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Abstract

We study the long term (steady state) performance of a
simple, randomized, local load balancing technique. We
assume a system of n processors connected by an arbitrary
network topology. Jobs are placed in the processors by a de-
terministic or randomized adversary. The adversary knows
the current and past load distribution in the network and
can use this information to place the new tasks in the pro-
cessors. The adversary can put a number of new jobs in
each processor, in each step, as long as the (expected) total
number of new jobs arriving at a given step is bounded by
λn. A node can execute one job per step, and also partici-
pate in one load balancing operation in which it can move
tasks to a direct neighbor in the network. In the protocol
we analyze here, a node equalizes its load with a random
neighbor in the graph.

We first study the stability of a system running our load
balancing protocol. Clearly, if λ > 1 the system cannot be
stable. We show that for any λ < 1, and any connected
network topology, the system is stable.

When the system is stable, the next performance param-
eter of interest is the waiting time of jobs. We develop high
probability bounds and bounds on the expectation of the
waiting time of jobs in terms of the network topology. In
particular, if the network is an expander graph the expected
wait of a task is O(log n), and the waiting time of a task
that enters the network at an arbitrary time is O(log n) with
high probability.

We contrast these results with the work stealing load bal-
ancing protocol, where we show that, in sparse networks,
the load in the system and the waiting time can be exponen-
tial in the network size.

∗Supported in part by NSF grants CCR-0121154, and DMI-0121495.

1. Introduction

Efficient utilization of parallel and distributed systems
can often depend on dynamic load balancing of individual
tasks between processors. In the dynamic load balancing
problem, we consider a system that is designed to run in-
definitely. New jobs arrive during the run of the system,
and existing jobs are executed by the processors and leave
the system. The arrival of new jobs may not be evenly dis-
tributed between the processors. The task of the load bal-
ancing protocol is to maintain approximately uniform job
load between the processors, and in particular to keep all
processors working as long as there are jobs in the system
waiting for execution.

We assume a simple combinatorial model of load balanc-
ing following a number of earlier studies. The computing
system is represented by a connected, undirected, n-node
graph. Jobs (represented by tokens) have equal execution
time. The load of a node is the number of tokens in its
queue. A processor can execute (or consume) one token per
step, and we assume that it executes the oldest job in its
queue. In each step a processor can also move a number of
jobs from its queue to a queue of an adjacent node in the
network. This abstraction models the case in which the ex-
ecution time of a job is significantly longer than the time it
takes to move a job to an adjacent node. The assumption
that all jobs have equal execution time simplifies the analy-
sis while still capturing the combinatorial complexity of the
load balancing problem in networks.

Dynamic load balancing algorithms have been studied
extensively in experimental settings, demonstrating signif-
icant run-time improvements obtained by relatively simple
load balancing techniques [17, 18]. Rigorous, theoretical
study of load balancing in the past has focused mainly on
static analysis [1, 5, 6, 8, 12, 14], where a set of jobs is
initially placed in the processors and the algorithm needs to
distribute the jobs almost evenly between the processors in
a minimum number of parallel rounds. A number of impor-
tant techniques have been developed in this line of work,



and in particular our work here builds on the static analysis
in [6].

Load balancing, however, is best analyzed in a dynamic
setting that captures the actual application of such proto-
cols. An important step in that direction was taken in [3],
where the work stealing model was shown to be stable on
the complete network. The main tool used in that work was
the stability conditions for ergodic Markov chains, and con-
sequently their stability result holds only for Markovian ad-
versaries. In addition, a number of other works have studied
dynamic load balancing under the assumptions that jobs are
generated by a randomized process that is oblivious to the
current state of the system [7, 9, 10, 16]. Finally, [2, 11]
proved stability results for load balancing on a general net-
work assuming the deterministic adversarial model. The
computational model there is different, assuming that only
one job can traverse an edge per step.

2. Model and Main Results

In this work we address both the stability and the effi-
ciency (waiting time) of the load balancing task. We present
a simple local randomized protocol and analyze its per-
formance on a general n-node network, and under several
adversarial models for the arrival of jobs into the system.
Since we do not use Markov chain techniques in the analy-
sis, our results are not restricted to Markovian adversaries.
That is, the process that injects new jobs into the system can
use information about all previous steps. For concreteness,
we first present our results here for two simple but powerful
adversaries: (1) a deterministic adversary that can add up to
λn new jobs to the network at any step; and (2) a random-
ized adversary that places n generators in the processors in
an arbitrary fashion, and each generator adds one new job
to the processor in which it is placed independently with
probability at most λ < 1.

We first show that under these adversary input models
the system is stable, that is, the expected total load in the
system is bounded with respect to time. The following the-
orem, proven in section 5.3, relates the load in the system
to the network topology, and establishes the stability of the
system. We assume a network G = (V,E) that has n
nodes, maximum degree at most d, and whose Laplacian1

has smallest nontrivial eigenvalue Λ. For convenience, we
define the quantity γ = Λ/16d.

Theorem 2.1. The system is stable and as time tends to in-
finity the expected total load in the system is O(γ−1n ln n).
If the system starts with no load, the limit is not required.

1Let A denote the adjacency matrix of a graph G, and let D = (dij),
where dij is the degree of node i if i = j, and is 0 otherwise. The
Laplacian of G is the matrix L = D − A. The eigenvalues of L are
0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn, and Λ2 = Ω(n−2), if G is connected

Next we address the efficiency of the load balancing pro-
tocol, an important performance parameter that was not ad-
dressed in most previous work. Again we relate the waiting
time of jobs to the topology of the network.

Theorem 2.2. Let W (t) be the wait of a job that arrived at
time t. For any constant c > 1 there is a constant κ = κ(c),
such that

1. lim
t→∞

Pr(W (t) ≤ κγ−1 ln n) ≥ 1 − n−c.

2. lim
t→∞

E[W (t)] = O(γ−1 ln n).

The above bounds hold without the limits if the system starts
with no load.

In particular, for bounded degree regular expanders γ =
Θ(1), and the diameter of the graph is O(log n), so for these
graphs the above result is optimal.

The analysis technique developed here is fairly general
and can be applied to a variety of other adversarial input
models. In Section 6 we discuss its application to the deter-
ministic and stochastic adversaries studied in [4].

We contrast these results with the work stealing load bal-
ancing protocol where we show that in sparse networks the
load in the system and the waiting time can be exponential
in the network size.

3. Protocol

If we were just interested in a stability result we could
use the protocol studied in [6]: in each step nodes are
matched randomly with direct neighbors in the network, and
if node v is matched with node u, they equalize their load
subject to integer rounding. The details of the algorithm are
given below.

1. Matching Phase:

• For each node i

– Node i inserts each incident edge (i, j) into a set S
with probability 1

8 max(di,dj)
, where di is the de-

gree of node i.

– Node i removes edge (i, j) from S if some edge
(i, k) or (j, k) is in S, with k 6= i, j.

• Let the matching M consist of the remaining edges in S.

2. Transfer Phase:

• If (i, j) ∈ M

– i and j equalize their loads so that, say, i gets load
d`t(i)+`t(j)/2e and j gets load b`t(i)+`t(j)/2c,
where `t(i) is the load of processor i in the begin-
ning of the step.

To bound the waiting time of jobs in the system we need
to augment the above protocol with a distributed load ver-
sion of the first-in-first-out queueing discipline. It is not



enough to require that a node consumes the oldest job in
its queue; we also need to consider the jobs’ ages in the
load balancing procedure. In particular, when u and v are
matched they should not only equalize their total load, but
also equalize (up to rounding) the load that they have above
any given age. A simple method to maintain this property
follows.

1. Matching Phase:

• For each node i

– Node i inserts each incident edge (i, j) into a set S
with probability 1

8 max(di,dj)
, where di is the de-

gree of node i.

– Node i removes edge (i, j) from S if some edge
(i, k) or (j, k) is in S, with k 6= i, j.

• Let the matching M consist of the remaining edges in S.

2. Transfer Phase:

• If (i, j) ∈ M

– Let Ji
1, Ji

2, . . . , Ji
`t(i)

(where `t(i) is the load
of processor i in the beginning of the step), and
Jj
1 , Jj

2 , . . . , Jj
`t(j)

be the jobs in the queues of

nodes i and j respectively, where J∗
1 is the oldest

job in node ∗ and J∗
`t(∗)

is the newest.

– Node i sends jobs J i
2, Ji

4, . . . , Ji
2b`t(i)/2c

to node j. Similarly, node j sends jobs
Jj
2 , Jj

4 , . . . , Jj
2b`t(i)/2c

to node i.

– Node i merges jobs J i
1, Ji

3, Ji
5, . . . with

Jj
2 , Jj

4 , Jj
6 , . . . in its queue, so that finally, if

a job J is older than a job J ′, then job J is in the
queue before job J ′.

– Similarly, node j merges jobs Jj
1 , Jj

3 , Jj
5 , . . . with

Ji
2, Ji

4, Ji
6, . . . in its queue, so that finally, if a job J

is older than a job J ′, then job J is in the queue
before job J ′.

4. Analysis of the Static Case

We first analyze our load balancing protocol in a static
setting in which initial load is placed on the n processors,
and load is moved between processors until the loads in all
the processors are approximately equal. No new load is
added to or removed from the system through the execution
of the protocol.

Our analysis of the static case is based on coupling
the execution of our protocol with the nonintegral protocol
studied in [6]. The only difference between the two proto-
cols is that in the nonintegral protocol the load is equally
distributed between the two matched processors with no
rounding. We consider two copies of the network starting
with the same initial distribution, one using our protocol and
the other using the nonintegral protocol. The two processes
are coupled so that they use the same matching at every time
step.

Fix any initial distribution of K tokens to the nodes in V ,
and let ¯̀ = K/n. For each time step t ≥ 0 and u ∈ V , let
`t(v) be the number of tokens at v at the end of step t of
the original, integral protocol, and let `′t(u) be the number
of tokens at u at the end of step t in the nonintegral copy
of the protocol. Also, for each time step t ≥ 0, let Φ′

t =
∑

v∈V (`′t(v) − ¯̀)2. Note that if the total load in the system
is K, then for any t ≥ 0, Φ′

t ≤ K2. It is also easy to see
that Φ′

t is nonincreasing with time.
Recall that γ = Λ/16d. The performance of the noninte-

gral protocol was analyzed in terms of γ in [6]. The relevant
result is the following lemma:

Lemma 4.1. For any t ≥ 0,

E

[

Φ′
t − Φ′

t+1

Φ′
t

]

≥ γ or E

[

Φ′
t+1

Φ′
t

]

≤ 1 − γ,

where the probability space considered is defined by the
matchings chosen in each step.

Adapting the technique in [6] we can prove the following
static load balancing result for the nonintegral copy:

Lemma 4.2. If t ≥ γ−1(2 ln K + c ln n), then the proba-
bility that there is some v ∈ V with |`′t(v) − ¯̀| > 1 is at
most 1/nc.

Proof.

Φ′
t =

Φ′
t

Φ′
t−1

Φ′
t−1

Φ′
t−2

· · ·
Φ′

1

Φ′
0

Φ′
0.

And

E[Φ′
t] = E

[

Φ′
t

Φ′
t−1

Φ′
t−1

Φ′
t−2

· · ·
Φ′

1

Φ′
0

]

Φ′
0.

But the random variable
Φ′

j

Φ′

j−1

depends only on the ran-

dom matching in the j-th iteration, and therefore is inde-

pendent of any other Φ′

i

Φ′

i−1

for i 6= j. Applying Lemma 4.1

we have,

E[Φ′
t] = E

[

Φ′
t

Φ′
t−1

]

E

[

Φ′
t−1

Φ′
t−2

]

· · ·E

[

Φ′
1

Φ′
0

]

Φ′
0

≤ (1 − γ)tΦ′
0

≤ Φ′
0e

−γt

≤ e−c ln n,

where in the last inequality we used the facts that Φ′
0 ≤ K2

and t ≥ γ−1(2 ln K + c ln n). Applying Markov’s inequal-
ity yields Pr(Φ′

t > 1) < n−c.

We will now tie the performance of our protocol to the
performance of the nonintegral copy.

Lemma 4.3. For any t ≥ 0 and any v ∈ V , |`t(v) −
`′t(v)| ≤ t/2, regardless of the chosen matchings and the
rounding decisions in the original protocol.



Proof. By induction on t ≥ 0. If t = 0, then `t(v) = `′t(v)
for every v ∈ V , because no randomness has been intro-
duced into the process yet. For the induction step, sup-
pose that the lemma holds for time t. Choose any v ∈ V .
If v is not matched at time t + 1, then `t+1(v) = `t(v)
and `′t+1(v) = `′t(v), so the lemma holds by the induc-
tion hypothesis. Otherwise, v is matched to some vertex
u at time t + 1. In this case, for any rounding choice,
(`t(u) + `t(v) − 1)/2 ≤ `t+1(v) ≤ (`t(u) + `t(v) + 1)/2.
Also, `′t+1(v) = (`′t(u)+`′t(v))/2. These observations give

|`t+1(v) − `′t+1(v)| ≤
1

2
+

∣

∣

∣

∣

`t(u) + `t(v)

2
−

`′t(u) + `′t(v)

2

∣

∣

∣

∣

≤
1

2
+

1

2
|`t(u) − `′t(u)]|

+
1

2
|`t(v) − `′t(v)|

≤
1

2
·

t

2
+

1

2
·

t

2
+

1

2

=
t + 1

2
,

where the first inequality follows from previous observa-
tions, the second inequality follows from the triangle in-
equality, and the third inequality follows from the induction
hypothesis.

Putting Lemmata 4.2 and 4.3 together yields the follow-
ing theorem.

Theorem 4.1. Let t̂ = γ−1(2 ln K + c ln n). Then, for
any t ≥ t̂, the probability that there is some v ∈ V with
|`t(v) − ¯̀| > 1 + t̂

2 is at most 1/nc.

Proof. We first prove the theorem for the case t = t̂. Re-
gardless of the matchings generated in the first t̂ steps,
|`t̂(v) − `′

t̂
(v)| ≤ t̂/2 for every v ∈ V , by Lemma 4.3.

With probability at least 1 − 1/nc, |`′
t̂
(v) − ¯̀| ≤ 1 for all

v ∈ V , by Lemma 4.2. Adding these inequalities proves the
theorem for the case t = t̂. To extend the result for the case
t > t̂ notice that the sequence {maxv∈V |`t(v) − ¯̀|}t≥t̂ is
nonincreasing.

5. Analysis of the Dynamic Case

We first prove that for any constant λ < 1 and any con-
nected network topology, the load distribution protocol is
stable. We then use the structure developed here to analyze
the waiting time of individual jobs.

We first give the values of some constants that we use
throughout the proof, for easy reference. ε = 1 − λ, c > 3,
c3 = c+8, c1 = 2λ(2c3+1)

(1+ε)−1−λ
, c4 = c1 +c3 +1, c2 = c3 +c4,

c6 = (1 + ε)λc2, c5 = c1 − c6, θ = c5/(c2 + c5).

To simplify the analysis we partition time into epochs,
where each epoch has c2γ

−1 ln n steps. We say that the
system is in a good state at the end of an epoch if the total
load in the system is less than c1γ

−1n ln n, otherwise the
system is in a bad state.

We will define a two state renewal process that alternates
between G and B states. The crux of the proof is to show
that the distribution of the length of a B segment in the re-
newal process stochastically dominates the distribution of
the number of successive epochs in which the original sys-
tem is in a bad state, conditioned on its past. On the other
hand, the distribution of the number of successive epochs
in which the original system is in a good state, conditioned
on its past, stochastically dominates the length of time that
the renewal process is in the G state. Once this relation
is established, the analysis of the renewal process implies
the stability and waiting-time results for the load balancing
protocol.

5.1. Analysis of One Epoch

We say that an epoch is successful if one of the following
conditions hold:

• The total system load is less than c1γ
−1n ln n imme-

diately after the epoch finishes.

• The total load of the system decreases by at least
c5γ

−1n ln n during the epoch.

Lemma 5.1. The probability that an epoch is successful,
conditioned on all events in the past, is at least 1 − 2n−c.

Proof. Assume that the epoch starts at time τ . Let L(t) be
the total load in the system at time t, so L(τ) is the load
at the start of the epoch. For the purpose of the analysis
we split the length of the epoch into two parts. In the first
c3γ

−1 ln n steps we focus on the distribution of load be-
tween the processors, and in the remaining c4γ

−1 ln n steps
we focus on the consumption of load by the processors (al-
though load is consumed throughout the execution by pro-
cessors that have load).

To analyze the distribution of load between the pro-
cessors, we couple the actual execution of the protocol in
the first c3γ

−1 ln n steps with an execution of the proto-
col in a static setting that starts with a total load of exactly
c1γ

−1n ln n. We refer to the actual execution of the proto-
col as the dynamic copy and the static execution as the static
copy.

To formulate the coupling we first color all the tokens
in the dynamic copy at time τ by red and blue. A subset
of the M = min{L(τ), c1γ

−1n ln n} oldest (ties broken
arbitrarily) tokens in the system at time τ is colored red,
and the rest are colored blue.



We now place c1γ
−1n ln n tokens in the static copy so

that each node in the static copy starts the process with at
least as many tokens as the number of red tokens in the cor-
responding node of the dynamic copy.

New tokens that arrive through the execution of the dy-
namic copy are colored blue. Red tokens have higher pri-
ority to be consumed by the node, since they are at the be-
ginning of the queues. The executions of the two copies are
coupled so that they use the same matching in each step.
Note that the load balancing protocol guarantees that if u is
matched with v then, while executing the load balancing in
the dynamic copy, u and v equalize (up to 1) their number
of red tokens. Since the red tokens are at least as old as the
blue ones, we can assume that they are at the heads of the
queues (so in particular they will be consumed before the
blue ones). Finally, we also assume that the rounding de-
cisions in both executions are the same, that is, if one node
receives one more red token and there is a rounding decision
in the static copy, the same node receives the extra token; we
are allowed to do this because the results of Section 4 hold
for an arbitrary rounding procedure.

Lemma 5.2. At any time τ ≤ t ≤ τ + c3γ
−1 ln n the

number of red tokens in each node of the dynamic copy is
bounded by the number of tokens in the corresponding node
in the static copy.

Proof. We prove the claim by induction on t. The claim is
true for t = τ by the construction of the static copy. Assume
that the claim holds after the execution of step t − 1, and
consider the load of node v after the execution of step t.
If v was not part of a matching in step t then the load of the
static copy did not change. The number of red tokens of the
dynamic copy either did not change, or was reduced by 1 if a
red token was consumed. In both cases, using the induction
hypothesis, the number of red tokens in the dynamic copy
after the execution of step t is bounded by the number of
tokens in the static copy of v.

Assume now that node v was matched with node u dur-
ing step t. Let rt(u) and rt(v) be the number of red tokens
in the dynamic copies of u and v after step t, and let `t(u)
and `t(v) be the number of tokens in the static copies of
u and v. After the execution of step t, using the induction
hypothesis (and the fact that red tokens might be consumed
but no tokens are consumed in the static execution), as well
as the fact that we perform the same rounding decisions for
both copies, we show

rt(u) ≤

⌈

1

2
(rt−1(u) + rt−1(v))

⌉

≤

⌈

1

2
(`t−1(u) + `t−1(v))

⌉

= `t(u),

and

rt(v) ≤

⌊

1

2
(rt−1(u) + rt−1(v))

⌋

≤

⌊

1

2
(`t−1(u) + `t−1(v))

⌋

= `t(v).

Applying Theorem 4.1 to the execution of the static copy,
we see that at time τ +c3γ

−1 ln n (the reader can verify that
the condition of Theorem 4.1 holds for t = c3γ

−1 ln n and
K = c1γ

−1n ln n, for sufficiently large n), with probability
at least 1 − n−c no node of the static copy has more than
c3γ

−1 ln n + c1γ
−1 ln n + 1 ≤ c4γ

−1 ln n tokens. Thus,
with the same probability, no node has more than c4γ

−1 ln n
red tokens in the dynamic copy. If the red tokens do not
move in the next c4γ

−1 ln n steps then they are clearly all
consumed during that time interval, since red tokens are
consumed first. If at some step during this interval a red to-
ken moves, then, after that step, the node with the maximum
number of red tokens will either have the same number of
red tokens, or even fewer. So if a red token would have been
consumed if it hadn’t moved, it will be consumed now, as
well. Thus, we have shown that with probability 1− n−c at
least M = min{L(τ), c1γ

−1n ln n} tokens are consumed
in this epoch.

The expected number of new tokens arriving during the
epoch is at most λc2γ

−1n ln n, and by applying a Chernoff
bound we deduce that with probability at least 1 − n−c this
number is bounded by c6γ

−1n ln n = (1+ε)λc2γ
−1n ln n.

We now distinguish between two cases.

1. If L(τ) ≤ c1γ
−1n ln n, then with probability at least

1 − n−c, the initial L(τ) tokens are consumed during
this epoch, and with probability at least 1 − n−c no
more than c6γ

−1n ln n < c1γ
−1n ln n tokens join the

system during this epoch. Thus, with probability at
least 1 − 2n−c the epoch is successful since it ends
with less than c1γ

−1n ln n total load.

2. If L(τ) > c1γ
−1n ln n, then with probability at least

1 − 2n−c at least c1γ
−1n ln n tokens are consumed

during this epoch and no more than c6γ
−1n ln n new

token arrive during this epoch. In this case, the epoch
is successful, since the total load decreases by at least
c1γ

−1n ln n − c6γ
−1n ln n = c5γ

−1n ln n.

Note that the probability space considered here is defined
by the distribution of the matchings performed during this
epoch, and by the arrival of new load (and not by the adver-
sary’s placement of the generators). So, in this probability
space, the event that the epoch is successful is independent
of any event in the past.



5.2. Basic Renewal Theory

In this section we provide some basic background for re-
newal processes, that is needed for the analysis of the pro-
cess. For more information refer for example to [15, Chap-
ter 3].

Let {Xn, n = 1, 2, . . . } be a sequence of nonnegative
independent random variables with a common distribution
function F . Let S0 = 0, and for n ≥ 1, Sn =

∑n
i=1 Xi;

finally define N(t) = sup{n : Sn ≤ t}. The process
{N(t), t ≥ 0} is a Renewal Process. We say that a renewal
occurs at time t, if Sn = t for some n. Since the interar-
rival times Xi are independent and identically distributed, it
follows that after each renewal the process starts over again.

We say that a nonnegative random variable X (or the
corresponding distribution function) is lattice (or periodic)
if there exists a d ≥ 0 such that

∑∞

n=0 Pr(X = nd) = 1.
We are interested in renewal processes that are nonlattice.

Let Z(t) = t − SN(t) be the age at time t, that is, the
time that has elapsed from the last renewal before t un-
til t. We can compute the distribution of Z(t) as t → ∞
by Lemma 5.3 (see [15, Corollary 3.13]).

Lemma 5.3. If F is not lattice, then

lim
t→∞

Pr(Z(t) ≤ z) =
1

E[X1]

∫ x

0

[1 − F (y)]dy.

An Alternating Renewal Process can be in one of two
states, on or off. Initially, it is on and it remains on for a
time X1; it then goes off and remains off for a time Y1;
it then goes on for a time X2, then off for a time Y2, and
so on. We assume, moreover, that the Xi’s have the same
distribution, that the Yi’s have the same distribution, and
that all the Xi’s and the Yi’s are independent of each other.
Let P (t) be the probability that the system is on at time t.
Then, Lemma 5.4 (repeating [15, Proposition 3.11]) gives
the probability that at some time, in the limit, the system is
found in state on.

Lemma 5.4. If E[X1 + Y1] < ∞ and if X1 + Y1 is nonlat-
tice, then

lim
t→∞

P (t) =
E[X1]

E[X1] + E[Y1]
.

5.3. Stability

We now define the two state renewal process that domi-
nates the execution of our protocol. The process alternates
between states G and B. Let T (G) be the length of a G
segment and T (B) be the length of a B segment. To ap-
ply Lemmata 5.3 and 5.4 we define these distributions on
continuous time. For any x ≥ 1, let

• Pr(T (G) ≥ x) = (1 − 2n−c)(x−1) and

• Pr(T (B) ≥ x) = n−θ(c−1)(x−1).

Note that these functions are monotonically decreasing
in x,

E[T (G)] = 1 +

∫ ∞

1

(1 − 2n−c)(x−1)dx

≥

∞
∑

i=1

(1 − 2n−c)(i−1) =
1

2
nc,

and

E[T (B)] = 1 +

∫ ∞

1

n−θ(c−1)(x−1)dx

≤ 1 +

∞
∑

i=1

n−θ(c−1)(i−1) = 1 +
1

1 − n−θ(c−1)
.

Now consider the sequence of epochs in the execution of
our protocol. Recall that at the end of an epoch the system
is in a good state if the total load in the system is bounded
by c1γ

−1n ln n, otherwise the system is in a bad state.

Lemma 5.5. Let T (good) be the distribution of the number
of epochs in a given segment in which the system is in a
good state, and T (bad) be the number of epochs in a given
segment in which the system is in a bad state. Conditioned
on all events before the start of the segment, for any i ≥ 1,

1. Pr(T (good) ≥ i) ≥ Pr(T (G) ≥ i),

2. Pr(T (bad) ≥ i) ≤ Pr(T (B) ≥ i).

Proof. If the total load in the system at the start of an epoch
is less than c1γ

−1n ln n, and the epoch was successful, then
the total load in the system at the end of that epoch is also
less than c1γ

−1n ln n. Therefore, once the system is in a
good state it stays in a good state until at least the first
unsuccessful epoch. The probability that an epoch is suc-
cessful, conditioned on the past, is at least 1 − 2n−c, by
Lemma 5.1. Thus,

Pr(T (good) ≥ i) ≥ (1 − 2n−c)(i−1) = Pr(T (G) ≥ i).

To bound the distribution of T (bad) we observe that if
a segment of i epochs begins when the system is in a good
state, and each of those i epochs finishes when the system
is in a bad state, then at least θi of those i epochs must
have been unsuccessful. Otherwise, the total change in the
system load over the course of those i epochs is at most
θic2n ln n − i(1 − θ)c5n ln n ≤ 0, which implies that the
last epoch finishes with the system being in a good state,
yielding a contradiction.



The probability of at least θi unsuccessful epochs in a
sequence of i epochs, for n large enough, is bounded by

(

i

θ(i − 1)

)(

2

nc

)θ(i−1)

≤

(

ei

θ(i − 1)

)θ(i−1) (
2

nc

)θ(i−1)

=

(

n−c ·
2e

θ
·

i

i − 1

)θ(i−1)

≤ n−θ(i−1)(c−1).

Thus, for sufficiently large n,

Pr(T (bad) ≥ i) ≤ n−θ(c−1)(i−1) = Pr(T (B) ≥ i).

We now use the stochastic dominance proven in
Lemma 5.5 to analyze the performance of our protocol us-
ing renewal theory. Let E(t) be the event “the system is in a
bad state at time t.” Then Lemmata 5.4 and 5.5 along with
the fact that T (B) and T (G) have continuous distribution
functions and therefore are not lattice, yield

Lemma 5.6.

lim
t→∞

Pr(E(t)) ≤
E[T (B)]

E[T (B)] + E[T (G)]
≤

E[T (B)]

E[T (G)]

≤ 3n−c,

for large enough n.

We now turn to bounding the expected load in the system
at time t, thus establishing the fact that the system is stable.

Let L(t) denote the total load in the system at time t.

E[L(t)] = E[L(t)|E(t)]Pr(E(t)) + E[L(t)|E(t)]Pr(E(t))

≤ c1γ
−1n ln n + E[L(t)|E(t)]Pr(E(t)),

(1)

where in the inequality we use the fact that in a good state
the load of the system is bounded by c1γ

−1n ln n.
To compute

E[L(t)|E(t)] =

∞
∑

x=1

Pr(L(t) ≥ x | E(t))

we need a bound on the probability Pr(L(t) ≥ x | E(t)).
Observe that if L(t) ≥ ic2γ

−1n ln n then the system must
have been in a bad state for at least the last i − 1 epochs.
Otherwise, by the beginning of the current epoch, the load
would have been at most (i − 2)c2γ

−1n ln n, so at time t
the load would be at most (i − 1)c2γ

−1n ln n. Thus, we
need a bound on Z(t), the time from the start of the bad
segment until t. Let Z ′(t) be the corresponding random
variable in the renewal process, that is, the time from the
start of a B segment until t, conditioned on t being in a B

segment. With the same argument as in Lemma 5.5, we
have

Pr(Z(t) ≥ i − 1 | E(t)) ≤ Pr(Z ′(t) ≥ i − 1 | E(t)).

Using that fact, and applying Lemma 5.3, and using again
the fact that T (B) and T (G) have continuous distribution
functions and therefore are nonlattice, we compute

lim
t→∞

Pr(L(t) ≥ ic2γ
−1n ln n | E(t))

≤ lim
t→∞

Pr(Z(t) ≥ i − 1 | E(t))

≤ lim
t→∞

Pr(Z ′(t) ≥ i − 1 | E(t))

=
1

E[T (B)]

∫ ∞

i−1

Pr(T (B) ≥ x)dx

≤ n−θ(c−1)i

where in the last inequality we used the fact that (trivially)
E[T (B)] ≥ 1. Therefore, Relation (1) and Lemma 5.6 give,
for sufficiently large n,

lim
t→∞

E[L(t)] ≤ c1γ
−1n ln n

+ 3n−cc2γ
−1n ln n

∞
∑

i=1

n−θi(c−1)

≤ c1γ
−1n ln n + 3n−cc2γ

−1n ln n

≤ (c1 + 1)γ−1n ln n.

Thus, we prove:

Theorem 5.1. The system is stable and as time tends to in-
finity the expected total load in the system is O(γ−1n ln n).

Note that, given that the system started with no load, or
even just in a good state, the above bound holds for any t,
not only in the limit. To see this, assume that at some point
before time t the system had no more than c1γ

−1n ln n load.
Then the system can have load c1γ

−1n ln n + ic2γ
−1n ln n

at time t only if the system was in a bad state in the last i
epochs up to time t. The probability of that event is bounded
by n−θi(c−1). Thus,

E[L(t)] ≤ c1γ
−1n ln n + c2γ

−1n ln n
∑

i≥1

n−θi(c−1)

= O(γ−1n ln n).

5.4. Waiting Time

Having established that the system is stable, the next im-
portant performance parameter is the waiting time of a job
from when it enters the system until it is executed. For a
given task that entered the system at time t, let W (t) be the
number of steps until the task is executed.



The proof of Lemma 5.1 shows that if an epoch starts
when the system is in a good state, (i.e., with less than
c1γ

−1n ln n load), and the execution of that epoch is suc-
cessful, then all the load that was in the system before the
epoch started is consumed during the epoch. Thus, if the
system is in a good state at time t, and both the current and
the next epoch are successful, then W (t) ≤ 2c2γ

−1 ln n.
By summing the failure probabilities we prove that

lim
t→∞

Pr(W (t) ≤ 2c2γ
−1 ln n) ≥ 1 − 7n−c, (2)

for large enough n, and the limit can be removed if the sys-
tem starts in a good state.

Next we turn to computing E[W (t)]. The first problem
we have to address is that there may be unsuccessful epochs
during a good segment. The probability that t is in a good
segment but the next epoch is unsuccessful is bounded by
2n−c. To simplify the computation, we assume that if an
unsuccessful epoch occurs during a good segment, then the
system switches to a bad state, and add 2n−c to the proba-
bility that the system is in a bad state at time t. To bound
the waiting time when a job arrives during a bad state, we
note that the waiting time of a job is always bounded by the
total load of the system at the time it arrives. If the system
is in a bad state at time t, and the system switched to a bad
state i epochs back, then the load of the system at time t is
bounded by c1γ

−1n ln n + ic2γ
−1n ln n.

If we let F(t) denote the event “the system is in a good
state at time t, and both the current and the next epochs are
successful,” then by Lemma 5.5 and Relation (2), we have
that

lim
t→∞

E[W (t)] ≤ lim
t→∞

(

2c2γ
−1 ln n · Pr(F(t))

+ E[L(t) | F(t)] · Pr(F(t))
)

≤ 2c2γ
−1 ln n +

(

c1γ
−1n ln n

+ c2γ
−1n ln n

∞
∑

i=1

n−θi(c−1)

)

· 7n−c

= O(γ−1 ln n).

Where again the limit can be removed if the system starts in
a good state. We have proven the following theorem:

Theorem 5.2. Let W (t) be the wait of a job that arrived at
time t.

1. lim
t→∞

Pr(W (t) ≤ 2c2γ
−1 ln n) ≥ 1 − 7n−c.

2. lim
t→∞

E[W (t)] = O(γ−1 ln n).

The above bounds hold without the limits if the system starts
in a good state.

6. Other Adversarial Models

We now discuss application of our proof technique to
more general input adversarial models. In particular, we
consider the type of adversaries proposed by Borodin et al.
in [4]. Following that work we define a (w, λn) input ad-
versary as a process that inserts jobs in the system subject to
the condition that for every sequence of w consecutive time
steps, the total inserted load is at most λnw. This allows
the adversary to insert more jobs at some time steps, as long
as the total load in windows of size w is bounded. An ex-
tension is a (w, λn) stochastic adversary, whose input load
is a random variable, with the property that the expected in-
jected load during any sequence of w consecutive time steps
is bounded by λnw, and additionally, for some p > 2 the p-
th moment of the new load is bounded (see [4] for detailed
discussion).

We have shown that our system is stable for a window
of size w = 1. In the next theorem we generalize it to any
window size.

Theorem 6.1. Consider any window size w and some
(w, λn) deterministic or stochastic adversary. Then our
process is stable for that adversary, that is, there exists
some finite Ξ such that for any time t the expected load is
bounded: E[L(Yt)] < Ξ.

Proof. We will prove the stability by showing that the ex-
pected load of the system decreases if it is above some
threshold depending on w. We make use of Theorem 6.2
which appeared in [4, Lemma 2], and follows from [13,
Theorem 1].

Theorem 6.2. Let X1, X2, . . . be a sequence of nonnega-
tive random variables satisfying the following properties:

1. There exist positive constants α and β such that for all
x1, . . . , xi with xi > β,

E[Xi+1 − Xi|X1 = x1, . . . , Xi = xi] ≤ −α

2. There exists a positive constant ξ and a p > 2 such
that for all x1, . . . , xi

E[|Xi+1 − Xi|
p|X1 = x1, . . . , Xi = xi] ≤ ξ.

Then there exists Ξ = Ξ(X0, α, β, ξ) and t0 such that for
all t ≥ t0, E[Xt] ≤ Ξ.

Note that all the constants in the above theorem can be
functions of the system parameters n and γ.

We now prove the result for a window of size w =
c2γ

−1 ln n; for longer w we consider longer epochs—the
details will appear in the full paper. So we consider a win-
dow of size w = c2γ

−1 ln n and we verify the conditions



of Theorem 6.2. The second condition is satisfied since
|Xi+1 − Xi| is bounded by the new load during the epoch,
plus at most n · w(the maximum consumed load during the
epoch), and the model assumes that for some p > 2 the new
load has a bounded p-th moment. For the first condition,
we will argue similarly to the proof of Lemma 5.1. There,
by using the static-case result, we showed that if the initial
load is greater than c1γ

−1n ln n, then with probability at
least 1−n−c the number of consumed jobs during the epoch
is at least c1γ

−1n ln n, independently of the newly-arrived
jobs. On the other hand, for any stochastic adversary, the
expected number of new jobs is λc2γ

−1n ln n.
Hence, if Lt = `t > c1γ

−1n ln n, we let β =
c1γ

−1n ln n, and S denote the event “the number of con-
sumed jobs during the epoch from t until t + c2γ

−1 ln n is
at least c1γ

−1n ln n,” and we compute

E[Lt+c2γ−1 ln n − Lt|L1 = `1, . . . , Lt = `t]

= E[Lt+c2γ−1 ln n − Lt|L1 = `1, . . . , Lt = `t,S] · Pr(S)

+ E[Lt+c2γ−1 ln n − Lt|L1 = `1, . . . , Lt = `t,S] · Pr(S)

≤ −c1γ
−1n ln n + λc2γ

−1n ln n + c2γ
−1n ln n · n−c

< −(c1 − λc2)γ
−1n ln n + 1

By letting Xi = Lic2γ−1n ln n, we can conclude that there
exists some Ξ large enough so that for any t sufficiently
large E[L(Yt)] ≤ Ξ.

Similarly to Subsection 5.4 we can use this technique to
bound the waiting time as well. In the case of a stochas-
tic adversary the time will depend on the moments of the
distribution. The details are left for the full paper.

7. Work Stealing on Sparse Networks

In the work stealing load balancing protocol, nodes initi-
ate load balancing steps only when their queues are empty.
Work stealing was shown in [3] to be stable on the complete
network for any constant λ < 1. For comparison to our re-
sult, we show here that when applied to sparse networks, the
work stealing protocol is either unstable or stable but with
expected load exponential in the network size.

Consider first a deterministic adversary that can add in
each step up to λn tokens to the n-node network. Let v be
a node in the network with constant degree d. In each step,
the adversary puts λn−d tokens in v and one token in each
of its neighbors. Since the queue of the d neighbors of v is
never empty, v never participates in a load balancing step,
and so its load increases (unboundedly) by λn − d − 1 in
each step.

Consider now the randomized adversarial input process
studied in [3]. Here the adversary can place n generators

among the nodes of the network in each step, and each gen-
erator adds one new token to the queue of its location in-
dependently with probability λ, all the generators being in-
dependent. Assume again a node v with constant degree d,
and assume that in each step the adversary places exactly
m = bn/(d + 1)c generators at v and at least m generators
at each of its neighbors. Let `v(t) denote the load at v at
time t.

Define p = (d+1+m/(1−λ))e−λm, and assume that n
is large, so that p < 1 (we use this fact later). Fix some time
step t ≥ 1. If the load at v does not increase during this
time step, then either the generators at some neighbor of v
did not produce any load (in which case v gave away half
of its load), or the generators at v produced at most one unit
of load (so the load of v either stays the same or decreases
by one). Thus,

Pr(`v(t) − `v(t − 1) < 1) ≤ d(1 − λ)m + (1 − λ)m

+ λm(1 − λ)m−1

≤ p,

(3)

conditioned on all past events.
We now construct a random sequence {`′v(t)}t≥0 as fol-

lows. `′v(0) = 0 and for t > 0,

`′v(t) =

{

`′v(t − 1)/2 with probability p,

`′v(t − 1) + 1 with probability 1 − p,

with all the random choices being independent.
Using the recursion

E[`′v(t)] =
p

2
E[`′v(t − 1)] + (1 − p)(E[`′v(t − 1)] + 1),

we compute

E[`′v(t)] =
2(1 − p)

p

[

1 −
(

1 −
p

2

)t
]

,

and

E[L(t)] ≥ E[`v(t)] ≥ E[`′v(t)]

=
2(1 − p)

p

[

1 −
(

1 −
p

2

)t
]

,

To see why the second inequality holds, notice that by Re-
lation 3 the load of node v decreases with probability at
most p. Moreover, if the load of node v decreases, the new
load will be at least half of the old load, hence each load
`v(t) stochastically dominates the corresponding `′v(t). The
equality follows from induction on t and properties of con-
ditional expectation.



Using the fact that p < 1, we get

lim
t→∞

E[L(t)] ≥
2(1 − p)

p

= 2

(

1

p
− 1

)

=
2(1 − λ)eλb n

d+1c

(d + 1)(1 − λ) + λ
⌊

n
d+1

⌋ − 2.

So in the limit the expected total load in the system is at
least exponential in the network size, n.
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