Stochastic Analysis of the k-Server Problem
on the Circle

Aris Anagnostopoulds and Clément Domb#fy and Nadine Guillotin-
Plantard’ and loannis Kontoyiannisand Eli Upfaf

! Department of Informatics and System Sciences, Sapierizarsity of Romear i s@li s. uni romal. it

2 Laboratoire de Mathématiques et Applications, Univerdidoitierscl ement . donbr y@rat h. uni v-poi tiers.fr
3Université de Lyon, Institut Camille Jordamadi ne. gui | | oti n@ni v-1yonl. fr

4 Department of Informatics, Athens University of Econorgi®usiness,yi anni s@ueb. gr

5Computer Science Department, Brown Universéyi @s. br own. edu

received 10 March 201 @&ccepted 25 April 2010

We consider a stochastic version of thaerver problem in whiclk servers move on a circle to satisfy stochastically
generated requests. The requests are independent aridatheiistributed according to an arbitrary distribution

a circle, which is either discrete or continuous. The costesf/ing a request is the distance that a server needs to
move to reach the request. The goal is to minimize the stetatg-expected cost induced by the requests. We study
the performance of a greedy strategy, focusing, in pagrcoh its convergence properties and the interplay between
the discrete and continuous versions of the process.
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1 Introduction

Thek-server problenfirst posed by Manasse, McGeoch, and Sleator [6, 7] is ceotthe study of on-
line algorithms. Lek > 2 be an integer and consider a metric spite- (M, d) where|M| > k is a set

of points andi is the metric oveM . A k-server problem is defined by a sequenceeqiestsry, rs, . . .,
where eachr; € M. A k-server algorithm controls serversthat reside in, and move between, points of
M. Arequestr; is satisfied when the algorithm moves a server to that poimé dlgorithm must satisfy
request before it sees any future request. The cost of serving a sequd requests is the sum of the
distances that servers have to traverse in order to salisBetrequests. Theserver problem models a
number of important on-line computation problems such géngeand disk-scheduling [2]. So far, most
studies of the:-server problem have focused on t@mpetitive analysisf the problem, culminating in
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Koutsoupias and Papadimitriou’s [5] seminal results,disaing a worst-case competitive ratio®f %)
for the problem.

An alternative approach to the study of on-line algoritheygrobabilistic analysis Instead of taking
a worst-case approach, we assume that the input (in this tessequence of requests) follows some
distribution, and we analyze the expected cost of a giveordhgn over this input distribution. As in the
worst-case scenario, the algorithm satisfies each requtbstiwinformation about the sequence of future
requests, and we are interested in algorithms that are netltio a particular input distribution.

1.1 The Stochastic Model

In this work we study a stochastic version of theerver problem in which thie mobile servers move on
the circle of circumferenck, which we denote bff and identify with the interval0, k). Throughout, we
focus on the long-term behavior of the process induced byall@ving greedyalgorithm: “at each step
1, send the server that is closest to the requgsiWWe analyze and compare two different models; in the
continuous model, requests arrive anywhere on the cltele[0, k) according to some distribution with a
continuous density; in the discrete case, requests maygamly at/ discrete stations, wheke< £ < oo,
and the positions of the stations arélin= {ik/¢; 0 < i < ¢ —1} C T. The circleT is endowed with
the distance,

do(z,y) = min{|z —y[, |z —y — k|, [z —y + K[},

andT, with the induced distance.

We assume that the requests are independent and identigstiijouted (i.i.d.) according to a dis-
tribution supported either offi (in the continuous case) or dfy (in the discrete case); their common
distribution is denoted either hyy or u¢, respectively. For the sake of simplicity, we will alwaysase
thatu has a strictly positive density with respect to LebesguesmesonT and thatu, has positive mass
on all pointsx € Ty.

In the continuous setting, we can model the process as a Mahain(.S,,),>¢ evolving on the state
space,

Y ={p=(po,p1,- s0k—1) €T p; <pjp1 < <pr_1 <po<p1 <--- < pj_1, for somej}.

Herep; corresponds to the position of thid server. In the discrete setting, the servers move onlyimvit
the ¢ stations, and accordingly the state spacEjis= > N T¥. To avoid ambiguity, in the case when
the two closest servers to a given requesre equidistant from;, we specify that the greedy algorithm
moves the server which is to the left of the request (wherecitide is oriented in the usual way). In
addition, if two or more servers are on the same location, (ve havep; = p;41 = --- = p; = « for
1< 7,0rp; =piy1 =+ =pr—1 = po = --- = p; = x fori > 7), and the new request is closerito
than to any other server, we choose sepjéthe request is on the left af and servet if it is on the right
of x. Note that, under these assumptions, the relative ordérecdrvers on the circle does not change,
and that, if at some point all the servers are on differerdtions, then they will never be on the same
location in the future of the process.

The performance of the greedy algorithm is measured in texintise total distance travelled by the
servers to fulfill the requests. Létbe the distance ofi* defined by

k—1
=0
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Recalling thatS,, denotes the position of the servers after satisfyingriterequest, theostof the nth
request is given by, = d(S,—1, S,). We are interested in the asymptotic behaviothef average cost
over a run ofN requestsnamely,

2 Results
2.1 Convergence to a Stationary Distribution

In the discrete setting, since requests may arrive at albsgwith positive probability, the finite state
space Markov chaiiS,,),>1 has the following structure; let,

Y= {p=(o,p1,..,pr-1) € Tk; P <Pjg1 < < pr—1 <po<p<---<pj_1, forsomej},

and¥, = ¥ N T%; then every state i, \ ¥, is transient and, is the unique closed communication
class and it is aperiodic. As a consequence (see, for exaf@plethe Markov chain(S,,) has a unique
stationary distribution, say,, supported ort,, the distribution of the chaifs,,) converges tar, expo-
nentially fast, and the law of large numbers holds. In paldi; the average cost ovar steps converges
almost surely to the mean cost underasN — co.

The main contribution of this work is to obtain similar resuih the continuous case. Under the as-
sumption thafu has a positive density, we show in Theorem 1 that the procss unique stationary
distribution, to which it converges exponentially fast.

Theorem 1 Assume thap: has a density with respect to the Lebesgue measuf® en [0, k) that is
uniformly bounded away from 0. Then the Markov ch@p),,>o on X induced by the greedy algorithm
has a unique stationary distribution, and:

e forall n > 1, sup |P(S, € A|So = so) — m(A)| < cre” ", the supremum being taken over all
A,So

measurable setd of ¥ and all sy € X;

N
. % > Cn = ER(C) with probability 1, asN — co;
n=1

N
1
- (W ,;Cn > Eq(C) + 6) <cge " foralle >0, n>1,

where the finite constants, co, c3, c4(¢) may depend ok but not onn; co > 0 andcy = c4(e) is strictly
positive for alle > 0; C; = d(S;_1, .S;) is the cost of théth request; and . (C) is the expected value of
the one-step cost for a stationary version of the chain.

In view of the well-known convergence results in [8] and thererrecent large deviations estimates in
[4], in order to prove the theorem it suffices to verify thas tlarkov chain fulfills Doeblin’s condition;
see [8, page 391]. The proofis given in Appendix A.
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In addition to the results of the theorem, since the costtfands bounded by definition, the Doeblin
(or uniform ergodicity) property implies finer asymptotesults for the convergence of the averaged cost
% ij:l C;. In particular, it is asymptotically normal, and the corgamce to normality can be further
refined via an Edgeworth expansion. Moreover, the expoalendiund on the excess-cost probability
can be sharpened to a precise asymptotic formula alongrs tif the Bahadur-Rao refinement to the
classical large deviations principle [3]. See [4] for distai

2.2 Convergence of the Discrete Model to the Continuous One

When the number of statiorfsn the discrete model is large, we naturally expect thatougth be possible
to approximate the continuous model by an appropriatelynddfiversion of the discrete one. A precise
asymptotic version of the above statement is establishégkifollowing proposition.

Proposition 1 Suppose thafsu,} is a sequence of request distributions®n ¢ > 1, such thatu, — u
weakly, as/ goes to infinity, for some continuous request distribufioon T. Then, the corresponding
sequencem,} of stationary distributions for the discrete chains inddd®y each of the:, also satisfies
my — m weakly, a¥ — oo, wherer is the stationary distribution of the continuous chain indd by.

Proof: If the servers are in positiop € ¥ and a request arrives at sitec T, then the new position of
the servers after service is

Q(paa’) = (pOa'"apiflvxva*la"'vpkfl) (21)

wherep; is the nearest point af (and the left such point in case of equality). The continsiy of the
mapq is exactly the set of point®, =) such that there is a unique poptnearest ta..

Now suppose the sequencgs } and{m,} are as in the statement of the proposition. According to
Theorem 2 below (proof omitted from this version), the stadiry measures, converge weakly tar, and
so do the corresponding expected costs. Note that the aisaspf the theorem are always satisfied
wheny is diffuse and, in particular, whemhas a density. O

Theorem 2 LetCq C X x T denote the continuity set of the m@ulefined in equatio(®.1). Assume that
the Markov chain(S,,),>o associated with the request distributiprhas a unique invariant probability
measurer, and that, for every probability measuré on T*,

(x x 1)(Cg) = 1.

Thenm, — m weakly andE,(C) — E,(C), as¢ — oo, whereE.,(C) andE(C), denote the expected
costs under the stationary versions of the correspondimgnah respectively.

We provide further insight into the correspondence betwbendiscrete and the continuous models
by constructing acoupling between the corresponding chains. Consider the continonmgiel with a
sequence of requedts, ),>1 that are i.i.d. with continuous distributignonT. Let (S, ),>0 denote the
associated Markov chain anand let®, : T — T, be the discretization map defined by,
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Similarly, let(rf,)n,>1 = (O¢(r))n>1 denote the corresponding discretized requests, so the¢thence
(rt) is also i.i.d., with discrete distribution, given by, (z) = u([z, z + k/¢)) for z € T,. We consider
the Markov chain(S’) defined by the initial stat®§ = ©,(Sy) and the sequence of requeét§),,>1.
Note thatS? is in generahotthe same a®,(S,,). We assume thdtis large enough so the image under
O, of the initial positions of thé: servers is a set df distinct points.

As the number of stationsgoes to infinity,0, converges to the identity map apd converges weakly
to 11, so we naturally expect that the Markov chai$) and(©,(S,,)) will also be “close” for largée. In
order to quantify this closeness, we examine(tte)coupling time

T, = inf{n > 1; 8% # 0,(S,)}.

Our next result, whose proof will appear in the full versidritos work, is the following:

Proposition 2 Let§(e) = sup{u([z,z + ¢€]) ; = € T} for e > 0, and assume thak(k/¢) is strictly
positive. Then the distribution @f, stochastically dominates a geometric distribution withrgraeter

kS(k/0), i.e.,
Pr(T} > n) > (1 ks (%))

As a consequenci(Ty) > (k 6(k/¢))~L. Moreover, if density of; is uniformly bounded above by some
constant’ > 0, thend(e) < ce forall e > 0, andE(T;) > £/(c'k?).

2.3 The Case of Two Servers and Uniform Distribution

In the case of uniformly distributed requests ko 2 servers, we show that the greedy policy is optimal
and that the steady-state (expected) coSf{ i = 0.2777 .. ..

Consider the greedy algorith@iand an arbitrary other algorithr. Let CS (C) be the cost incurred
by algorithm@G (resp., algorithmA) when serving thesth request, and le£& (resp.,Z2) be the mini-
mum distance between the servers immediately after sethimgth request (withZ, = 73 = 2§ =
d(50(1), S0(2))).

Theorem 3 If the requests are independent and uniformly distribute@pthen the greedy algorithm is
optimal in that, for any algorithr,

2.0

regardless of the initial positior, of the two servers.

E Zo| <E Zo

)

Pl

The optimality of the greedy policy fdr = 2 follows from the fact that serving each new request with
the closest server minimizes the cost to serve the requbsg at the same time maximizing the distance
between the servers, resulting in a better covering of taeespThe proof will appear in the full version
of this work.

Finally, we examine the cost distribution induced by theedsealgorithm. Let(Y,,),>o denote the
Markov chain defined by the clockwise distance between tloesgvvers. Due to the rotation-invariance
of the uniform distribution, the following simple recur@nformula holds for the process;, ),,>o ,

1
Y1 = §Yn +ént1, aln>1,
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where the(e,,),>1 are i.i.d. Uniformf0, 1]. This is exactly the statistical setting of an auto-reguess
AR(1) process; see, e.g., [8]. In particular, under appadprassumptions on the innovation sequence
(en)n>1, the Markov chainY,,),>o has a unique invariant distribution and it can be shown tisfyaan
array of classical limit theorems, including the strong taarge numbers, the central limit theorem, the
law of iterated logarithm, and so on. Here we establish sampls properties of the limiting distance
lim,, Y,,, and we compute the steady-state expected cost.

By induction, for everyh > 1,
n—1

Yo En—k
Yo=gnt+ 2 5
k=0
and, therefore,

Z = lim Yn_zfn k.

n— oo
k=0

Hence, the characteristic function Bfsatisfies the functional equation,
0 il 0
o0) =6 (3) o0 = I ov(3z)

wheregy (0) = eijgl is the characteristic function of the uniform distribution0, 1].
The expected cost in this case can be computed explicitly as,

Z/2 (2-2)/2
E[C] = E[E[C|Z]] = E l/o x dx—|—/0 x dx] — EE[ZQ] _ %E[Z] i %7

and substituting the values of the first and second momerifsgifes the expected cost as,

E(C) = 1—58 — 0.27777 ...

From the characteristic function ¢f we can also obtain additional information. Noting that, &tir
k > 1, ¢(0) can be rewritten as,

_ i sin(f/2k+1)
B H g2k

it is easily verified thatf|*4(0) is integrable and that thed admits a densityf which is infinitely
differentiable and satisfies,

1 [tee ~r sin(6/2F+1)
Moreover, the derivative of equals,
(0 = [ psntors - ) [T A2
fi(z) = =) Osin(0(1 — x)) kl;[l D de.

From these expressions we deduce that, for eweey[0, 2], f(z) = f(2 — z) and that the functiorf’
vanishes at = 1. A closed formula for the density distribution appears diffi to obtain.
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Fig. 1. The expected cost of serving a request as a functidgn of

3 Open Problems

We are interested in the mean cost to serve a request whenvésawith distributiony. When thek
servers are in positiop = (p1, . .., px), the mean cost to serve a new request is given by,

/T (i—rﬁi.?,k do(x’pi)> dp(z),

cun=[ [ ( wmin do<x,pi>) du(a)dn* (pr, ... pi).

i=1,.. .k

and the asymptotic cost is,

e Scaling the problem with respect fg so thatk servers move on a circle of circumference
how doesC(u, k) behave as a function ok? Figure 1 gives simulation results for the uniform
distribution, showing that’(uniform, k) is monotonically increasing with.

e Whenk = 2, is it possible to characterize the steady-state distdhut wheny is not the uniform
distribution?

e Which parts of the above analysis extend to the case of semvaving on the surface of a ball?

A Proof of Theorem 1

Recall that a Markov chain with state spacand transition kerndp(-, -) satisfiesDoeblin’s conditior8,
page 391] if there exists a probability measwen X with the property that for some: > 1 and
e €(0,1),

P™(p, §) = A(S),
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for everyp € ¥ and every (measurablg)C 3.

We define now the probability measuxehat we will use. Fop < 1/8 arbitrary but fixed, define the
intervalsly = [k — 4§, k)U[0,d] andl; = [i — §,i+d]for1 <4 < k—1. Let(Y;)o<i<r—1 be independent
random variables, with eadj distributed according t@.(-|1;). Then) is the probability measure on
induced by the joint distribution afy, Y7, Ys, ..., Yx_1, so that, in particular, for any sét of the form
S =59 x81 x---x SE_1 CX,where eacly; C T:

k—1
_ 7 #SiN L)
“$‘£L7ﬁﬁ‘ (A.1)

Notice that for the verification of the Doeblin condition iifices to consider sets of the forf =
So X 81 X -+ x Si_1 C X, where eacly; C I;.

To that end we we need to show that, for any initial positioof the servers, there is a sequence of
requests that has probability at leas{.S), such that the greedy algorithm sends every server to a final
positionp’ € S in exactlym moves. We will establish this by describing a procedure Keefiby a
sequence of requests) that leads the greedy algorithm te theservers tg'.

The basic steps of the procedure are the following:

1. Send each serveéto the corresponding interva);
2. Perform some additional moves uniil — £ moves have been made;
3. Send each server to its final positionirmoves.

Step 2 is necessary, since Doeblin’s condition requires ttie greedy algorithm reaches the final
position in exactlym moves. Below, each step is described and analyzed in détatll;recall that
p = (po,p1,---,pr—1), Where eaclp; is the position of theth server, and define the clockwise “dis-
tance” function,

d(z,y) = y—x ife<y
TV k4y—2 otherwise,

We also define:

e d; = d(p;, pi+1), the distance between servemndi + 1.

e A function A that maps two points of the circle to the interval betweemthe

) zy) ifr<y
M%”_{mmumw otherwise.

e The point-to-interval distances,
(2, 1) inf (z,9)

d(I,z) = ;relfl d(y, z).
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Finally, letc > 0 be a constant such that the dengfitgf 1 with respect to the Lebesgue measurelon
satisfiesinf 1 f(z) > c.

Step 1.

Lemma 1l For any initial position of the servers, the greedy algonithvill send each serverto I; in at
2_
most12k? — 8k moves with probability at Ieaitﬁ)m ok (%“)k

Proof: We describe a procedure defined by a sequence of requesthiftr tlie greedy algorithm sends
each server to I;. The probability that this procedure will be followed is aat(-% ) "** " (222)*,

k
ProcedureP:

1.1. Send served to I,
1.2. Send each serveérto I;

We describe and analyze each step separately.

Step 1.1
loop
if pg € Iy then
end
eseif Iy C A(po, po + do/2) then {move of type 1 (see Figure 2(a))}
send server 0 td, {probability > (20c¢)/k}
else {move of type 2 (see Figure 2(b))}
¢ + argmax; d; {therefored, > 1}
send servef to A(py + dy/4, pe + dy/2) {probability > c/4k}
end if
end loop

)8k274k71 (2

Lemma2 In at most8k? — 4k moves and with probability at leagt>- ic), step 1.1 will

send serveb to Ij.

Proof:
We define the following potential function:

k—1
(b(p) = 1{;1)0¢Ig} : <k : J(PO» O) + Z J(PmPO)) ’
i=1

with 1 4 being the indicator function of evert. We will show the following facts:
Fact 1. 0 < ¢(p) < 2k? — k.
Fact 2. ¢(p) = 0ifandonlyifpg € Io.

Fact 3. At each move(p) either becomes 0 with probability at leg®c)/k and step 1.1 ends, or
decreases by at leakt4 with probability at least/4k.
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\/F\‘/ 0
Po
P1
]
A(pe+de/4, pr+de/2)

(a) Move of type 1. The interval is en- (b) Move of type 2. The gag, is the maximum gap
tirely contained in the section of the circle between two consecutive servers,dgo> 1. Thus, there
served by server 0 according to the greedy is probability at leastd, c¢)/4k > c/4k that a request
algorithm, so server O will move insidg will fall on the highlighted areal(p,+de /4, po+de/2),
with probability at least2dc)/k. decreasing the potentiglby at leasid, /4 > 1/4.

Fig. 2. Examples of moves in Step 1.1

Fact 1 holds sincé(,,,¢7,3 € {0,1} and0 < d(-,-) < k.
Fact 2 is obvious.
In order to show fact 3, we consider the two types of moves efpttocedure described earlier. In the

case of a type-1 move, the probability to be execute@dg)/k and step 1.1 terminates. For a type-2
move we consider the following two cases:

e ¢ = 0: In this case, notice that the total length of the circlé iand the total number of gaps is
k. Therefore the length of the largest gépis at least 1. Hence we have that the probability of
the move is at least/4k, and the distancé(p, po) decreases by at least4 (with the rest of the
distances remaining the same), resulting to a decreag@gfby at leastl /4.

e ¢ = 0: Again using the previous reasoning, the move is performitid probability at least:/4k.
If server 0 moves intdy, ¢(p) becomes zero (and notice that the probabijtyt > (26c)/k for
§ < 1/8) and step 1.1 ends. Otherwise, assume that server 0 movesby/4. Thend(po,0)
decreases biyand every other distane&p;, p,) increases by. So the value of(p) decreases by:

k—1
ket=Y t=kt—(k—1)t=t>1/4.
=1

From the above facts we deduce that the total number of mbaesvill be performed cannot be more

than g
2 —
= 8k* — 4k,

1
1
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and they all have probability at least4k except possibly for the last one, which has probability aste
(20¢)/k. Hence the probability of the first server moving insiges at least:

2_Af—
(ﬁ)wc 4k 1'%;0.

Step 1.2.
To send each serveto I;, we define the following procedure:

Procedurés(ps, ps+1,---,Pt):
Input: ps,pst1,....pt  ps € Ls,pr € 1
Output: pl,piiq,---, P} pi € l;,i=s8,s+1,...,t
if t = sthen
p{e < Ds
end
elseif t = s+ 1 then
p./s < Ps
Pi < Dt
end
elseif there exists &, s < j < ¢t suchthap; € I; then
732(P5,Ps+1, cee vpj)
Pa(pj j+1s- - Pt)
end
else
find agoodserver; {to be defined next}
send servey to I; {using the procedure we describe next}
732(]95,Ps+1, cee vpj)
P?(pjvpj+1v s apt)
end
end if
We can now define what we mean by a “good” server; we say sgrieegood if there are no other
servers between servgiand the corresponding interval, and the rest of the servers are all sufficiently
far from ;. An example is shown in Figure 3. Formally, we define:
A serverj is goodif, for everyi # j, eitherp; ¢ A(p;,j) andd(l;,p;) > 1 — 26 (left type), or
pi & A4, pj) andd(p;, I;) > 1 — 25 (right type).

Lemma3 Let0 < s <t < k(=0 (mod k)), withp, € A(k — 6,5+ J) andp, € A(t — 4,9). Then
there exists a good servgre {s+1,...,t — 1}.

Proof: The proof is by induction on the distante- s. The base casés- s = 2 and3 are easy to verify
by enumerating all possible position situations of the egB) betweer andt.

Assume now that the lemma holds for all< ¢t — s. We will show that it also holds fot — s. We
consider the following three cases:
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>1-25
!

0 2
Fig. 3: An example of ayoodserver of left type. There are no servers between sgriapositionp;) and intervall;,
and the distance (to the right) of all the other servers figns higher than — 24.

1. ps+1 € A(k — 4,5+ 1 + 6): Then notice that there is no server between 1 andp;1, and we
haves+1—0 —ps >s+1—6—(s+ ) =1— 20, and thusd(ps, Is+1) > 1 — 26 (the same
holds trivially for the rest of the servers), which meand 8&vers + 1 is a good server (of right

type), and so we selegt= s + 1.

2. pi—1 € A(t—1—46,6): Similarly to the first case, we have that server1 is a good server (of left
type) and we selegt= ¢ — 1.

3. pst1 € A(k—6,s+ 1+ 0)andp,_1 € A(t —1 — 4,9): Then by the induction hypothesis we
know that there exists # € {s+2,...,t — 2} that satisfies the conditions and hence we can select

ji=J.

Having proven Lemma 3, we can now describe the proceduredmals the good servgto I;:

if 7 is a left-type good servehen
loop
if p; € Ij then
end
eseif I; C A(pj,p; + Jj/?) then
send servey to I; {probability > (2dc)/k}
else
send servey to A(p; + d; /4, p; + d;/2) {probability > c/4k}
end if
end loop
else{; is a right-type good server}
loop
if p; € I then
end
eseif Ij C A(pj - ijl/Q,pj) then
send servey to I; {probability (2dc)/k}
else
send servey to A(p; — d;j—1/2,p; — dj_1/4) {probability > c/4k}
end if
end loop
end if
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Notice that, at each move, eithgentersl; (with probability at least2dc)/k) or moves by a distance
of atleastd; /4 > 1/4 (ord;_1 /4 > 1/4) with probability at least,/4k and remains a good server. Since
the distance betweghand; cannot be more thak, the total number of moves required to mgviato
1; is bounded bytk and their probability is at least:

( c )4’“*1 26¢
4k k-

Also note that we can execute the procedBsdor s = 0, ¢ = k (= 0 (mod k)) in order to send all
the servers to their corresponding intervals.

Lemma4 In at mostdk? — 4k moves and with probability at Ieaﬁtﬁ)(%*l)(k*l) (2%”)]“1 step 1.2
will send each server+ 0 to I;.

Proof: The procedure sending the good seryéo ; will be executed at most — 1 times. Each time

requires at mostk moves and takes place with probability at m()ﬁ)%*1 . 2—2“ O

Combining Lemmas 2 and 4 completes the proof of Lemma 1. |

Step 2.

For any possible initial configuration of the servers andseguence of requests complying with step 1,
the k moves of step 2 will be performed. However, as mentioned @biovorder to satisfy Doeblin’s
condition we must show that we can reach the final configurati@xactlym moves, but for step 1 we
only gave and upper bound d2k2 — 8k for the total number of moves. Hence, additional moves may be
required in order to reach exactly that bound. The additioveves that we allow, are induced by requests
that are close to the intervals. In particular, they may fall in

BT

i=1

It is easy to see that for any sequence of requests thatrateiabove set, none of the servers moves far
away from its interval, which will allow them at the end to neoslose to their final positions.

Each request takes place with probabitiA2, which is higher than any single request of step 1, and
consequently the lower bound on the probability that we gavstep 1, holds even when fewer than
12k2 — 8k moves are performed during step 1 and the rest are performetydthe current step.

Step 3.

The lastk requests will send the servers to a final configuratiorin= Sy x S1 X -+ X Sg_1.
Specifically, every serverwill enter S; C I;, as we argued in step 2.

Consider now the probability that the ldstrequests send each serveo S;. The total number of
permutations for the order to send the serverd end for each of them the probability that it happens is,
152 14(S;), so the total probability is

Rl , Rl - 26e\* L w(SiUlL) 25¢\ "
k! 1}) p(Si) >k [[ m(Siu L) > k! (T) : ]}) ) k! (T) AS),

=0
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using (A.1).
Taking into account all the moves of the three steps and thegmonding probabilities, we have that

Doeblin’s condition holds for
m=12k> — Tk

o (ﬁ)uk?—gk (2%0)2"’.

and
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