
Applied Probability Trust (6 October 2010)

PROBABILISTIC ANALYSIS OF THE K-SERVER PROBLEM ON THE CIRCLE

ARIS ANAGNOSTOPOULOS,∗ Sapienza University of Rome

CLÉMENT DOMBRY,∗∗ Université de Poitiers

NADINE GUILLOTIN-PLANTARD,∗∗∗ Université de Lyon

IOANNIS KONTOYIANNIS,∗∗∗∗ Athens University of Economics & Business

ELI UPFAL,∗∗∗∗∗ Brown University

Abstract

We consider a stochastic version of the k-server problem, in which k servers

move on a circle to satisfy randomly generated requests. The requests are

independent and identically distributed, according to an arbitrary distribution

that is either discrete or continuous. The cost of serving a request is the

distance that a server needs to travel in order to reach the request. The goal is

to minimize the steady-state expected cost induced by the sequence of requests.

We study the performance of a greedy strategy focusing, in particular, on its

convergence properties and the interplay between the discrete and continuous

versions of the process. Finally, we show that in the case of k = 2 servers the

greedy policy is optimal.

Keywords: k-server; probabilistic analysis; on-line algorithms

2000 Mathematics Subject Classification: Primary 60J05

Secondary 68W40

∗ Postal address: Department of Informatics and System Sciences, Sapienza University of Rome, Via Ariosto 25, 00185 Rome,

Italy. aris@dis.uniroma1.it.
∗∗ Postal address: Laboratoire de Mathématiques et Applications, CNRS UMR 6086, Université de Poitiers, Téléport 2 - BP

30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France. clement.dombry@math.univ-poitiers.fr.
∗∗∗ Postal address: Université de Lyon ; Université Lyon 1 ; INSA de Lyon, F-69621 ; Ecole Centrale de Lyon ; CNRS, UMR5208,

Institut Camille Jordan, 43 bld du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France, e-mail: nadine.guillotin@univ-

lyon1.fr.
∗∗∗∗ Postal address: Department of Informatics, Athens University of Economics & Business, Patission 76, Athens 10434,

Greece. yiannis@aueb.gr.
∗∗∗∗∗ Postal address: Computer Science Department, Brown University, Providence RI 02906, US. eli@cs.brown.edu.

1

1. Introduction

The k-server problem first posed by Manasse, McGeoch, and Sleator [6, 7] is central to the study of on-line

algorithms. Let k ≥ 2 be an integer and consider a metric space M = (M,d) where |M | > k is a set of

points and d is the metric over M . A k-server problem is defined by a sequence of requests, r1, r2, . . . , where

each ri ∈ M . A k-server algorithm controls k servers that reside in, and move between, points of M . A

request ri is satisfied when the algorithm moves a server to that point. The algorithm must satisfy request

i before it sees any future request. The cost of serving a sequence of requests is the sum of the distances

that servers have to traverse in order to satisfy these requests. The k-server problem models a number of

important on-line computation problems such as paging and disk-scheduling [2]. So far, most studies of the

k-server problem have focused on the competitive analysis of the problem, culminating in Koutsoupias and

Papadimitriou’s [5] seminal results, establishing a worst-case competitive ratio of Θ(k) for the problem.

An alternative approach to the study of on-line algorithms is probabilistic analysis. Instead of taking

a worst-case approach, we assume that the input (in this case, the sequence of requests) follows some

distribution, and we analyze the expected cost of a given algorithm over this input distribution. As in the

worst-case scenario, the algorithm satisfies each request without information about the sequence of future

requests, and we are interested in algorithms that are not tuned to a particular input distribution.

1.1. The Stochastic Model

In this work we study a stochastic version of the k-server problem in which the k mobile servers move

on the circle of circumference k, which we denote by T and identify with the interval [0, k). Throughout,

we focus on the long-term behavior of the process induced by the following greedy algorithm: “at each step

i, send the server that is closest to the request ri.” We analyze and compare two different models; in the

continuous model, requests arrive anywhere on the circle T = [0, k) according to some distribution with a

continuous density; in the discrete case, requests may arrive only at ` discrete stations, where k < ` < ∞,

and the positions of the stations are in T` = {ik/` ; 0 ≤ i ≤ ` − 1} ⊂ T. The circle T is endowed with the

distance,

d0(x, y) = min{|x− y| , |x− y − k| , |x− y + k|},

and T` with the induced distance.

We assume that the requests are independent and identically distributed (i.i.d.) according to a distribution

supported either on T (in the continuous case) or on T` (in the discrete case); their common distribution is

denoted either by µ or µ`, respectively. For the sake of simplicity, we will always assume that µ has a strictly

positive density with respect to Lebesgue measure on T and that µ` has positive mass on all points x ∈ T`.

In the continuous setting, we can model the process as a Markov chain (Sn)n≥0 evolving on the state

2

space,

Σ = {p = (p0, p1, . . . , pk−1) ∈ T
k; pj ≤ pj+1 ≤ · · · ≤ pk−1 ≤ p0 ≤ p1 ≤ · · · ≤ pj−1, for some j}.

Here pi corresponds to the position of the ith server. In the discrete setting, the servers move only within

the ` stations, and accordingly the state space is Σ` = Σ ∩ T
k
` . To avoid ambiguity, in the case when the

two closest servers to a given request ri are equidistant from ri, we specify that the greedy algorithm moves

the server which is to the left of the request (where the circle is oriented in the usual way). In addition,

if two or more servers are on the same location (i.e., we have pi = pi+1 = · · · = pj = x for i < j, or

pi = pi+1 = · · · = pk−1 = p0 = · · · = pj = x for i > j), and the new request is closer to x than to any other

server, we choose server j if the request is on the left of x and server i if it is on the right of x. Note that,

under these assumptions, the relative order of the servers on the circle does not change, and that, if at some

point all the servers are on different locations, then they will never be on the same location in the future of

the process.

The performance of the greedy algorithm is measured in terms of the total distance travelled by the servers

to fulfill the requests. Let d be the distance on T
k defined by

d(p,p′) =

k−1
∑

i=0

d0(pi, p
′
i).

Recalling that Sn denotes the position of the servers after satisfying the nth request, the cost of the nth

request is given by Cn = d(Sn−1, Sn). We are interested in the asymptotic behavior of the average cost over

a run of N requests, namely,

1

N

N
∑

n=1

Cn =
1

N

N
∑

n=1

d(Sn−1, Sn).

2. Results

2.1. Convergence to a Stationary Distribution

In the discrete setting, since requests may arrive at all stations with positive probability, the finite state

space Markov chain (Sn)n≥1 has the following structure; let,

Σ̃ = {p = (p0, p1, . . . , pk−1) ∈ T
k; pj < pj+1 < · · · < pk−1 < p0 < p1 < · · · < pj−1, for some j},

and Σ̃` = Σ̃ ∩ T
k
` ; then every state in Σ` \ Σ̃` is transient and Σ̃` is the unique closed communication class

and it is aperiodic. As a consequence (see, for example, [9]), the Markov chain (Sn) has a unique stationary

distribution, say π`, supported on Σ̃`, the distribution of the chain (Sn) converges to π` exponentially fast,

and the law of large numbers holds. In particular, the average cost over N steps converges almost surely to

the mean cost under π`, as N →∞.

3

The main contribution of this work is to obtain similar results in the continuous case. Under the

assumption that µ has a positive density, we show in Theorem 1 that the process has a unique stationary

distribution π, to which it converges exponentially fast.

Theorem 1. Assume that µ has a density with respect to the Lebesgue measure on T = [0, k) that is

uniformly bounded away from 0. Then the Markov chain (Sn)n≥0 on Σ induced by the greedy algorithm

has a unique stationary distribution π, and:

• for all n ≥ 1, sup
A,s0

|P (Sn ∈ A|S0 = s0) − π(A)| ≤ c1e
−c2n, the supremum being taken over all

measurable sets A of Σ and all s0 ∈ Σ;

•
1

N

N
∑

n=1

Cn → Eπ(C) with probability 1, as N →∞;

• Pr

(

1

N

N
∑

n=1

Cn > Eπ(C) + ε

)

≤ c3e
−c4(ε)n for all ε > 0, n ≥ 1,

where the finite constants c1, c2, c3, c4(ε) may depend on k but not on n; c2 > 0 and c4 = c4(ε) is strictly

positive for all ε > 0; Ci = d(Si−1, Si) is the cost of the ith request; and Eπ(C) is the expected value of the

one-step cost for a stationary version of the chain.

In view of the well-known convergence results in [8] and the more recent large deviations estimates in [4],

in order to prove the theorem it suffices to verify that the Markov chain fulfills Doeblin’s condition; see [8,

page 391]. The proof is given in Appendix A.

In addition to the results of the theorem, since the cost function is bounded by definition, the Doeblin

(or uniform ergodicity) property implies finer asymptotic results for the convergence of the averaged cost

1
n

∑N
n=1 Ci. In particular, it is asymptotically normal, and the convergence to normality can be further

refined via an Edgeworth expansion. Moreover, the exponential bound on the excess-cost probability can

be sharpened to a precise asymptotic formula along the lines of the Bahadur-Rao refinement to the classical

large deviations principle [3]. See [4] for details.

2.2. Convergence of the Discrete Model to the Continuous One

When the number of stations ` in the discrete model is large, we naturally expect that it should be

possible to approximate the continuous model by an appropriately defined version of the discrete one. A

precise asymptotic version of the above statement is established in the following proposition.

Proposition 1. Suppose that {µ`} is a sequence of request distributions on T`, ` ≥ 1, such that µ` → µ

weakly, as ` goes to infinity, for some continuous request distribution µ on T. Then, the corresponding

sequence {π`} of stationary distributions for the discrete chains induced by each of the µ` also satisfies

π` → π weakly, as `→∞, where π is the stationary distribution of the continuous chain induced by µ.

4

Proof. If the servers are in position p ∈ Σ and a request arrives at site x ∈ T, then the new position of

the servers after service is

Q(p, x) = (p0, . . . , pi−1, x, pi+1, . . . , pk−1) (2.1)

where pi is the nearest point of x (and the left such point in case of equality). The continuity set of the map

Q is exactly the set of points (p, x) such that there is a unique point pi nearest to x.

Now suppose the sequences {µ`} and {π`} are as in the statement of the proposition. According to

Theorem 2 below, the stationary measures π` converge weakly to π, and so do the corresponding expected

costs. Note that the assumptions of the theorem are always satisfied when µ is diffuse and, in particular,

when µ has a density. �

Theorem 2. Let CQ ⊂ Σ × T denote the continuity set of the map Q defined in equation (2.1). Assume

that the Markov chain (Sn)n≥0 associated with the request distribution µ has a unique invariant probability

measure π, and that, for every probability measure π′ on T
k,

(π′ × µ)(CQ) = 1.

Then π` → π weakly and Eπ`
(C)→ Eπ(C), as ` → ∞, where Eπ`

(C) and Eπ(C), denote the expected costs

under the stationary versions of the corresponding chains, respectively.

Proof. The only point of possible concern is that the map (p, x) 7→ Q(p, x) may not be continuous

everywhere, unless the minimum distance between x and p is attained at a single point.

The invariance of π` implies that Q maps the measure π` × µ` to π`. Moreover, the state space Σ is

compact, and hence the sequence (π`) is tight. Let π′ be an accumulation point of (π`) and let (π`i)i≥0 be

a subsequence of (π`) converging to π′. By taking the limit i → ∞ in Q(π`i × µ`i) = π`i , we obtain that

Q(π′ × µ) = π′, that is, π′ is invariant for (Sn); the hypothesis (π′ × µ)(CQ) = 1 is used here to apply the

continuous mapping theorem [1]. By the uniqueness of the invariant measure (Theorem 1) we have that

π′ = π. Since we have a unique accumulation point, the convergence of the sequence (π`) follows, completing

the proof. �

We provide further insight into the correspondence between the discrete and the continuous models by

constructing a coupling between the corresponding chains. Consider the continuous model with a sequence

of requests (rn)n≥1 that are i.i.d. with continuous distribution µ on T. Let (Sn)n≥0 denote the associated

Markov chain on Σ and let Θ` : T→ T` be the discretization map defined by,

Θ`(x) =
k

`

⌊

`

k
x

⌋

.

Similarly, let (r`n)n≥1 = (Θ`(rn))n≥1 denote the corresponding discretized requests, so that the sequence

(r`n) is also i.i.d., with discrete distribution µ` given by µ`(x) = µ([x, x + k/`)) for x ∈ T`. We consider the

Markov chain (S`
n) defined by the initial state S`

0 = Θ`(S0) and the sequence of requests (r`n)n≥1. Note that

5

S`
n is in general not the same as Θ`(Sn). We assume that ` is large enough so the image under Θ` of the

initial positions of the k servers is a set of k distinct points.

As the number of stations ` goes to infinity, Θ` converges to the identity map and µ` converges weakly to

µ, so we naturally expect that the Markov chains (S`
n) and (Θ`(Sn)) will also be “close” for large `. In order

to quantify this closeness, we examine the (de-)coupling time,

T` = inf{n ≥ 1;S`
n 6= Θ`(Sn)}.

Our next result is the following:

Proposition 2. Let δ(ε) = sup{µ([x, x + ε]) ; x ∈ T} for ε > 0, and assume that δ(k/`) is strictly positive.

Then the distribution of T` stochastically dominates a geometric distribution with parameter kδ(k/`), i.e.,

Pr(T` > n) ≥

(

1− kδ

(

k

`

))n

.

As a consequence, E(T`) ≥ (k δ(k/`))−1. Moreover, if density of µ is uniformly bounded above by some

constant c′ > 0, then δ(ε) ≤ c′ε for all ε > 0, and E(T`) ≥ `/(c′k2).

Proof. The stochastic domination is a simple consequence of the following estimate,

Pr(S`
n+1 = Θ`(Sn+1)|S

`
n = Θ`(Sn)) ≥ 1− k δ

(

k

`

)

,

which we show next. Assume that at time n we have S`
n = Θ`(Sn). For 0 ≤ i ≤ k − 1, let q`n(i) be the

midpoint between the ith and the (i+1)st server in the discrete process (S`
n)n≥0, i.e., q`n(i) = (S`

n(i) +

S`
n(i + 1))/2, and let qn(i) denote the corresponding midpoint in the continuous chain (Sn)n≥0, that is,

qn(i) = (Sn(i) + Sn(i + 1))/2. We now show that for all i we have q`n(i) ≤ qn(i) and that qn(i) ≤ q`n(i + 1)

(where ≤ should be interpreted as “is not on the right of”), which implies that the order of the midpoints on

the circle is

· · · ≤ q`n(i− 1) ≤ qn(i− 1) ≤ q`n(i) ≤ qn(i) ≤ q`n(i + 1) ≤ qn(i + 1) ≤ · · · .

First note that, for all i,

S`
n(i) ≤ Sn(i) < S`

n(i + 1), (2.2)

where the first inequality follows from the fact that S`
n(i) = Θ(Sn(i)) and the second one since if it were not

true then we would have S`
n(i) = S`

n(i + 1), which cannot happen as initially all the servers are on different

locations (i.e., we have by assumption that that S`
0(i) 6= S`

0(j) for i 6= j), and therefore we cannot reach a

state with two servers on the same location. The two inequalities q`n(i) ≤ qn(i) and qn(i) ≤ q`n(i + 1) follow

immediately from (2.2).

Consider now the request rn+1. If qn(i − 1) < rn+1 ≤ q`n(i) for some i, then in both the discrete and the

continuous process it will be served by the ith server and so we will have S`
n+1 = Θ(Sn+1). Otherwise (i.e.,

6

if q`n(i) < rn+1 ≤ qn(i) for some i), the discrete process will serve the request with server i + 1 while the

continuous process will use server i, leading to S`
n+1 6= Θ(Sn+1), and the coupling fails. Therefore,

{S`
n = Θ`(Sn)} ∩ {S

`
n+1 6= Θ`(Sn+1)} = {S

`
n = Θ`(Sn)} ∩

(

∪ki=1 {rn+1 is between q`n(i) and qn(i)}
)

,

Then, note that d(Sn(i), S
`
n(i)) < k/` so that, d(qn(i), q

`
n(i)) < k/`, for all 0 ≤ i ≤ k−1. Using the definition

of δ(k/`) and the independence of the events,

{S`
n = Θ`(Sn)} and ∪ki=1 {rn+1 is between q`n(i) and qn(i)},

we obtain that,

Pr(rn+1 is between q`n(i) and qn(i)) ≤ δ(k/`),

and, finally,

Pr(S`
n+1 6= Θ`(Sn+1)|S

`
n = Θ`(Sn)) ≤ kδ(k/`),

as required. �

2.3. The Case of Two Servers and Uniform Distribution

In the case of uniformly distributed requests for k = 2 servers, we show that the greedy policy is optimal

and that the steady-state (expected) cost is 5/18 = 0.2777

Consider the greedy algorithm G and an arbitrary other algorithm A. Let CG
n (CA

n) be the cost incurred by

algorithm G (resp., algorithm A) when serving the nth request, and let ZG
n (resp., ZA

n) be the minimum dis-

tance between the servers immediately after serving the nth request (with Z0 = ZA
0 = ZG

0 = d(S0(1), S0(2))).

Theorem 3. If the requests are independent and uniformly distributed on T, then the greedy algorithm is

optimal in that, for any algorithm A,

E

[

∑

n

CG
n

∣

∣

∣

∣

Z0

]

≤ E

[

∑

n

CA
n

∣

∣

∣

∣

Z0

]

,

regardless of the initial position Z0 of the two servers.

The optimality of the greedy policy for k = 2 follows from the fact that serving each new request with

the closest server minimizes the cost to serve the request, while at the same time maximizing the distance

between the servers, resulting in a better covering of the space. This is shown in the following lemma.

Lemma 1. For any position of the two servers on the circle and for any request, serving the request with

the closest server maximizes the new minimum distance between the two servers.

Proof. Let x denote the initial distance between the servers and assume, without loss of generality, that

the next request occurs on the upper part of the circle, closest to server 1; see Figure 1. We distinguish three

cases, depending on the actual position of the request:

7

1. In Γ: If the request is served by server 1 the new minimum distance will become at least x/2 while if

it is served by server 2 it will become at most x/2.

2. In ∆: Assume that the request is at distance d from server 1. Then, serving the request by server 1

will make the new minimum distance d+ x, while serving it by server 2 will make it d.

3. In E: If the request is served by server 1 the new minimum distance will become at least 1−x/2 while

if it is served by server 2 it will become at most 1− x/2.

1− x

Sever 1

Server 2

x
ΓE

∆
x
2

x
2

x
2

x
2

1− x

Figure 1: An instance of the two servers’ position; x is the current (minimum) distance between the servers.

Therefore, in all three cases the new minimum distance is maximized by serving the new request with the

server closest to it. �

Proof of Theorem 3. Assume that at some point the distance between the servers is x and the next request

that arrives is closer to server 1; see Figure 1. Let CC be the cost of serving the request with the closest

server (server 1), and ZC the new server distance after serving the request with server 1.

For CC we have:

– With probability x
2 , the new request will occur in Γ, in which case CC ∼ Uniform

(

0, x2
)

.

– With probability 1− x
2 the new request will occur in ∆ ∪ E, in which case CC ∼ Uniform

(

0, 1− x
2

)

.

Therefore,

E
[

CC
∣

∣ x
]

=
x

2
·
x

4
+
(

1−
x

2

)

·

(

1

2
−

x

4

)

=
1

4
x2 −

1

2
x+

1

2
. (2.3)

Similarly we can compute:

E
[

ZC
∣

∣ x
]

=
x

2

∫ x

2

0

(x

2
+ z
) 2

x
dz + (1− x)

∫ 1−x

0

(x + z)
1

1− x
dz +

x

2

∫ x

2

0

(1 − z)
2

x
dz

= −
1

4
x2 +

1

2
x+

1

2
; (2.4)

E
[

(ZC)2
∣

∣ x
]

=
x

2

∫ x

2

0

(x

2
+ z
)2 2

x
dz + (1− x)

∫ 1−x

0

(x+ z)2
1

1− x
dz +

x

2

∫ x

2

0

(1− z)2
2

x
dz

= −
1

4
x2 +

1

2
x+

1

3
. (2.5)

8

Consider now the nth request. Using (2.3), the expected cost of the greedy algorithm is computed as,

E
[

CG
n

∣

∣ Z0

]

= E
[

E
[

CG
n

∣

∣ ZG
n−1

] ∣

∣ Z0

]

= E

[

1

4
(ZG

n−1)
2 −

1

2
ZG
n−1 +

1

2

∣

∣

∣

∣

Z0

]

, (2.6)

and similarly for algorithm A,

E
[

CA
n

∣

∣ Z0

]

= E
[

E
[

CA
n

∣

∣ ZA
n−1

]

∣

∣

∣
Z0

]

≥ E

[

1

4
(ZA

n−1)
2 −

1

2
ZA
n−1 +

1

2

∣

∣

∣

∣

Z0

]

, (2.7)

where the inequality follows from (2.3) and the fact that, conditioned on ZA
n−1, the cost of serving the nth

request is minimized when it is served by the closest server.

From equations (2.6), (2.7) and Lemma 2 below, it follows that, for every n ≥ 0,

E
[

CG
n

∣

∣ Z0

]

≤ E
[

CA
n

∣

∣ Z0

]

and, therefore,

E

[

∑

n

CG
n

∣

∣

∣

∣

Z0

]

≤ E

[

∑

n

CA
n

∣

∣

∣

∣

Z0

]

,

as claimed. �

Lemma 2. For any algorithm A and for any n ≥ 0,

E
[

(ZG
n)2 − 2ZG

n

∣

∣ Z0

]

≤ E
[

(ZA
n)2 − 2ZA

n

∣

∣ Z0

]

.

Proof. The result holds trivially for n = 0. Assume, inductively, that it holds for some fixed n. For the

(n+1)st request, applying (2.4) and (2.5), yields,

E
[

(ZG
n+1)

2 − 2ZG
n+1

∣

∣ ZG
n

]

= −
1

4
(ZG

n)2 +
1

2
ZG
n +

1

3
− 2

(

−
1

4
(ZG

n)2 +
1

2
ZG
n +

1

2

)

=
1

4
(ZG

n)2 −
1

2
ZG
n −

2

3

and hence,

E
[

(ZG
i+n)

2 − 2ZG
n+1

∣

∣ Z0

]

= E
[

E
(

(ZG
n+1)

2 − 2ZG
n+1

∣

∣ ZG
n

)

∣

∣

∣
Z0

]

= E

[

1

4
(ZG

n)2 −
1

2
ZG
n −

2

3

∣

∣

∣

∣

Z0

]

. (2.8)

Suppose the (n+1)st request is at some point P . In order to serve it, the algorithm can either send the

closest or the furthest server. Let the lengths of the gaps that will be produced by using the closest or the

furthest server be denoted by Y C
P and Y F

P , respectively. Then, Lemma 1 together with the fact that x2− 2x

is decreasing for x ∈ [0, 1], imply that for any P ,

(Y C
P)2 − 2Y C

P ≤ (Y F
P)2 − 2Y F

P .

Therefore, for any ZA
n , the value of,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

,

9

is minimized when the algorithm moves the closest server.

Using again (2.4) and (2.5), we obtain,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

≥
1

4
(ZA

n)2 −
1

2
ZA
n −

2

3
,

and,

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ Z0

]

= E
[

E
[

(ZA
n+1)

2 − 2ZA
n+1

∣

∣ ZA
n

]

∣

∣

∣
Z0

]

≥ E

[

1

4
(ZA

n)2 −
1

2
ZA
n −

2

3

∣

∣

∣

∣

Z0

]

. (2.9)

Combining (2.8), (2.9) and the inductive hypothesis, completes the proof. �

Finally, we examine the cost distribution induced by the greedy algorithm. Let (Yn)n≥0 denote the

Markov chain defined by the clockwise distance between the two servers. Due to the rotation-invariance of

the uniform distribution, the following simple recurrence formula holds for the process (Yn)n≥0 ,

Yn+1 =
1

2
Yn + εn+1, all n ≥ 1,

where the (εn)n≥1 are i.i.d. Uniform[0, 1]. This is exactly the statistical setting of an auto-regressive AR(1)

process; see, e.g., [8]. In particular, under appropriate assumptions on the innovation sequence (εn)n≥1, the

Markov chain (Yn)n≥0 has a unique invariant distribution and it can be shown to satisfy an array of classical

limit theorems, including the strong law of large numbers, the central limit theorem, the law of iterated

logarithm, and so on. Here we establish some simple properties of the limiting distance limn Yn, and we

compute the steady-state expected cost.

By induction, for every n ≥ 1,

Yn =
Y0

2n
+

n−1
∑

k=0

εn−k

2k
,

and, therefore,

Z = lim
n→∞

Yn =
∞
∑

k=0

εn−k

2k
.

Hence, the characteristic function of Z satisfies the functional equation,

φ(θ) = φ

(

θ

2

)

φU (θ) =
∞
∏

k=0

φU

(θ

2k

)

,

where φU (θ) =
eiθ−1
iθ is the characteristic function of the uniform distribution in [0, 1].

The expected cost in this case can be computed explicitly as,

E[C] = E[E[C|Z]] = E

[

∫ Z/2

0

x dx+

∫ (2−Z)/2

0

x dx

]

=
1

4
E[Z2]−

1

2
E[Z] +

1

2
,

and substituting the values of the first and second moments of Z gives the expected cost as,

E(C) =
5

18
= 0.27777

10

From the characteristic function of Z we can also obtain additional information. Noting that, for all

k ≥ 1, φ(θ) can be rewritten as,

φ(θ) = eiθ
∞
∏

k=0

sin(θ/2k+1)

θ/2k+1
,

it is easily verified that |θ|kφ(θ) is integrable and that then Z admits a density f which is infinitely

differentiable and satisfies,

f(x) =
1

π

∫ +∞

0

cos(θ(1 − x))
∞
∏

k=0

sin(θ/2k+1)

θ/2k+1
dθ

Moreover, the derivative of f equals,

f ′(x) =
1

π

∫ +∞

0

θ sin(θ(1 − x))

∞
∏

k=1

sin(θ/2k+1)

θ/2k+1
dθ.

From these expressions we deduce that, for every x ∈ [0, 2], f(x) = f(2−x) and that the function f ′ vanishes

at x = 1. A closed formula for the density distribution appears difficult to obtain.

3. Open Problems

We are interested in the mean cost to serve a request when it arrives with distribution µ. When the k

servers are in position p = (p1, . . . , pk), the mean cost to serve a new request is given by,

∫

T

(

min
i=1,...,k

d0(x, pi)

)

dµ(x),

and the asymptotic cost is,

C(µ, k) =

∫

Tk

∫

T

(

min
i=1,...,k

d0(x, pi)

)

dµ(x)dπk(p1, . . . , pk).

• Scaling the problem with respect to k, so that k servers move on a circle of circumference k, how

does C(µ, k) behave as a function on k? Figure 2 gives simulation results for the uniform distribution,

showing that C(uniform, k) is monotonically increasing with k.

• When k = 2, is it possible to characterize the steady-state distribution π when µ is not the uniform

distribution?

• Which parts of the above analysis extend to the case of servers moving on the surface of a ball?

11

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

0.315

 0 5 10 15 20 25 30 35 40 45

C
os

t p
er

 r
eq

ue
st

Number of servers (k)

Greedy

Figure 2: The expected cost of serving a request as a function of k.

Appendix A. Proof of Theorem 1

Recall that a Markov chain with state space Σ and transition kernel P(·, ·) satisfies Doeblin’s condition [8,

page 391] if there exists a probability measure λ on Σ with the property that for some m ≥ 1 and ε ∈ (0, 1),

Pm(p, S) ≥ ελ(S),

for every p ∈ Σ and every (measurable) S ⊂ Σ.

We define now the probability measure λ that we will use. For δ < 1/8 arbitrary but fixed, define the

intervals I0 = [k − δ, k) ∪ [0, δ] and Ii = [i − δ, i + δ] for 1 ≤ i ≤ k − 1. Let (Yi)0≤i≤k−1 be independent

random variables, with each Yi distributed according to µ(·|Ii). Then λ is the probability measure on Σ

induced by the joint distribution of Y0, Y1, Y2, . . . , Yk−1, so that, in particular, for any set S of the form

S = S0 × S1 × · · · × Sk−1 ⊂ Σ, where each Si ⊂ T:

λ(S) =

k−1
∏

i=0

µ(Si ∩ Ii)

µ(Ii)
. (A.1)

Notice that for the verification of the Doeblin condition it suffices to consider sets of the form S = S0×S1×

· · · × Sk−1 ⊂ Σ, where each Si ⊂ Ii.

To that end we we need to show that, for any initial position p of the servers, there is a sequence of

requests that has probability at least ελ(S), such that the greedy algorithm sends every server to a final

position p′ ∈ S in exactly m moves. We will establish this by describing a procedure (defined by a sequence

of requests) that leads the greedy algorithm to move the servers to S.

The basic steps of the procedure are the following:

1. Send each server i to the corresponding interval Ii;

12

2. Perform some additional moves until m− k moves have been made;

3. Send each server to its final position in k moves.

Step 2 is necessary, since Doeblin’s condition requires that the greedy algorithm reaches the final position in

exactly m moves. Below, each step is described and analyzed in detail; first recall that p = (p0, p1, . . . , pk−1),

where each pi is the position of the ith server, and define the clockwise “distance” function,

d̄(x, y) =

y − x if x ≤ y

k + y − x otherwise.

We also define:

• d̄i = d̄(pi, pi+1), the distance between servers i and i+ 1.

• A function A that maps two points of the circle to the interval between them,

A(x, y) =

[x, y) if x ≤ y

[x, k) ∪ [0, y) otherwise.

• The point-to-interval distances,

d̄(x, I) = inf
y∈I

d̄(x, y)

d̄(I, x) = inf
y∈I

d̄(y, x).

Finally, let c > 0 be a constant such that the density f of µ with respect to the Lebesgue measure on T

satisfies, infx∈T f(x) ≥ c.

Step 1.

Lemma 3. For any initial position of the servers, the greedy algorithm will send each server i to Ii in at

most 12k2 − 8k moves with probability at least
(

c
4k

)12k2−9k (2δc
k

)k
.

Proof. We describe a procedure defined by a sequence of requests for which the greedy algorithm sends

each server i to Ii. The probability that this procedure will be followed is at least
(

c
4k

)12k2−9k (2δc
k

)k
.

Procedure P :

1.1. Send server 0 to I0

1.2. Send each server i to Ii

We describe and analyze each step separately.

Step 1.1

loop

13

if p0 ∈ I0 then

end

else if I0 ⊂ A(p0, p0 + d̄0/2) then {move of type 1 (see Figure 3(a))}

send server 0 to I0 {probability ≥ (2δc)/k}

else {move of type 2 (see Figure 3(b))}

`← argmaxi d̄i {therefore d̄` ≥ 1}

send server ` to A(p` + d̄`/4, p` + d̄`/2) {probability ≥ c/4k}

end if

end loop

I0

0
p0

p1

d̄0
2

(a) Move of type 1. The interval

I0 is entirely contained in the sec-

tion of the circle served by server 0

according to the greedy algorithm,

so server 0 will move inside I0 with

probability at least (2δc)/k.

I0

A(p`+ d̄`/4, p`+ d̄`/2)

0

p`+1

p`

d̄`

(b) Move of type 2. The gap d̄` is the maximum

gap between two consecutive servers, so d̄` ≥ 1.

Thus, there is probability at least (d̄` c)/4k ≥

c/4k that a request will fall on the highlighted area

A(p` + d̄`/4, p` + d̄`/2), decreasing the potential

φ by at least d̄`/4 ≥ 1/4.

Figure 3: Examples of moves in Step 1.1

Lemma 4. In at most 8k2 − 4k moves and with probability at least
(

c
4k

)8k2−4k−1
· (2δc)k , step 1.1 will send

server 0 to I0.

Proof. We define the following potential function:

φ(p) = 1{p0 /∈I0} ·

(

k · d̄(p0, 0) +

k−1
∑

i=1

d̄(pi, p0)

)

,

with 1A being the indicator function of event A. We will show the following facts:

Fact 1. 0 ≤ φ(p) ≤ 2k2 − k.

14

Fact 2. φ(p) = 0 if and only if p0 ∈ I0.

Fact 3. At each move, φ(p) either becomes 0 with probability at least (2δc)/k and step 1.1 ends, or decreases

by at least 1/4 with probability at least c/4k.

Fact 1 holds since 1{p0 /∈I0} ∈ {0, 1} and 0 ≤ d̄(·, ·) ≤ k.

Fact 2 is obvious.

In order to show fact 3, we consider the two types of moves of the procedure described earlier. In the case

of a type-1 move, the probability to be executed is (2δc)/k and step 1.1 terminates. For a type-2 move we

consider the following two cases:

• ` 6= 0: In this case, notice that the total length of the circle is k and the total number of gaps is k.

Therefore the length of the largest gap d̄` is at least 1. Hence we have that the probability of the move

is at least c/4k, and the distance d̄(p`, p0) decreases by at least 1/4 (with the rest of the distances

remaining the same), resulting to a decrease of φ(p) by at least 1/4.

• ` = 0: Again using the previous reasoning, the move is performed with probability at least c/4k. If

server 0 moves into I0, φ(p) becomes zero (and notice that the probability c/4k ≥ (2δc)/k for δ ≤ 1/8)

and step 1.1 ends. Otherwise, assume that server 0 moves by t ≥ 1/4. Then d̄(p0, 0) decreases by t

and every other distance d̄(pi, p0) increases by t. So the value of φ(p) decreases by:

k · t−
k−1
∑

i=1

t = kt− (k − 1)t = t ≥ 1/4.

From the above facts we deduce that the total number of moves that will be performed cannot be more

than
2k2 − k

1
4

= 8k2 − 4k,

and they all have probability at least c/4k except possibly for the last one, which has probability at least

(2δc)/k. Hence the probability of the first server moving inside I0 is at least:

(c

4k

)8k2−4k−1

·
2δc

k
.

Step 1.2.

To send each server i to Ii, we define the following procedure:

Procedure P2(ps, ps+1, . . . , pt):

Input: ps, ps+1, . . . , pt ps ∈ Is, pt ∈ It

Output: p′s, p
′
s+1, . . . , p

′
t pi ∈ Ii, i = s, s+ 1, . . . , t

if t = s then

p′s ← ps

15

end

else if t = s+ 1 then

p′s ← ps

p′t ← pt

end

else if there exists a j, s < j < t such that pj ∈ Ij then

P2(ps, ps+1, . . . , pj)

P2(pj , pj+1, . . . , pt)

end

else

find a good server j {to be defined next}

send server j to Ij {using the procedure we describe next}

P2(ps, ps+1, . . . , pj)

P2(pj , pj+1, . . . , pt)

end

end if

We can now define what we mean by a “good” server; we say server j is good if there are no other servers

between server j and the corresponding interval Ij , and the rest of the servers are all sufficiently far from Ij .

An example is shown in Figure 4. Formally, we define:

A server j is good if, for every i 6= j, either pi 6∈ A(pj , j) and d̄(Ij , pi) > 1− 2δ (left type), or pi 6∈ A(j, pj)

and d̄(pi, Ij) > 1− 2δ (right type).

p j

I j

≥ 1−2δ

p j+1
j

Figure 4: An example of a good server of left type. There are no servers between server j (at position pj) and

interval Ij , and the distance (to the right) of all the other servers from Ij is higher than 1− 2δ.

Lemma 5. Let 0 ≤ s < t ≤ k (≡ 0 (mod k)), with ps ∈ A(k − δ, s + δ) and pt ∈ A(t − δ, δ). Then there

exists a good server j ∈ {s+ 1, . . . , t− 1}.

Proof. The proof is by induction on the distance t− s. The base cases t− s = 2 and 3 are easy to verify

by enumerating all possible position situations of the server(s) between s and t.

Assume now that the lemma holds for all r < t− s. We will show that it also holds for t− s. We consider

the following three cases:

16

1. ps+1 6∈ A(k − δ, s+ 1 + δ): Then notice that there is no server between s + 1 and ps+1, and we have

s+ 1 − δ − ps > s + 1 − δ − (s + δ) = 1− 2δ, and thus, d̄(ps, Is+1) > 1− 2δ (the same holds trivially

for the rest of the servers), which means that server s+ 1 is a good server (of right type), and so we

select j = s+ 1.

2. pt−1 6∈ A(t − 1 − δ, δ): Similarly to the first case, we have that server t − 1 is a good server (of left

type) and we select j = t− 1.

3. ps+1 ∈ A(k − δ, s+ 1+ δ) and pt−1 ∈ A(t− 1− δ, δ): Then by the induction hypothesis we know that

there exists a j′ ∈ {s+ 2, . . . , t− 2} that satisfies the conditions and hence we can select j = j′.

Having proven Lemma 5, we can now describe the procedure that sends the good server j to Ij :

if j is a left-type good server then

loop

if pj ∈ Ij then

end

else if Ij ⊂ A(pj , pj + d̄j/2) then

send server j to Ij {probability ≥ (2δc)/k}

else

send server j to A(pj + d̄j/4, pj + d̄j/2) {probability ≥ c/4k}

end if

end loop

else {j is a right-type good server}

loop

if pj ∈ Ij then

end

else if Ij ⊂ A(pj − d̄j−1/2, pj) then

send server j to Ij {probability (2δc)/k}

else

send server j to A(pj − d̄j−1/2, pj − d̄j−1/4) {probability ≥ c/4k}

end if

end loop

end if

Notice that, at each move, either j enters Ij (with probability at least (2δc)/k) or moves by a distance of

at least d̄j/4 ≥ 1/4 (or d̄j−1/4 ≥ 1/4) with probability at least c/4k and remains a good server. Since the

distance between j and Ij cannot be more than k, the total number of moves required to move j into Ij is

17

bounded by 4k and their probability is at least:

(c

4k

)4k−1

·
2δc

k
.

Also note that we can execute the procedure P2 for s = 0, t = k (≡ 0 (mod k)) in order to send all the

servers to their corresponding intervals.

Lemma 6. In at most 4k2 − 4k moves and with probability at least
(

c
4k

)(4k−1)(k−1) (2δc
k

)k−1
, step 1.2 will

send each server i 6= 0 to Ii.

Proof. The procedure sending the good server j to Ij will be executed at most k − 1 times. Each time

requires at most 4k moves and takes place with probability at most
(

c
4k

)4k−1
· 2δck .

Combining Lemmas 4 and 6 completes the proof of Lemma 3.

Step 2.

For any possible initial configuration of the servers and any sequence of requests complying with step 1,

the k moves of step 2 will be performed. However, as mentioned above, in order to satisfy Doeblin’s condition

we must show that we can reach the final configuration in exactly m moves, but for step 1 we only gave and

upper bound of 12k2− 8k for the total number of moves. Hence, additional moves may be required in order

to reach exactly that bound. The additional moves that we allow, are induced by requests that are close to

the intervals Ii. In particular, they may fall in

(

k −
1

4
, k

)

⋃

[

0,
1

4

)

⋃

[

k−1
⋃

i=1

(

i−
1

4
, i+

1

4

)

]

It is easy to see that for any sequence of requests that falls in the above set, none of the servers moves far

away from its interval, which will allow them at the end to move close to their final positions.

Each request takes place with probability c/2, which is higher than any single request of step 1, and

consequently the lower bound on the probability that we gave at step 1, holds even when fewer than 12k2−8k

moves are performed during step 1 and the rest are performed during the current step.

Step 3.

The last k requests will send the servers to a final configuration in S = S0 ×S1 × · · · × Sk−1. Specifically,

every server i will enter Si ⊂ Ii, as we argued in step 2.

Consider now the probability that the last k requests send each server i to Si. The total number of

permutations for the order to send the servers is k! and for each of them the probability that it happens is,
∏k−1

i=0 µ(Si), so the total probability is

k!

k−1
∏

i=0

µ(Si) ≥ k!

k−1
∏

i=0

µ(Si ∩ Ii) ≥ k!

(

2δc

k

)k

·

k−1
∏

i=0

µ(Si ∩ Ii)

µ(Ii)
= k!

(

2δc

k

)k

λ(S),

18

using (A.1).

Taking into account all the moves of the three steps and the corresponding probabilities, we have that

Doeblin’s condition holds for

m = 12k2 − 7k

and

ε = k!
(c

4k

)12k2−9k
(

2δc

k

)2k

.

Acknowledgements

The authors are grateful to Guillaume Aubrun and Francis Comets for helpful discussions. IK was

supported in part by a Marie Curie International Outgoing Fellowship, PIOF-GA-2009-235837. CD and

NG-P was supported by CNRS grant DREI 21514.

References

[1] Billingsley, P. Convergence of Probability Measures. Wiley, New York, 1968.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University

Press, Cambridge, 1998.

[3] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Second edition. Springer-

Verlag, New York, 1998.

[4] I. Kontoyiannis and S. P. Meyn. Spectral theory and limit theorems for geometrically ergodic Markov

processes. Annals of Applied Probability, 13:304-362, February 2003.

[5] E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. Journal of the ACM, 42(5):971–

983, Sept. 1995.

[6] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In R. Cole,

editor, Proceedings of the 20th Annual ACM Symposium on the Theory of Computing, pages 322–333,

Chicago, IL, May 1988. ACM Press.

[7] M. S. Manasse, L. A. McGeoch, and D. D. Sleator. Competitive algorithms for server problems. Journal

of Algorithms, 11(2):208–230, June 1990.

[8] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag, London, New

York, 1993.

[9] Norris J.R. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

19

