section 3.1 we generalize the results to any distribution.

The algorithm considers two cases, one for small values of k (k = O(logn)) and
one for large ones (k ≥ c logn for a suitable constant c).

Online Network Design with Outliers

Figure 1 Algorithm outost-large for outOST.

(Preprocessing Phase)

Step 1. Compute a Bartal tree B for the input graph. Partition the leaves of B from left to
right in groups V1, . . . , Vn/σ of size σ.

Step 2. Sample t nodes T̃ from the input probability distribution. Compute a ρoutST -
approximate solution S̃ to the (offline) outST problem induced by T̃ . Let K̃ be the resulting

set of k terminals, and K be the nodes of groups with at least one node in K̃, excluding the
leftmost and rightmost such groups. Set S = S̃.

(Online Phase)

Step 3. For each input node v ∈ T , if v ∈ K, add v to K and augment S with a shortest path
to v.

First we consider the case of k = O(logn), which is handled by the following
algorithm outost-small: Let W be the set of the (1− δ)nk

t nodes which are clos-
est to the root (breaking ties arbitrarily). Here δ ∈ (0,1) is a proper constant.
Whenever a new node v ∈ T arrives, outost-small adds it to the set K of selected
nodes iff v ∈ W . In that case, the algorithm connects v to the current tree S via a
shortest path.

Lemma 2 For any ǫ > 0, there is a choice of δ ∈ (0,1) such that Algorithm outost-small

connects at least (1−ǫ)k nodes whp. The expected cost of the solution computed is O(k)
times the expected cost of the optimum offline solution.

Proof LetK = T∩W be the set of connected nodes. Trivially E[|K|] = t
n (1−δ)nk

t =
(1− δ)k. By Chernoff’s bounds we have that

Pr(|K| < (1− δ) · E[|K|]) ≤ e−δ2(1−δ)k/2

and
Pr(|K| > (1 + δ) · E[|K|]) ≤ e−δ2(1−δ)k/3.

Assuming the event {|K| ≥ (1 − δ) · E[|K|]}, which happens whp, the number of
connected terminals is at least (1−δ)2k, which is at least (1−ǫ)k for a proper choice
of δ ∈ (0,1). Moreover, whp the sampled nodes in W are at most (1+ δ)(1− δ)k =
(1−δ2)k < k. When that happens (let us call it event A), the optimal solution must
select at least one terminal not belonging in W , and therefore it has cost at least

D
△
= maxv∈W distG(v, r). This implies that opt ≥ D·Pr(A) ≥ D·(1−e−δ2(1−δ)k/3) =

Θ(D). Altogether, we get

E[c(S)] ≤ E

[

∑

v∈K

distG(v, r)

]

≤ E

[

∑

v∈K

D

]

= (1−δ)kD = O(k·opt) = O(logn)·opt.

Now we consider the more interesting case with k ≥ c logn for a large enough
constant c > 0. We next describe an algorithm outost-large with O(log2 n) com-
petitive ratio, which connects at least (1−ǫ)k terminals whp, for any given constant
parameter ǫ > 0.

A crucial step in our algorithms is constructing a Bartal tree B over the input
graph G using the algorithm in [11]. We recall that B = (W,F) is a randomly
created rooted tree, with edge costs cB : F → R

+, whose leaves are the nodes V ,
and such that the following two properties hold:

Aris Anagnostopoulos et al.

1. Edges at the same level in the tree have the same cost and given edges e and
f at level i and i+ 1, respectively (the root is at level zero), cB(e) = 2cB(f).

2. For any two leaves u, v ∈ B, 1
O(logn)E[distB(u, v)] ≤ distG(u, v) ≤ distB(u, v).

Algorithm outost-large is described in Figure 1. The algorithm starts with two
preprocessing steps. Initially it computes a Bartal tree B for G, and partitions its
leaves from left to right into groups V1, V2, . . . , Vn/σ of size σ = αn

t logn each, for a

constant α to be fixed later6. Then the algorithm samples t nodes T̃ , and constructs
a Steiner tree S̃ (anticipatory solution) on k such nodes K̃, using a ρoutST = O(1)
approximation algorithm for (offline) outST [14]7. We call azure and blue the nodes
in T̃ and K̃, respectively. We also call blue the groups containing at least one blue
node, and boundary the leftmost and rightmost blue groups. The Steiner tree S

under construction is initially set to S̃.

In the online part of the algorithm, each time a new terminal v ∈ T arrives, v is
added to the set K of selected terminals if and only if v belongs to a non-boundary
blue group. In that case, the algorithm also adds to S a shortest path from v to
S. We call orange and red the nodes in T and K, respectively. It turns out that
the connection of orange nodes in blue groups can be conveniently charged to the
cost of the anticipatory solution (boundary blue groups are excluded for technical
reasons).

Let us initially lower bound the number of red nodes, that is, the number of
terminals connected by the algorithm.

Lemma 3 For any ǫ > 0 and σ = αn
t logn, there is a choice of α > 0 such that the

number of red nodes is at least (1− ǫ)k whp.

Proof The number Ni of azure (resp., orange) nodes in a given group Vi, counting
repetitions, satisfies E[Ni] =

t
n

n
t α logn = α logn. Let δ ∈ (0,1) be a sufficiently

small constant. By Chernoff’s bounds, we know that there is a value of α > 0 such
that the probability of the event {Ni /∈ [(1 − δ)α logn, (1 + δ)α logn]} is smaller
than any given inverse polynomial in n. Hence, from the union bound, whp all the
groups contain between (1−δ)α logn and (1+δ)α logn azure (resp., orange) nodes.
Let us assume from now on that this event happens. Recall that by assumption
k ≥ c logn for a sufficiently large constant c > 0.

Each blue group contains at most (1+ δ)α logn azure (and hence blue) nodes.
Therefore, there are at least k

(1+δ)α logn blue groups, and so the number of orange

nodes in non-boundary blue groups (i.e., the number of red nodes) is at least

(1− δ)α logn

(

k

(1 + δ)α logn
− 2

)

≥
1− δ

1 + δ
k − 2

(1− δ)α

c
k.

The latter quantity is at least (1− ǫ)k for proper constants c and δ.

6 To avoid inessential technicalities, we will always assume that n is a multiple of σ.
7 Since the cost of an MST spanning a set of vertices W is at most twice the corresponding

cost of the best Steiner tree connecting those vertices, we can obtain a constant approximation
for the outST problem if we have a constant approximation for the rooted k-MST problem.
Indeed, by apending a large number N (say N = n2) of copies of each terminal with edges
of cost 0 and multiplying k by a factor N , we can achieve for outST the same approximation
factor as for k-MST, that is 2 [14].

Online Network Design with Outliers

We continue by proving the following basic tool lemma that will be reused for
outOFL later on. Refer to Figure 2. Let rv (resp., ℓv) be the first blue node to
the right (resp., left) of node v ∈ K (with respect to the given ordering of leaves
from left to right). Note that rv and ℓv are well defined, because the boundary
blue groups are not used to define K.

Figure 2 Charging scheme in the analysis of outost-large. Bold edges indicate
the subtree B̃. Groups are enclosed into ellipses. Dashed arcs reflect the charging
of red nodes connections to the edges of B̃.

blue

red

av

a′v

ev

e′v

vℓv rv

Lemma 4 Let B̃ be any subtree in B spanning the root r and the nodes in K̃. Then

E

[

∑

v∈K

distB(v, rv)

]

≤ 8σ
t

n
E[cB(B̃)].

Proof The idea of the proof is to charge the distances distB(v, rv) to a proper subset
of edges Ẽ ⊆ E(B̃), so that each such edge is charged O(σ t

n) times in expectation.
Let av (resp., a′v) be the lowest common ancestor of ℓv (resp., v) and rv. Let
moreover ev (resp., e′v) be the first edge along the path from av (resp., a′v) to rv. (see
also Figure 2). Because v lies between ℓv and rv, the level of a′v is not higher than
the level of av. We can conclude by Property 1 of Bartal trees that cB(e

′
v) ≤ cB(ev).

Property 1 also implies that distB(v, rv) = distB(v, a
′
v) + distB(a

′
v, rv) ≤ 4cB(e

′
v).

Altogether, we obtain
distB(v, rv) ≤ 4cB(ev). (2)

Let Ẽ
△
= ∪v∈Kev ⊆ E(B̃). Consider any edge e = ew ∈ Ẽ. Any red node u to the

left of ℓw or to the right of rw satisfies eu 6= ew. We can conclude that the set

Ṽe
△
= {v ∈ K : ev = e} is a subset of the red nodes contained in the groups of rw

and ℓw. Conditioned on the constructed Bartal tree, the expected number of red
nodes in those two groups is 2σt/n. Then

E

[

∑

v∈K

cB(ev)

]

= E





∑

e∈Ẽ

|Ṽe| · cB(e)



 ≤ 2σ
t

n
E





∑

e∈Ẽ

cB(e)



 ≤ 2σ
t

n
E
[

cB(B̃)
]

. (3)

Aris Anagnostopoulos et al.

The lemma follows by summing up over v the expectation of (2) and combining
it with (3).

We are now ready to bound the competitive ratio of the algorithm.

Lemma 5 The expected cost of the solution computed by outost-large is O(σ t
n logn)

times the expected cost of the optimum offline solution.

Proof The anticipatory problem instance is sampled from the same distribution as
the real problem instance, so E[c(S̃)] ≤ ρoutST · opt = O(opt).

Let us bound the cost Con paid by the algorithm during the online phase.
Consider the minimal subtree B̃ of B spanning K̃ ∪{r}. Of course, B̃ is an optimal
Steiner tree over K̃ ∪{r} with respect to graph B. From Property 2 it follows that

E[cB(B̃)] ≤ E[O(logn)c(S̃)] = O(logn) · opt. (4)

We have

Con ≤
∑

v∈K

distG(v, K̃)
Prop. 2

≤
∑

v∈K

distB(v, K̃) ≤
∑

v∈K

distB(v, rv). (5)

Note that B̃ satisfies the conditions of Lemma 4, hence by putting everything
together we obtain

E[Con]
(5)

≤ E

[

∑

v∈K

distB(v, rv)

]

Lem. 4
≤ 8σ

t

n
E[cB(B̃)]

(4)
= O

(

σ
t

n
logn

)

· opt.

Let outost be the (polynomial-time) algorithm for outOST that runs outost-small
for k < c logn, and outost-large with σ = αn

t logn otherwise, for a sufficiently
large constant α > 0. The following theorem easily follows from Lemmas 2, 3 and
5.

Theorem 4 Algorithm outost connects at least (1− ǫ)k terminals whp. The expected

cost of the solution is O(log2 n) times the expected cost of the optimum offline solution.

3.1 Nonuniform Probability Distribution

In this section we show how to deal with a non-uniform probability distribution
p : V → [0,1].

Consider first the case k = O(logn). Let v1, v2, . . . , vn be nodes in increasing
order d1, d2, . . . , dn of distance from the root (breaking ties arbitrarily), and let
pi := p(vi). The algorithm computes the largest index j such that Pj :=

∑

i≤j pi ≤

P ′ := k
t (1− δ), and adds nodes v1, v2, . . . , vj to a set W . Moreover, it replaces node

vj+1 with two nodes v′j+1 and v′′j+1, with sampling probability p′j+1 = P ′−Pj and
p′′j+1 = pj+1 − p′j+1. Node v′j+1 is added to W as well. The rest of the algorithm
is as in outost-small: all the sampled nodes in W are connected, up to k nodes.
The expected number of connected nodes is t · (Pj + p′j+1) = t · P ′ = k(1 − δ). It
follows from Chernoff’s bounds that whp (in k) the number of connected terminals
is at least (1 − δ)2k = (1 − ǫ)k. Moreover, whp no more than (1 + δ)(1 − δ)k =
(1 − δ2)k < k terminals are connected. It follows (similarly to the uniform case)

Online Network Design with Outliers

that the maximum expected distance of a node in W from the root is O(opt), opt
being the expected cost of the optimal offline solution. Altogether, the connection
cost paid by the algorithm is O(k) · opt in expectation.

The algorithm for k = Ω(logn) is similar to outost-large, the main difference
being the way groups are formed. Let v1, v2, . . . , vn be the nodes sorted from left
to right in the Bartal tree B, and let pi = p(vi). The first groups V1 is formed in
the following way. Let j be the largest index such that Pj :=

∑

i≤j pi ≤ α logn
t .

Node vj+1 is split in nodes v′j+1 and v′′j+1 is a similar way as above, so that

Pj + p′j+1 = α logn
t . Then V1 = {v1, . . . , vj , v

′
j+1}. Group V2 is formed in a similar

fashion starting from node v′′j+1, and the other groups are constructed analogously.
By an argument analogous to the uniform case, k(1 − ǫ) terminals are connected
whp and the expected cost of the solution computed is O(log2 n) · opt.

4 Online Facility Location with Outliers

In this section we consider the Online Facility Location problem with Outliers
(outOFL). Similarly to the case of outOST, we consider two cases depending on
the value of k, one for k = O(logn) and one for k = Ω(logn).

First we consider the following algorithm outofl-small, which handles the
case of k = O(logn). Let W be the set of the (1 − δ)nk

t nodes v for which
minf∈V (o(f) + dist(v, f)) is minimum. Here δ ∈ (0,1) is a proper constant. When-
ever a new terminal v ∈ T arrives, outofl-small adds it to the set K of selected
nodes iff v ∈ W . In that case, the algorithm opens facility

fv = argminf∈V (o(f) + dist(v, f)) ,

if not already open, and connects v to fv. The proof of the following lemma is
analogous to the proof of Lemma 2, and is omitted.

Lemma 6 For any given ǫ > 0, there is a choice of δ ∈ (0,1) such that Algorithm

outofl-small connects at least (1 − ǫ)k nodes whp. The expected cost of the solution

computed is O(k) = O(logn) times the expected cost of the optimum offline solution.

Now we consider the case that k ≥ c logn for a sufficiently large constant
c > 0. Our algorithm outofl-large is described in Figure 3. Let Gr = (V ∪ r,E′)
be a graph obtained from G by adding a new vertex r and connecting it to all
vertices f on which facilities can be opened with edges of cost o(f). We denote
by cGr

the edge weights of Gr. Note that every facility location solution F =
(F,K) in G can be mapped to a Steiner tree TF in Gr spanning K ∪ {r} with the
same cost: it is sufficient to augment the connection paths in F with the edges
between open facilities and r. Unfortunately, solving a outOST problem on Gr

is not sufficient to solve the original outOFL problem. This is because not every
tree in Gr corresponds to a valid facility location solution. Nevertheless, the graph
Gr is very useful in our case as it allows to introduce a convenient metric into
the facility location problem. (See Figure 4 for an example of graph Gr, and a
corresponding implementation of Steps 3.1 and 3.2).

The following two lemmas can be proved similarly to Lemmas 3 and 4, and we
omit their proof.

Aris Anagnostopoulos et al.

Figure 3 Algorithm outofl-large for outOFL.

(Preprocessing Phase)

Step 1. Construct the graph Gr and compute a Bartal tree B for Gr. Partition the leaves of
B from left to right in groups V1, . . . , Vn/σ of size σ.

Step 2. Sample t nodes T̃ from the input probability distribution. Compute a ρoutFL-
approximate solution F̃ = (F̃ , K̃) to the (offline) facility location problem with outliers induced

by T̃ , where F̃ and K̃ are the open facilities and the selected set of k terminals, respectively.
Let K be the nodes of groups with at least one node in K̃, excluding the leftmost and rightmost
such groups. Open the facilities in F̃ .

(Online Phase)

Step 3. For each input node v ∈ T , if v ∈ K, add v to K. Let rv be the first node from K̃ to
the right of v. Consider the shortest path π from v to rv in Gr :

• Step 3.1. If π goes through r, then let (fv, u) be the first edge on π such that u = r.
Open facility fv, if not already open, and connect v to fv.

• Step 3.2. Otherwise connect v to the facility fv to which node rv is connected in F̃ .

Figure 4 An example of graph Gr is given in (a). For clarity of illustration, we
distinguished between terminals (circles) and facilities (squares). The oval node
is the root. Terminals K̃ and the open facilities in the corresponding anticipatory
solution are drawn in full, as well as the associated Steiner tree TF . Examples of
Steps 3.1 and 3.2 are given in (b) and (c), respectively (bold edges indicate one
possible shortest path from v to rv)

(a)

f

o(f)

r

v rv

(b)

fv

v rv

(c)

fv

Lemma 7 For any ǫ > 0 and σ = αn
t logn, there is a choice of α > 0 such that the

number of nodes in K at the end of the algorithm is at least (1− ǫ)k whp.

Lemma 8 Let B̃ be any subtree in B spanning the root r and the nodes in K̃. Then

E

[

∑

v∈K

distB(v, rv)

]

≤ 8σ
t

n
E[cB(B̃)].

Given Lemma 8, we can bound the expected cost of the solution.

Lemma 9 The expected cost of the solution computed by outofl-large is O
(

σ t
n logn

)

times the expected cost of the optimum offline solution.

Online Network Design with Outliers

Proof The expected cost of the anticipatory solution F̃ is at most ρoutFL · opt =
O(opt).

Consider the solution F̃ and the corresponding tree TF̃ in Gr. Define πe for
each edge e = (u, v) ∈ E to be a path in B from u to v. Let us define:

B̃ =
⋃

e∈T
F̃

πe.

From Property 2 of Bartal trees, it follows that

E[cB(B̃)] ≤ O(logn) · E[cGr
(TF̃)] ≤ O(logn) · opt. (6)

Note that B̃ is a subtree of B that spans r and the nodes in K̃. Hence we can apply
Lemma 8 to get:

E

[

∑

v∈K

distGr
(v, rv)

]

Prop. 2
≤ E

[

∑

v∈K

distB(v, rv)

]

Lem. 8
≤ 8σ

t

n
E[cB(B̃)]

(6)

≤ O
(

σ
t

n
logn

)

· opt.

(7)

The cost of selecting v in Step 3.1 is no more than the length of π, which in
turn is equal to distGr

(v, rv). The cost of selecting v in Step 3.2 is no more than the
length of π plus the distance from rv to fv . Hence, the cost Con of the algorithm
paid during the online phase is:

Con ≤
∑

v∈K

(distGr
(v, rv) + distG(rv, fv)) . (8)

Note that each rv ∈ K̃ is the first node to the right for nodes in at most two
groups. Hence, the distance distG(rv, fv) is charged in expectation at most 2σ t

n
times, conditioned on the requests arrived in the first round. Then

E

[

∑

v∈K

distG(rv, fv)

]

≤ 2σ
t

n
E





∑

v∈K̃

distG(rv, fv)



 ≤ 2σ
t

n
ρoutFL · opt. (9)

Taking the expectation of (8) and combining it with (7) and (9), we get

E[Con] ≤ E

[

∑

v∈K

distGr
(v, rv)

]

+E

[

∑

v∈K

distG(rv, fv)

]

≤ O
(

σ
t

n
logn

)

· opt.

Let outofl be the (polynomial-time) algorithm for outOFL that runs outofl-small
for k < c logn, and outofl-large with σ = αn

t logn otherwise, for a sufficiently
large constant α > 0. The following theorem is an easy consequence of Lemmas 6,
7 and 9.

Theorem 5 For any given ǫ > 0, Algorithm outofl connects at least (1− ǫ)k termi-

nals whp. The expected cost of the solution is O(log2 n) times the expected cost of the

optimum offline solution.

Aris Anagnostopoulos et al.

Figure 5 Algorithm outost-large-unk for outOST with unknown probability dis-
tributions. Here, β and δ are small constants, while a is a large constant. We
assume that k > c log(n∆r) for a large enough constant c.

(Online Observe Phase)

Step 1. Observe the first t̃ = βt terminals T̃ from the input sequence.

(Limiting Phase)

Step 2. Compute a Bartal tree B for the input graph. Partition the leaves of B from left to
right in groups V1, . . . , Vp each containing exactly (1− δ)β a logn terminals from T̃ .

Step 3. Compute a ρOST -approximate solution S̃ to the OST problem induced by T̃ with
threshold k̃ = (1 − δ)βk. Let K̃ be the resulting set of k̃ terminals, and K be the nodes of

groups with at least one element in K̃, excluding the leftmost and rightmost such groups. Set
S = S̃.

(Online Cutoff Phase)

Step 4. For the remaining (1− β)t terminals T ′, if v ∈ K, add v to K and augment S with a
shortest path to v.

5 Algorithm for Unknown Probability Distributions

In this section we present an approximation algorithm for the case of unknown
probability distribution. Also in this case we focus on outOST: analogous argu-
ments work for the other problems.

In the case of standard secretary problems, this scenario can be addressed by
observing a small fraction of the input. Here we use a similar approach. However,
the whole argument is more subtle in our case. For this reason, we make an ad-
ditional assumption on the skewness of the metric space: we assume that ∆r, the
ratio of the distances of the farthest and closest terminal to the root r, is not too
large. In more detail, we assume k > c log(n∆r) for a sufficiently large constant
c > 0.

Our algorithm outost-large-unk is described in Figure 5. The algorithm ini-
tially (Step 1) observes the first t̃ = β t input terminals T̃ (azure terminals), for
a small constant β > 0. Then (Step 2) it computes a Bartal tree, and partitions
its leaves in groups containing exactly (1− δ)β a logn azure terminals each, where
δ > 0 is a small constant and a > 0 a large one. Note that formerly (see Sec-
tion 3.1), the partition in groups was based on the probability distribution, which
is unknown here. In Step 3, the algorithm constructs an anticipatory solution S̃ on
a set K̃ of k̃ = (1−δ)β t azure terminals (blue terminals), using a ρOST approxima-
tion algorithm for OST. A crucial fact is that the expected cost of S̃ is of the same
order of the cost of the optimum solution (Lemma 10). We call blue the groups
containing at least one blue terminal, excluding the boundary such groups. The
set of nodes in blue groups is denoted by K. Eventually (Step 4), the algorithm,
among the remaining (1− β)t terminals T ′ (orange terminals), select the ones (red
terminals) falling in a blue group (i.e., belonging to K). Whp, the number of red
terminals in each group is close to (1 − δ)(1 − β) a logn (Lemma 11). The claim

Online Network Design with Outliers

follows (Theorem 6). The values of constants β, δ, a and c depend on ǫ, and are
fixed later on.

Without loss of generality, we assume that βt and (1 − δ)βk are integral. Let
us denote by ek,t the expected cost of the solution for threshold k over t nodes. In

particular, e(1−δ)βk,βt is the expected cost of the anticipatory solution S̃.

Lemma 10 For any β, δ ∈ [0,1], and for t ≤ n, there exists c > 0 such that for

k > c log(n∆r) we have e(1−δ)βk,βt ≤ 2ek,t.

Proof Consider a sequence T of t random terminals and let S be a solution to T .
Moreover, let K be the set of k selected terminals. Note that by taking a random
subset of βt nodes from T we obtain a random sequence T̃ of βt nodes. From
Chernoff’s bounds the probability that T̃ contains fewer than (1 − δ)βk nodes
from KT is bounded by

Pr(|T̃ ∩K| < (1− δ)βk) ≤ e−βkδ2/2 ≤ (n∆r)
−cβδ2

≤
1

n∆r
, (10)

for c ≥ 1
βδ2 . Hence, with probability 1− 1

n∆r
the OST instance defined by T̃ can be

solved using a solution for T whose expected cost is bounded by ek,t. Otherwise,
the cost of the solution is no higher than ∆rtek,t. Therefore, the expected cost of
the anticipatory solution is bounded by

e(1−δ)βk,βt ≤ ek,t +
1

n∆r
∆rtek,t ≤ 2ek,t.

Lemma 11 For every δ, β, σ ∈ [0, 1], there exist constants a, c > 0 such that for

t ≥ c logn each group contains at least (1−2σ)a(1−δ)(1−β) logn and no more than

(1 + 2σ)a(1− δ)(1− β) logn orange nodes whp.

Proof Let π be the input probability distribution, which is hidden from the algo-
rithm. Virtually partition the leaves of B from left to right into quanta Q1, . . . , Qq,
each containing nodes with probability summing up to 1

βt . As in Section 3.1, we
allow the subdivision of nodes to obtain these quanta. Observe that quanta are
defined in such a way that the expected number of azure nodes in each of them is
1.

From Chernoff’s bounds we get that for each σ there exist sufficiently large
values of a, c such that for t ≥ c logn whp all sets of (1+σ)(1−δ)β a logn consecutive
quanta contain at least (1−δ)β a logn azure nodes and no set of (1−σ)(1−δ)β a logn
consecutive quanta contains more than (1 − δ)β a logn azure nodes. Hence, whp,
every group Vi consists of at least (1 − σ)(1 − δ)β a logn quanta and of at most
(1 + σ)(1 − δ)β a logn quanta. In expectation we get 1−β

β orange nodes in each
quantum. Again from Chernoff’s bounds we obtain that each group contains at
least (1− 2σ)(1− δ)(1− β) a logn and no more than (1 + 2σ)(1− δ)(1− β) a logn
orange nodes whp.

Theorem 6 For every ǫ > 0 there is a choice of δ, β, σ ∈ [0,1] and a, c > 0 such that,

for k ≥ c logn, Algorithm outost-large-unk connects at least (1−ǫ)k nodes whp. The

expected cost of the solution is O(log2 n) times the expected cost of the optimum offline

solution.

Aris Anagnostopoulos et al.

Proof We next assume that δ, β and σ are sufficiently small, and that a and c

are sufficiently large. There are (1− δ)βk blue terminals and each group contains

exactly (1−δ)aβ logn blue terminals, so the number of blue groups is (1−δ)βk
a(1−δ)β logn−

2 = k
a logn − 2. By Lemma 11, the numer of red nodes is whp at least

(1−2σ)(1−δ)(1−β) alogn

(

k

a logn
− 2

)

≥ (1−2σ)(1−δ)(1−β)(1−
2a

c
)k ≥ (1−ǫ)k.

When the number of orange terminals in each group is less than (1 + 2σ)(1−
δ)(1−β) a logn = O(logn), we can bound the cost of the algorithm as in Lemma 5
by O(log2 n) times the expected cost of the optimum solution. Otherwise, we can
bound the worst case cost of the solution by ∆rtek,t. Making the probability of

the latter event less than 1
∆rn

, we can bound the total expected cost by O(log2 n)
times the expected cost of the optimal solution.

6 Acknowledgments

We would like to thank the anonymous reviewers of both this as and the conference
version, for their constructive comments.

References

1. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Sankowski, P.: Online network design
with outliers. In: ICALP, pp. 114–126 (2010)

2. Azar, P.D., Kleinberg, R., Weinberg, S.M.: Prophet inequalities with limited information.
In: SODA, pp. 1358–1377 (2014)

3. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem
with applications. In: APPROX ’07/RANDOM ’07, pp. 16–28 (2007)

4. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and gen-
eralized secretary problems. SIGecom Exchanges 7(2), 1–11 (2008). DOI
http://doi.acm.org/10.1145/1399589.1399596

5. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mech-
anisms. In: SODA, pp. 434–443 (2007)

6. Bartal, Y.: On approximating arbitrary metrics by tree metrics. In: STOC, pp. 161–168
(1998)

7. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Uni-
versity Press, New York, NY, USA (1998)

8. Bruce, F.T., Ferguson, T.S.: Minimizing the expected rank with full information. Journal
of Applied Probability 30(3), 616–626 (1993)

9. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location
problems with outliers. In: SODA ’01, pp. 642–651 (2001)

10. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process. Sov.
Math. Dokl. 4 (1963)

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. Journal of Computer and System Sciences 69(4), 485–497 (2004). URL
http://dx.doi.org/10.1016/j.jcss.2004.04.011

12. Fiat, A., Woeginger, G.J. (eds.): Online algorithms, Lecture Notes in Computer Science,
vol. 1442. Springer-Verlag, Berlin (1998). The state of the art, Papers from the Workshop
on the Competitive Analysis of On-line Algorithms held in Schloss Dagstuhl, June 1996

13. Freeman, P.: The secretary problem and its extensions: a review. International Statistical
Review 51(2), 189–206 (1983)

14. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In:
STOC, pp. 396–402 (2005)

Online Network Design with Outliers

15. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online combina-
torial optimization problems. In: SODA, pp. 942–951 (2008)

16. Gilbert, J.P., Mosteller, F.: Recognizing the maximum of a sequence. Journal of the
American Statistical Association 61(313), 35–73 (1966). DOI 10.2307/2283044. URL
http://dx.doi.org/10.2307/2283044

17. Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions.
In: EC, pp. 71–80 (2004)

18. Hill, T.P., Kertz, R.P.: A survey of prophet inequalities in optimal stopping theory. Con-
temporary Mathematics 125, 191–207 (1992)

19. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Discrete
Mathematics 4(3), 369–384 (1991)

20. Irani, S., Karlin, A.R.: On online computation. In: D. Hochbaum (ed.) Approximation
Algorithms for NP Hard Problems. PWS publishing Co (1996)

21. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM Journal on Computing
30(3), 906–922 (2000)

22. Karlin, S.: Stochastic models and optimal policy for selling an asset. Studies in applied
probability and management science pp. 148–158 (1962)

23. Kennedy, D.: Prophet-type inequalities for multichoice optimal stopping. Stochastic Pro-
cesses and their Applications 24(1), 77–88 (1987)

24. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions.
In: SODA, pp. 630–631 (2005)

25. Kleywegt, A.J., Papastavrou, J.D.: The dynamic and stochastic knapsack problem. Op-
erations Research 46(1), 17–35 (1998)

26. Korula, N., Pal, M.: Algorithms for secretary problems on graphs and hypergraphs. CoRR
abs/0807.1139 (2008)

27. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal on
Computing 30(1), 300–317 (2000)

28. Lindley, D.V.: Dynamic programming and decision theory. Applied Statistics 10, 39–51
(1961)

29. Meyerson, A.: Online facility location. In: FOCS, pp. 426–431 (2001)
30. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY (1994)
31. Raghavan, P.: A statistical adversary for on-line algorithms. In: Online Algorithms, DI-

MACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 53, pp. 79–83 (1991)
32. Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the

traveling salesman problem. SIAM Journal on Computing 6(3), 563–581 (1977)
33. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Com-

munications of the ACM 28(2), 202–208 (1985)
34. Swamy, C., Shmoys, D.B.: Approximation algorithms for 2-stage stochastic optimization

problems. In: FSTTCS, pp. 5–19 (2006)
35. Young, N.E.: On-line paging against adversarially biased random inputs. Journal of Al-

gorithms 37(1), 218–235 (2000)

