
Under consideration for publication in Knowledge and Information
Systems

Effective and Efficient Classification on a
Search-Engine Model

Aris Anagnostopoulos1, Andrei Broder1 and Kunal Punera2

1Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089
2Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX 78712

Abstract. Traditional document classification frameworks, which apply the learned
classifier to each document in a corpus one by one, are infeasible for extremely large
document corpora, like the Web or large corporate intranets. We consider the clas-
sification problem on a corpus that has been processed primarily for the purpose of
searching, and thus our access to documents is solely through the inverted index of a
large scale search engine. Our main goal is to build the “best” short query that char-
acterizes a document class using operators normally available within search engines.
We show that surprisingly good classification accuracy can be achieved on average over
multiple classes by queries with as few as 10 terms. As part of our study, we enhance
some of the feature-selection techniques that are found in the literature by forcing the
inclusion of terms that are negatively correlated with the target class and by making
use of term correlations; we show that both of those techniques can offer significant
advantages. Moreover, we show that optimizing the efficiency of query execution by
careful selection of terms can further reduce the query costs. More precisely, we show
that on our set-up the best 10-term query can achieve 93% of the accuracy of the best
SVM classifier (14,000 terms), and if we are willing to tolerate a reduction to 89% of
the best SVM, we can build a 10-term query that can be executed more than twice as
fast as the best 10-term query.

Keywords: Text Classification; Search Engine; Feature Selection; Query Efficiency;
WAND; Term Correlations

1. Introduction

Automatic document classification is one of the fundamental problems of Infor-
mation Retrieval and has been amply explored in the literature (Joachims, 1998;

Received Nov 11, 2006
Revised Apr 19,2007
Accepted Jun 10, 2007

2 Anagnostopoulos, Broder and Punera

Mitchell, 1997; Quinlan, 1993; Rennie and Rifkin, 2001; Yang and Liu, 1999).
Applications include the classification of emails as spam or not, or into different
mail folders, automatic topic classification of news articles, and so on. In most
existing classification frameworks, including the ones just mentioned, the trained
classifier is applied to instances being classified one by one, predicting a class la-
bel for each. This method of deployment is useful when these documents are not
all available at the same time and works well when only a small number of doc-
uments are to be classified. However, consider the scenario where we want to use
a classifier to find a relatively small set of on-topic documents from a corpus of
a billion documents. Here, the standard method of applying the classifier one by
one to each document in order to determine whether it is on topic is impractical,
and especially so when new classification problems appear frequently.

In this paper we show how to efficiently and effectively classify documents
in a large-scale corpus that has been processed primarily for the purpose of
searching. Thus, our methods access documents solely through the inverted index
of a large-scale search engine. Here, our main goal is to build the “best” query
that characterizes a document class (topic), which can then be used to retrieve
the documents in the class from the search engine. This index query runs in time
proportional to the size of the result set (“output-sensitive”) and independent of
the corpus size.

Apart from the efficiency considerations mentioned above, there are also sev-
eral other reasons for taking this approach:

– Most previous classification frameworks assume that the documents are pre-
processed (scanned, parsed, reduced to a bag of words, etc.) and represented
(as term vectors, within a low rank approximation, etc.) for the express pur-
pose of classification. For web search engines as well as large corporate search
engines maintaining separate representations (one each for search and classi-
fication) is difficult and expensive.

– New classification problems might appear at any moment driven by regulatory
or business needs. (Find all “internet pharmacy” sites, find all car opinion sites,
find all pages that discuss bypassing a digital rights management scheme.) Such
problems are naturally handled by our approach. All we need is a training set
after which we can use fairly standard interfaces.

– Once a class has been characterized by a query, one can rerun the query
whenever the corpus changes. In fact, the major Web search engines (Google,
Microsoft, Yahoo!) provide such “alert” services that notify users of changes
in the result set of a standing query. However, the query is fixed and designed
by a user; here we envisage a query produced by a learning system that can
capture a concept.

– Several search engines such as Vivisimo, Ask, Kosmix, etc. cluster the top-k
search results before displaying them to the user. As a further enhancement,
the search engine could let the user select one or many clusters as the appro-
priate context for her query, and then expand these selected clusters to retrieve
further results. Our approach can be used to convert clusters into queries to
directly address this scenario.

There are, of course, also trade-offs: in order to build the “best” query that
characterizes a class, we need to balance effectiveness (what precision/recall is
achievable) against efficiency (how fast can this query be executed) and imple-
mentation complexity (what capabilities are required from the underlying search

Effective and Efficient Classification on a Search-Engine Model 3

engine: term weights, negated terms, etc.). Our classification approach is inher-
ently limited to the features normally indexed by search engines and requires a
modest amount of access to the internals of the underlying search engine (basi-
cally, we need to be able to explicitly set weights on query terms, and for further
optimization we need to know the lengths of posting lists). However, as we show
below, with respect to this feature set and these constraints, one can perform
very well.

1.1. Contributions

In this paper we discuss various ways to create queries to retrieve documents
that belong to a concept. We investigate several classification methodologies in
order to create a representative query that can be easily implemented within a
search-engine framework. In particular, we consider formulae-based approaches
such as Naive Bayes classification and techniques from relevance feedback in
information retrieval. We compare our approach with more advanced machine-
learning methods (Support Vector Machines), and we show that our approach is
very effective. We select the terms for inclusion in the query by applying several
feature-selection techniques: we also specifically examine the effect of adding
negatively-weighted terms and of the correlations between terms on performance.
To further increase the efficiency, we investigate the factors that determine the
running time and we incorporate them into our query-creation framework.

We show that surprisingly good classification accuracy can be achieved on
average over multiple classes by queries with as few as 10 terms. Moreover, we
show that optimizing the efficiency of query execution by careful selection of
these terms can further reduce the query costs. More precisely, we show that
on our data set, with our method, the best 10-term query can achieve 93% of
the accuracy of the best SVM classifier (14,000 terms), and if we are willing to
tolerate a reduction to 89% of the best SVM, we can build a 10-term query that
runs more than twice as fast as the best 10-term query.

In summary, we make the following contributions:

– We introduce a framework for performing classification by making use of the
existing search-engine technology.

– We show that by selecting only a few terms (fewer than 10) we can achieve
classification accuracy comparable to the best possible.

– We study the effect of negatively-weighted terms and of term correlations
during the feature-selection process. We show that both of these techniques can
improve accuracy. These techniques are general and can be applied whenever
feature selection is used.

– We perform a study to estimate the execution time of a query as a function
of the terms included. This study as well might be of independent interest.
We adapt our query construction to use this information to achieve a good
trade-off between effectiveness and efficiency.

In Section 2 we present some past work on similar problems and we examine
how our work is related. We define the basic problem and our solution to it
in Section 3. In Section 4 we show how we apply these ideas and present an
empirical evaluation. Finally, we conclude the paper in Section 5.

4 Anagnostopoulos, Broder and Punera

2. Related Work

In this section we review some related work in the areas of machine learning for
automatic text classification, and relevance feedback and query modification in
information retrieval. Later in the section we provide a comparison of our work
with the prior art.

2.1. Automatic Text Classification

Automatic text classification is a heavily studied area in machine learning and
numerous techniques have been proposed for the problem (Mitchell, 1997; Quin-
lan, 1993). Of these, Support Vector Machines (SVMs) have been shown to be
especially effective (Joachims, 1998; Rennie and Rifkin, 2001). Multinomial Naive
Bayes (NB) (McCallum and Nigam, 1998), although simple and efficient, has also
been observed to be effective. Our approach in this paper relies on the use of
both SVM and NB classifiers and we describe them in brief in Section 3.4. More-
over, we use SVMs with linear kernels to compute the best text classification
performance achievable with the full set of features (see Section 4.3).

2.2. Relevance Feedback and Query Modification

The idea of modifying a user query in order to increase precision and recall
is a very old one in the field of information retrieval. One of the most popu-
lar strategies is relevance feedback, where the user identifies the relevant results
returned by a query. The system then uses this information to create a new
query that will potentially retrieve more documents that are related to those
that the user has marked as relevant and, therefore, might be of interest to him.
The main two modifications to a query are the query expansion, in which terms
from the relevant documents are added to the query, and term re-weighting, in
which the weights of the terms in the original query are modified based on the
user’s selections. In Section 3, we review Rocchio’s algorithm (Rocchio, 1971)
and RTFIDF that are popular relevance feedback mechanisms for the vector
model and probabilistic model (Robertson and Jones, 1976) respectively. Both
these query weighting schemes are used in our approach in this paper. For de-
tails about modeling in information retrieval and about relevance feedback, we
refer readers to the book of Baeza-Yates and Ribeiro-Neto (Baeza-Yates and
Ribeiro-Neto, 1999).

Chang and Hsu (Chang and Hsu, 1999) combine document clustering and
relevance feedback ideas to address the problem of providing coarse-grained feed-
back. They build a meta search-engine, which operates as follows. First it accepts
an initial query from the user which it submits to several commercial search en-
gines. The ensemble of the collected documents is clustered and presented to
the user, who specifies the clusters that are relevant to him. Finally, the original
query is expanded and re-weighted by applying a method similar to Rocchio’s
algorithm.

The same motivation is behind the work of Glover et al. (Glover, Flake,
Lawrence, Birmingham, Kruger, Giles and Pennock, 2001). The authors use a
Support Vector Machine (SVM) classifier with a Gaussian kernel to create a
query that can fetch documents of a specific type (e.g., user homepages). The goal

Effective and Efficient Classification on a Search-Engine Model 5

is to build a meta search-engine that creates queries for different search engines
and combines the results. This work is extended in (Flake, Glover, Lawrence and
Giles, 2002), where further techniques are employed on top of SVMs to increase
recall.

2.3. Comparison with Our Work

There are many differences in the motivation, problem setting, and approach
of our work from prior art. The primary difference from existing work on text
classification is our equal emphasis on efficiency as well as effectiveness of classifi-
cation. We discuss methods for construction of queries that are not only accurate
but can also be executed very fast. Another important difference is that in our
problem setting the classifier does not have just black-box access to the search
engine, but instead can access and make use of internal information such as
sizes of posting lists. Moreover, we use the WAND primitive, described in Sec-
tion 3.2.1, which allows the use of weights on query terms. As shown in Section 4,
the availability of these two additional capabilities helps us design queries that
are extremely efficient and accurate. Finally, our primary goal in this paper is to
show that a search engine model can be used to perform classification on very
large corpora in “output-sensitive” time with extremely little loss in accuracy.

3. Approach

In this section we formally define the problem and describe our approach towards
tackling it.

3.1. Problem Definition

In our model a document can be viewed as a vector ~d ∈ D of features, where D
is the feature space in which every document belongs. These features could be
words, bi-grams, and other information that the search engine might index about
the page, such as elements from its HTML structure. For concreteness, we also
assume that the feature-to-document mapping is organized as an inverted-index,
which is the standard way most search engines in the web store their information.
However, our approach can be applied to different models. Every document is
also assigned a class label, which, without loss of generality, we call positive (⊕)
or negative (). We are given a train set Dtrain ⊂ D and a disjoint test set
Dtest ⊂ D. For every document ~di in the train set Dtrain, we are given its label
(class) `i ∈ {⊕,	}. Our goal is to obtain a query Q : D → R to the reverse
index (of documents in Dtest) that maximizes the number of documents of the
positive class that are ranked higher than the documents of the negative class.

This problem is reminiscent of statistical text classification in which we learn
a classification function F : D → {⊕,	} that assigns a class label to each
document. This function is used to classify the test set of documents Dtest.
The objective of learning is to obtain a classification function F that maximizes
the number of positive (negative) testing instances that are assigned positive
(negative) labels.

In the current scenario we have to operate under three potential constraints.

6 Anagnostopoulos, Broder and Punera

1. Since we are using the search-engine model, we would like to limit the size of
the queries and this leads to the problem of selecting query terms. Furthermore,
some search engines may not allow for certain types of queries, for example,
queries with negatively weighted terms. (In our experiments we make use of a
search engine that does support negative terms, and we show that using them
is beneficial.)

2. We would like to optimize the selection of terms for query execution time as
well as accuracy.

3. In certain applications (such as query refinement via concept learning) the
query has to be constructed in real time. In such cases we might prefer one-
shot (formulae-based) learning approaches as opposed to iterative and more
expensive procedures.

The goal of this paper is to study these and other issues associated with the use
of a search-engine model for classification.

3.2. Classification via Querying

As we mentioned, we want to make use of the existing technology in text search
in order to classify documents that have been indexed by a search engine. In our
approach we obtain the text search query by first learning a classifier for the
positive concept and then converting the classifier into a search-engine query.

In this paper we consider search engines based on posting lists and document-
at-a-time evaluation. To our knowledge, all popular Web search engines, for ex-
ample, Google, Yahoo!, Inktomi, AltaVista, and AllTheWeb, belong to this class.
For most commercial search engines, the query format is a boolean expression
involving words as terms, but might also include additional operations, such as
containment of phrases, proximity operations, and so on.

In order to obtain a query from a classifier we have to make some choices.
The first decision involves whether the query should have weights for the terms
or whether it should be boolean. Since we are going to use the query to retrieve
documents in the positive class we expect a query with term weights to better
approximate the decision boundary. Later in this section we show a primitive
called WAND (Broder, Carmel, Herscovici, Soffer and Zien, 2003), which can
be used to efficiently execute a weighted query over a traditional search engine.

The second decision that we need to make is whether to limit ourselves to
the use of linear classifiers. In general, linear classifiers are faster to train and
more interpretable than nonlinear ones. This is true especially in the context of
document classification, where the features used in linear classifiers correspond
well to the terms used in the queries. Moreover, in high-dimensional domains
such as text classification linear features suffice to find an effective discriminating
boundary and provide high-quality results (Rennie and Rifkin, 2001; Yang and
Liu, 1999). For these reasons we limit this study to linear classifiers. Note that
using WAND and the two-level retrieval process outlined in (Broder et al., 2003)
allows us to efficiently implement nonlinear classifiers as well. However, we do
not provide any more details in this paper.

Effective and Efficient Classification on a Search-Engine Model 7

3.2.1. The WAND Operator

Here we briefly describe the WAND operator that was introduced in (Broder
et al., 2003) as a means to optimize the speed of weighted search queries. WAND
stands for Weak AND, or Weighted AND. The WAND operator takes as
arguments a list of Boolean variables X1, X2, . . . , Xk, a list of associated positive
weights, w1, w2, . . . , wk, and a threshold θ.

By definition, WAND(X1, w1, . . . Xk, wk, θ) is true if∑
1≤i≤k

xiwi ≥ θ, (1)

where xi is the indicator variable for Xi, that is

xi =
{

1, if Xi is true
0, otherwise.

In the original version of WAND, which appeared in (Broder et al., 2003),
Xi indicates the presence of query term ti in document d, and making use of it
has as a result the feature space being {0, 1}m (m is the total number of features
(terms)), which only exploits information of whether a word exists in a document
or not. Since we want to work on the richer feature space Rm, which contains
frequencies of words in documents, we set

xi = frequency of term ti.

A second generalization of WAND in this work is that we allow the weights of
the terms to be negative; this increases the power of our query since now we can
use terms that are negatively correlated with the target user concept to avoid
retrieving off-topic documents.

3.3. Selecting the Query Terms

Having presented the mechanism with which we will execute our queries, we now
present the mechanism for creating them. First, we have to answer the question:
How many terms should a query contain? In general, a query with more terms
retrieves more accurate results. The downside is that the cost of the query (query
execution time) increases with its size. There is an inherent trade-off between
query cost and retrieval accuracy, and the above question can be reframed as
negotiating this trade-off.

Given that we cannot execute a query with all available terms and weights,
the second question that we need to answer is: Which terms should we choose?
In this section we suggest approaches to tackle both of these questions. We
describe ways to measure the quality of terms, and discuss further factors that
might affect the query cost versus retrieval accuracy trade-off.

Note that the problem of selecting terms for the query is essentially the same
as the problem of feature selection, which has been widely studied (Chakrabarti,
Dom, Agrawal and Raghavan, 1998; Yang and Pedersen, 1997) in the context
of text classification. The key difference lies in the fact that traditional feature-
selection techniques emphasize the preservation of the accuracy of classification
with the fewest possible features. In our work, we jointly want to optimize the
processing time of a query along with its accuracy. In the rest of this section, we
present our approach for achieving this goal.

8 Anagnostopoulos, Broder and Punera

3.3.1. Term Selection for Query Accuracy

In this section we present measures that score each term in the vocabulary on
their impact on retrieval accuracy. Based on this scoring, the top-k terms are
greedily selected to form the query. The weights of these selected terms in the
WAND query are then calculated by the chosen classifier or formula. Below we
present three ways to compute the term-accuracy-scores.

1. Information Gain: In the past, information gain (IG) has been used as a
measure of saliency of features in text classification tasks (Quinlan, 1993; Yang
and Pedersen, 1997). IG is the number of bits of information obtained for
predicting the class of a document based on the presence or absence of a term:

IG(t) = H(`)−H(` | t),
where H(`) is the entropy of the class label:

H(`) = −
∑

�∈{⊕,	}

Pr(�) · log Pr(�),

and H(` | t) is the entropy of the label conditioned on the presence or absence
of the term t:

H(` | t) =−Pr(t exists) ·
∑

�∈{⊕,	}

Pr(� | t exists) · log Pr(� | t exists)

−Pr(t exists) ·
∑

�∈{⊕,	}

Pr(� | t exists) · log Pr(� | t exists).
(2)

2. Fisher Index: Chakrabarti et al. (Chakrabarti et al., 1998) introduced a
measure called Fisher Index (FI) score, which calculates how well a term
separates the mean vectors of the positive and negative document classes. The
FI score of a term is the ratio of the between-class to within-class scatter:

FI(ti) =
(µ(⊕, ti)− µ(, ti))

2∑
c∈{⊕,	}

1
|Cc|

∑
~d∈Cc

(
tf(~d, ti)− µ(c, ti)

)2 ,

where µ(c, ti) = 1
|Cc|

∑
~d∈Cc

tf(~d, ti), tf(~d, ti) is the frequency of term ti in

document ~d, and Cc the set of documents belonging to class c.
3. Coefficient in the Linear Boundary: An alternative way to construct

the query is to select terms that have high absolute coefficient values in the
linear decision boundary obtained by the classifiers in Section 3.4. These are
the terms that have the most influence on deciding which class a document
containing them belongs to. Also, these terms are good candidates as they are
often contained in a large fraction of the positive documents in the inverted
index, which has a positive effect on the recall of the set of positive documents.

3.3.2. Accounting for Term Correlations

In this section we show how we can select terms more carefully to obtain higher
accuracy. The feature-selection techniques that we described examine terms in-

Effective and Efficient Classification on a Search-Engine Model 9

dependently of other terms; indeed, this is how traditionally feature-selection
techniques are applied. However, the presence of a term in a query might change
the effectiveness of the rest of the terms. In other words, if two terms t1 and t2
are positively correlated (they tend to appear in the same set of documents)
then the inclusion of term t1 in a query makes term t2 less useful. Hence, when
we select the query terms it might be beneficial to condition on the set of terms
that have already been selected for the query.

To make this argument concrete we focus on one of the feature-selection
methods, the information gain. In Section 3.3.1 we described that we select the
terms ti for which the information gain IG(ti) is maximized. We can select terms
more carefully and take into account the term frequencies with the following
procedure: Initially select the term t1 that maximizes IG(t1). The next term
that we select is the term t2 that maximizes the conditional information gain:

IG(t2 | t1) = H(` | t1)−H(` | t2, t1),

where H(` | t1) is defined in Equation (2), and we can define similarly H(` |
t2, t1):

H(` | t2, t1) =−Pr(t2 exists, t1 exists)·∑
�∈{⊕,	}

Pr(� | t2 exists, t1 exists) · log Pr(� | t2 exists, t1 exists)

−Pr(t2 exists, t1 exists)·∑
�∈{⊕,	}

Pr(� | t2 exists, t1 exists) · log Pr(� | t2 exists, t1 exists)

−Pr(t2 exists, t1 exists)·∑
�∈{⊕,	}

Pr(� | t2 exists, t1 exists) · log Pr(� | t2 exists, t1 exists)

−Pr(t2 exists, t1 exists)·∑
�∈{⊕,	}

Pr(� | t2 exists, t1 exists) · log Pr(� | t2 exists, t1 exists).

More generally, the ith term is the one that maximizes the expression

IG(ti | ti−1, . . . , t1) = H(` | ti−1, . . . , t1)−H(` | ti, ti−1, . . . , t1).

The problem, however, is that the time needed for the computation of H(` |
ti, ti−1, . . . , t1) increases exponentially in the number of terms. For this reason,
we reduce the computational complexity and the ith term that we select is the
one that maximizes the expression

ˆIG(ti | ti−1, . . . , t1) = min
t∈{t1,...,ti−1}

H(` | ti)−H(` | ti, t).

In words, we select the term that is the least correlated with the terms already
selected and at the same time provides the maximum information. Thus, we take
into account only the pairwise statistics between term occurrences; note that
those contain most of the useful information (Salton, Buckley and Yu, 1982).
We call this method PairIG.

10 Anagnostopoulos, Broder and Punera

3.3.3. Term Selection for Query Efficiency

The processing time to execute a query depends on the way the search engine
stores the documents and processes the queries, being roughly proportional to the
number of disk accesses performed while evaluating the query. While the details
are specific to each search engine, the time generally depends on the number of
terms and their individual characteristics. We confirm this fact in Section 4.7
where we report on experiments on estimating a formula that predicts the query
processing time in our search engine as a function of the terms included. Our
experiments show that the query processing time is essentially proportional to
the number of terms and the lengths of their posting lists.

As we mentioned earlier, there exists a trade-off between the accuracy achiev-
able with a query and its processing time. Hence, while constructing the query
we would like to include terms that have both a high term-accuracy-score and a
small postings list. In order to achieve this we normalize the term-accuracy-score
by the size of the postings list. Specifically, we select terms in the decreasing order
of the term-selection-score value

term-selection-score =
term-accuracy-score
(postings-list-size)α

(3)

where α is used to trade-off between accuracy and efficiency. A higher value of α
will prefer terms that have small postings list over terms that are deemed very
important by the term accuracy measures, thus sacrificing retrieval effectiveness
for efficiency. On the flip-side, using α = 0 results in selection terms based only
on their accuracy scores. In our approach we select a fixed number of terms in
this fashion, but one can easily imagine also varying the number of terms so as
to fit into a budget of total sum of postings list lengths. We chose this approach,
since many search engines impose limits on the number of terms they permit
(e.g., as of writing, Google imposes a limit of 32 terms).

At this point we must note that the specific term-selection formula might be
different for a different search engine implementation, but one can apply the same
methodology that we present in this paper, and instead attempt to optimize a
different function.

3.4. Weighting the Query Terms

In the previous section we saw that a WAND query acts as a linear discriminant
boundary that ranks documents based on how much towards the positive side of
the boundary they lie. Hence, the weights wi in WAND queries can be computed
by learning a linear classifier over the provided training instances. In this section
we describe the various learning methods we use and the reasons we select them.

3.4.1. Support Vector Machines

Support Vector Machines (SVMs) were introduced by Vapnik (Vapnik, 1995) as a
learning approach for two-class problems. These techniques try to find a decision
surface that maximizes the “margin” between the data points in different classes.
Intuitively, in the linearly separable case, the SVM problem is to compute a

Effective and Efficient Classification on a Search-Engine Model 11

vector ~w (and a threshold b) such that

~w · ~di − b ≥ +1 for `i = ⊕
~w · ~di − b ≤ −1 for `i = 	,

while minimizing a norm of ~w. We will use the coefficients in this vector ~w to
weigh the terms in our WAND query. With the use of slack variables, a similar
program can be used to solve the non-separable case too. Furthermore, kernels
can be used to learn nonlinear decision boundaries in the data space using SVMs.

SVMs were applied to text categorization by Joachims (Joachims, 1998) and
were found to outperform all other classification methods. Moreover, though
primarily a binary classifier, SVMs have also been employed for multi-class clas-
sification. Rifkin (Rifkin and Klautau, 2004) showed that the one-vs-all strategy
performed reasonably well. For these reason we use linear SVMs in a one-vs-all
ensemble to indicate the “best” performance that is achievable at the classifi-
cation task. While SVMs achieve very high classification accuracy, they suffer
from the drawback that they are extremely computationally expensive. Hence,
we consider other “formula-based” classifiers (mentioned below), which are a
function of some small number of data statistics (such as frequencies of terms).

3.4.2. Naive Bayes Classifier

Naive Bayes (NB) classifiers make the assumption that the occurrences of words
in a document are conditionally independent given the class labels (McCallum
and Nigam, 1998; Mitchell, 1997). However, despite this seemingly “naive” as-
sumption, NB has been found to be competitive for text classification problems,
and even optimal under certain conditions (Domingos and Pazzani, 1997; Fried-
man, 1997). The multinomial NB classifiers model the distribution of words in a
document as a multinomial: the probability of generation of a document ~d that
belongs to class � in which the frequency of term ti is xi equals

Pr(~d | �) =
∏

i

Pr(ti | �)xi .

By applying Bayes’ rule, the probability that an observed document ~d belongs
to class � equals

Pr(� | ~d) =
Pr(�) ·

∏
i Pr(ti | �)xi

Pr(~d)
,

where Pr(�) is the prior probability of a document belonging to class � and
Pr(~d) is the probability of observing document ~d. By taking logarithms, the
decision boundary (Pr(⊕ | ~d) = Pr(| ~d)) in a two-class problem can be
characterized by the following equation:

log Pr(⊕) +
∑

i

xi log Pr(ti | ⊕) = log Pr() +
∑

i

xi log Pr(ti |),

or, equivalently,∑
i

xi(log Pr(ti | ⊕)− log Pr(ti |)) = log Pr()− log Pr(⊕).

12 Anagnostopoulos, Broder and Punera

All the probabilities are estimated from the frequencies of the terms in the train-
ing set. As one can see, the prior probabilities of the classes do not affect the
weights of the terms and only define the threshold of the linear classifier. There-
fore, we set the weight for term ti in the WAND query as

wi = log Pr(ti | ⊕)− log Pr(ti |) = log
Pr(ti | ⊕)
Pr(ti |)

.

As we can see, learning the weights only involves a single pass over the training
data to estimate the statistics and can be done very efficiently.

3.4.3. Rocchio’s Formula

Relevance feedback is one of the most successful approaches for query reformula-
tion. One of the first, and now a standard, approach proposed to create queries
is Rocchio’s algorithm (Rocchio, 1971), which is based on the vector-space in-
formation retrieval model (documents and queries are represented as vectors of
weights of individual terms). The weights of the terms of the new query are given
by

~qm = α~q +
β

|C⊕|
∑

~dj∈C⊕

~dj −
γ

|C	|
∑

~dj∈C	

~dj ,

where ~q and ~qm are the vectors corresponding to the old and the modified query,
respectively, ~dj is the vector corresponding to document j, C⊕ (C) is the set of
documents among the retrieved documents belonging to the positive (negative)
class, and α, β, and γ are constants (e.g., α = β = γ = 1). Often this formula is
iterated several times (setting ~q = ~qm) to produce the final query.

In our work we use the Rocchio’s formula as a classifier to learn the weights for
the WAND query. The query so generated is the difference vector of the centroid
vectors of the positive class and the negative class. This query is optimal in the
sense that it maximizes the difference between the average score of documents
in the positive and negative classes. One should note that since we are not
implementing relevance feedback, we do not have an initial query (so α = 0 and
C� is the set of documents belonging to class � in the training set) and we only
iterate once. We also set β = γ = 1.

3.4.4. RTFIDF Formula

A weighting mechanism similar to Rocchio’s that we apply is given by considering
the document frequencies (number of documents that contain a given term).
Specifically, we consider the rtf× idf formula for weighting terms:

wi =
1

|C⊕|
∑

~dj∈C⊕

tf(~dj , ti) · log
N

ni
− 1
|C	|

∑
~dj∈C	

tf(~dj , ti) · log
N

ni
,

where wi is the weight given to term ti, tf(~dj , ti) is the frequency of term ti
in document ~dj , N is the total number of documents, and ni is the number of
documents containing term ti. Haines and Croft (Haines and Croft, 1993) give
an interpretation of this approach based on an inference network probabilistic
model.

Effective and Efficient Classification on a Search-Engine Model 13

There are various other term weighting approaches that we can use, for exam-
ple OKAPI-BM25 (Hancock-Beaulieu, Gatford, Huang, Robertson, Walker and
Williams, 1997). However, a detailed analysis of the best term weighting scheme
is beyond the scope of this paper. Our goal is to show that efficient and effective
classification can be performed on a search engine model by careful construction
of queries. For this purpose we experiment with the four term weighting schemes
mentioned above.

3.4.5. Handling Query Terms with Negative Weights

The terms that we select using the feature-selection methods can be correlated
with either the positive or negative class. The formulae in Section 3.4 assign
to those terms positive or negative weights. As we will see in the experimental
section, the vast majority of the terms selected have positive weights.

The reason behind this is the one-vs-all approach that we employ for selecting
terms and learning their weights. In this approach, while the positive class is a
cohesive set of documents, the negative class comprises documents on all other
topics. Hence, potential negative terms are only present in a small fraction of
documents of the negative class, thereby scoring low with the IG-based measure
(which measures correlation to the class label). Similarly, as the negative class
is very diverse, these terms typically have large intra-class variance and hence
score low with the FI-based measure too (the FI score is inversely proportional
to intra-class variance of the term).

However, including negative terms in queries is useful for distinguishing be-
tween documents of closely related classes. Consider, for example, learning a
query for the class soc.religion.christian in the 20-Newsgroup dataset, which
also contains the class alt.atheism. While these two classes share a significant
common vocabulary, the term “Atheism” should serve as a useful negative term
to separate the religious documents in the positive class from the atheist doc-
uments in the negative class. However, IG and FI scores for this term would
be low because it would not be found in documents of most topics (other than
alt.atheism) in the negative class. As we demonstrate in the presentation of the
experimental results later in this paper, while the negative terms help in dis-
tinguishing classes that contain closely related content, they are also useful for
separating classes with very different content too.

In Section 4.5 we examine the effect of negative query terms. We enforce the
inclusion of more negative terms than the feature-selection techniques recom-
mend. We show that in many cases this can improve the classification accuracy,
even though positive terms with higher term selection scores are removed. This
suggests a way to further improve feature-selection techniques that are found in
the literature.

14 Anagnostopoulos, Broder and Punera

4. Experiments

In this section we present an experimental study that evaluates our approach for
classification with a search-engine model. Furthermore, we present an extensive
exploration of the issues presented in Section 3.

4.1. Datasets and Experimental Setup

We used two datasets for our evaluation:

– 20-Newsgroup Dataset: The 20-Newsgroup dataset has been extensively
used for evaluation of text-categorization techniques (see, for example, (Rennie
and Rifkin, 2001; Rifkin and Klautau, 2004)). It contains a total of 18,828
documents, which correspond to English-language posts to 20 different news-
groups, with a little less than a 1000 documents in each. This is a challeng-
ing dataset for classification as some of the categories (newsgroups) are very
similar to each other with many documents cross-posted among them (e.g.,
alt.atheism and talk.religion.misc). This dataset is relatively small, so we were
able to perform extensive experiments with various parameterizations.

– RCV1-v2 (Reuters) Dataset: The larger dataset that we used in our ex-
periments is the Reuters Corpus Volume 1 (RCV1-v2) data set (Lewis, Yang,
Rose and Li, 2004). It contains 804,414 newswire English-language stories writ-
ten in 1996-1997. The documents have been categorized (by a combination
of automatic and manual techniques) into 103 categories, such as “Domestic
Markets,” “Advertising,” and so on. The dataset is split into a training set
of 23,149 documents, and a test set of 781,265 documents—this is called the
LYRL2004 split (Lewis et al., 2004).

We preprocessed both datasets by removing stopwords, stemming the words
using the Porter algorithm (Porter, 1997), and removing very frequent and very
infrequent terms. (We removed terms that appear in fewer than 5 document and
in more than 95% of the documents.)

The query-creation part of our approach, including the feature selection and
the classifier training, was implemented and executed in the Matlab environment.
Furthermore, we indexed both datasets using the Juru Search Engine developed
by IBM (Carmel, Amitay, Herscovici, Maarek, Petruschka and Soffer, 2001). Juru
was used to execute the queries and the classification accuracy of the results
returned are reported in the following sections of the paper. All reported results
were averaged over 5 random runs of the query building and execution. This
ensures that the results are robust against biases in the training set selection.
Finally, for all experiments other than those in Section 4.8, we do not use posting-
list sizes for selection terms. This is done by setting α = 0 in Equation (3).

4.1.1. Evaluation Measures

The query-execution step of our approach returns a ranked list of documents
that match the query. One of the standard ways in information retrieval to plot
the performance of such a classifier is through precision-recall graphs. Precision
is the fraction of retrieved documents that are in the positive set, while recall is
the fraction of documents of the positive set that were retrieved. In this paper

Effective and Efficient Classification on a Search-Engine Model 15

we report the harmonic mean of these quantities, which is also known as the
F–measure.

Receiver Operating Characteristics (ROC) graphs convey similar information
as the precision-recall graphs. ROC graphs are two-dimensional graphs in which
the true positive rate (the fraction of the documents belonging to the positive
class that were correctly classified, i.e., precision) is plotted on the y-axis and the
false positive rate (the fraction of the documents belonging to the negative class
that were classified as positive) is plotted on the x-axis. One of the characteristics
of the ROC graphs that makes them attractive for collections of documents that
are being continually modified (such as the set of documents in the World Wide
Web) is the fact that the graphs are insensitive to the ratio of the sizes of the
positive and negative classes. A detailed description of the ROC graphs can be
found in (Fawcett, 2003).

The Juru search engine returns the documents with score higher than the
threshold specified by the system. Increasing the threshold results in an increase
in precision and a reduction in recall. Selecting the appropriate threshold is
an interesting problem and it is application specific, depending on the desired
precision and recall. In our experiments, since we wanted to reproduce the entire
precision-recall and ROC graphs and not a particular point, we set the threshold
to 0 (since we examine only documents that appear in the query terms’ posting
lists we return as a result all the documents containing at least one positive
term—thus, formally, we set the threshold to some very small value ε) and then
observed the scores of the documents returned (Juru provides this information
in its output) to create the desired graphs.

Since we want to compare different classifications, and frequently across dif-
ferent parameterizations, we need a quantitative measure of a given ROC graph.
One that is often employed is the area under the curve (AUC) score of the ROC
graph. A classifier that randomly classifies documents has an expected AUC
score of 0.5, while a perfect classifier has an AUC score equal to 1.

4.2. Comparing Term Accuracy Scores

In these experiments, we compared the term-accuracy-scores on their ability to
create queries with good classification accuracy. In all resultant plots, the AUC of
the retrieved results is plotted against the number of terms in the query for each
term-accuracy measure. For completeness, we present results for queries with
terms weighted by all the different classifiers. Also, we performed experiments
with small and large training datasets. The plots are shown in Figure 1.

As we can see, for all the term-weighting schemes Information Gain (IG)–
based term selection is slightly better than Fisher-Index (Fisher)–based term
selection. Both these methods in turn are much better than the coefficient-based
term selection. These two observations hold for all query sizes, however the dif-
ference between the performances of the measures becomes smaller as queries
get larger. The only exception to the above observation is the Rocchio term-
weighting scheme, where the Coefficient-based term selection performs as well
as IG and Fisher. This indicates that the Rocchio formula is as useful as a term
selection scheme as it is as a term weighting scheme.

A point to note is that the relative accuracies of the three term-selection mea-
sures are not impacted much by changes in the training set size. In other words,
even when there is plenty of data to weight the terms in the query appropriately,

16 Anagnostopoulos, Broder and Punera

(a) Naive Bayes (50 docs) (b) Naive Bayes (200 docs)

(c) SVM (50 docs) (d) SVM (200 docs)

(e) RTFIDF (50 docs) (f) RTFIDF (200 docs)

(g) Rocchio (50 docs) (h) Rocchio (200 docs)

Fig. 1. Plots depict AUC of results of queries with terms chosen by different selection measures
vs. the number of terms in the query, in the 20-Newsgroup dataset. Plots (a), (c), (e), and (g)
correspond to training set sizes of 50 documents per class, while (b), (d), (f), and (h) correspond
to training with larger datasets (200 documents per class).

Effective and Efficient Classification on a Search-Engine Model 17

(a) IG (50 docs) (b) IG (200 docs)

(c) Fisher (50 docs) (d) Fisher (200 docs)

Fig. 2. AUC of queries with terms weighed by different classifiers vs. the number of terms in
the query for the 20-Newsgroup dataset. The x-axis on all plots is the number of terms in the
query. Plot (a) and (c) correspond to training set sizes of 50 documents per class, while plot
(b) and (d) correspond to training with larger datasets (200 docs per class).

careful selection of terms is extremely important. Another key observation, par-
tially alluded to above, is that during term selection based on coefficients in the
weight vector, certain classifiers perform better than others. Hence, while queries
weighted by Naive Bayes using terms selected by IG and Fisher are very accu-
rate, Naive Bayes itself doesn’t assign the highest absolute values to the most
discriminant terms. The same is true for the RTFIDF formula. On the other
hand, terms that have the highest coefficients in the linear boundaries computed
by Rocchio and SVM are also very discriminative. This is further evidence to
show that careful term selection is critical for creating effective queries.

4.3. Comparing Term-Weighting Schemes

In this section, term-weighting schemes are compared in terms of the accuracy
of the queries they generate. We show results for two term-selection mechanisms
(IG and Fisher) with two different training data sizes in Figure 2. All resultant
plots have AUC of results plotted against the number of terms in the query. The
“Best” SVM curve plots the performance of a linear SVM classifier with the full

18 Anagnostopoulos, Broder and Punera

set of terms (≈ 14,000). This curve represents the best performance achievable
if there were no constraints on the number of terms in the query.

The performance of all four weighting schemes is comparable with no clear
winner. These results hold for all term-selection mechanisms. As expected, the
accuracies of queries increase as the number of terms in the queries increase,
almost approaching the accuracy of the “best” possible SVM classifier. In fact,
the accuracy of the query with as few as 5-10 terms is 90% of the “best” SVM
accuracy. Hence, with careful selection and weighting of terms, we can achieve,
using very few terms, classification accuracies comparable with the use of the
full feature set.

4.4. Term Selection by Conditioning on Terms

In Section 3.3.2 we described how we can take into account second-order term in-
teractions to construct more accurate queries. At each step, the proposed method
selects the query term that is the least correlated with the terms already selected
and at the same time provides the maximum information. The approach, which
we call PairIG, only takes pairwise interactions into account as they capture
much of the correlation information, and also for reasons of computational effi-
ciency. We present results from our evaluation of PairIG in Figure 3.

In the plots, the curves with solid triangles and solid squares depict the AUC
of queries with term selection performed via the PairIG method. As we can see,
for all classifiers and all settings of number of training documents, the term
selection by taking into account correlations (PairIG) results in more accurate
queries than term selection with only IG. Moreover, we can see that the benefit on
PairIG is higher with queries with larger number of terms. This is because these
larger queries typically have chances of containing more redundant terms. Finally,
there is also a clear increase in benefit of using term correlations when the number
of documents in the training set are higher. This is because training on a larger
number of documents results in better estimates of conditional information gain
of terms. In conclusion, it is fairly clear that constructing queries by taking into
account second-order interactions between terms as described in Section 3.3.2
results in more accurate queries.

4.5. Impact of Negative Terms on Accuracy

In Section 3.4.5 we saw some potential examples where negative terms that have
lower weight than some positive terms can improve classification if we force them
to be part of the query and replace those positive terms.

For the purposes of this paper we extended the WAND primitive to support
negative weights on terms in the query. In this section we evaluate whether this
additional expressive power results in more accurate queries. Here, by negative
(positive) terms we mean terms that have negative (positive) weights in the
WAND query.

First we want to note that both the IG and Fisher based term selection
measures tend to select very few negative terms. More concretely, for the 20-
Newsgroup dataset, on average only 2 out of the top-50 features as ranked by
the IG term-accuracy-score are negatively correlated to the class label. The cor-
responding value for the Fisher measure is 7 out of the top-50. For the top-100

Effective and Efficient Classification on a Search-Engine Model 19

(a) Naive Bayes

(b) RTFIDF

(c) Rocchio

Fig. 3. PairIG (described in Section 3.3.2) indicates the accuracy of queries constructed taking
into account pairwise interactions between terms. IG indicates the use of information gain as
a term-accuracy measure.

20 Anagnostopoulos, Broder and Punera

(a) IG (b) Fisher

(c) IG

(d) Fisher

Fig. 4. Plots (a) and (b) show the fraction of terms in queries that have negative weights. The
y-axis on both these plots is in log scale. As we can see that both IG and Fisher choose very
few terms that indicate the negative class. In plots (c) and (d), the color of each cell indicates
the fraction of negative terms in the classifier for the row class that show up as positive terms
in the classifier for the column class. A red color in a cell indicates that negative terms chosen
help separate the row class from the column class.

Effective and Efficient Classification on a Search-Engine Model 21

(a) IG + Naive Bayes (b) Fisher + Naive Bayes

(c) IG + RTFIDF (d) Fisher + RTFIDF

(e) IG + Rocchio (f) Fisher + Rocchio

Fig. 5. The term selection method and term-weighting method used to construct queries is
specified with each plot. The line “No constraints” corresponds to accuracy of queries with
terms selected by the said term selection measure. From these terms, we selected a specified
fraction of positive and negative weighted terms (plotted as “frac of -ve weights = x”). We also
plotted accuracy of queries with “No Negative Weights”.

22 Anagnostopoulos, Broder and Punera

features, these values are 7 and 18 for the IG and Fisher based measures respec-
tively. These observations are plotted in Figures 4(a) and 4(b). Here we can see
that for queries of all sizes very few terms selected by IG and Fisher get negative
weights.

To empirically evaluate the impact of negative terms in queries, we measured
the change in classification accuracy after artificially replacing a few positive
terms with negative terms (which scored lower on the term-accuracy-score). We
depict some results in Figure 5. The bottom line shows the accuracy achieved
if we select only positively weighted terms, as we would have done if the search
engine did not have the added functionality of WAND to handle negative terms.
As expected, in this case the classification accuracy drops only marginally (recall
that there were very few negative terms to begin with). In the middle line we see
the accuracy when we artificially increase the fraction of negative terms in the
query. Notice that in this case the accuracy is increased over the case when we
do not impose any constraints (top line). Interestingly, this happens even when
the positive terms being replaced are ranked higher by IG and Fisher than the
negative terms replacing them. The fraction of negative terms chosen for each
term-selection and term-weighting scheme combination is different and was set
based on increase in the AUC score of the resulting queries. Estimating this ratio
before executing a query (e.g., as a function of the corpus or the classification
problem) is an interesting problem for future research.

We have seen that inclusion of negative terms results in increases in clas-
sification accuracy. We now try to figure out which particular classes do the
negative terms help discriminate. In Figures 4(c) and 4(d) we plot for each row
class the fraction of its negative terms that show up as positive terms for the
column classes. For instance, in the IG plot, the cell for row talk.politics.misc and
column comp.graphics is labeled red, indicating that when a classifier is learned
for talk.politics.misc, a high fraction of negative terms help distinguish it from
comp.graphics. These plots show us that for many classes, a majority of negative
terms are useful in separating very different classes from them. Hence, negative
terms in classifiers learned for “religion-related” classes help separate them from
“computer-related” classes, and vice versa. Negative terms also help separate the
“sports-related” classes from all others.

However, for certain class pairs we can see that negative terms also help
separate very closely related classes. For instance, in Figure 4(c), a fair frac-
tion of negative terms in the classifier for the comp.graphics class come from
the terms of comp.os.ms-windows.misc class. We observe the same behavior in
Figure 4(d) for the classifier learned for the soc.religion.christian class, where
the negative terms help discriminate it from talk.religion.misc and alt.atheism.
Hence, “atheism-related” keywords are useful as negatively weighted terms in a
query for the soc.religion.christian class. Interestingly, the converse is not true.
As we can see from the figure, terms from the soc.religion.christian class do
not show up as negative terms in the alt.atheism classifier. The reason is that
the term “Atheism” which helps distinguish the two classes is prevalent in the
positive set of the classifier for alt.atheism class.

In summary, we see that the ability to perform search queries with negative
weights improves the effectiveness of our classification. Furthermore, there is
evidence that while learning queries with very few terms in a corpus with a
number of diverse classes, selecting terms solely based on IG and Fisher gives
inferior results.

Effective and Efficient Classification on a Search-Engine Model 23

Fig. 6. AUC and F-measure of the query results vs the number of query terms for the RCV1-v2
dataset.

4.6. Accuracy on the RCV1-v2 Dataset

In our experiments with the RCV1-v2 dataset we created queries using the IG
term-accuracy-score and the Naive Bayes term-weighting scheme. Figure 6 shows
the increase in micro-averaged values of AUC and F-measure of the query re-
sults as the number of query terms is increased. To compute the F-measure, the
threshold for the classifier was set using a held-out validation set of 5% of the
test set documents in each class. As can be seen from the plot, the F-measure
increases from 0.5 to 0.6 over 100 terms, and the AUC increases from 0.85 to
0.92.

In order to put these numbers in perspective we reproduce some results
from (Lewis et al., 2004), which though not strictly comparable (because of
tuning of SVM and Rocchio parameters) are nevertheless instructive. Lewis et
al. performed classification experiments using SVM and Rocchio classifiers on the
RCV1-v2 dataset. As in our work, the classifiers were learned using 23,149 docu-
ments and the remaining 781,265 documents were used as the test set. However,
the number of features used for learning were ≈ 48,000. With these settings the
F-measure obtained using SVM and Rocchio was 0.81 and 0.69 respectively. We
can see that using queries with very few terms (≤ 0.1% of 48K), our approach
achieves a significant fraction of the accuracy. Furthermore, our approach pro-
vides the benefit of classification of the whole corpus in “output-sensitive” time
(seconds).

4.7. Query Execution Time

In this section, we report on our experiments seeking to determine the function
of parameters on which query execution time depends. In Figures 7(a), 7(b),
and 7(c) we have plotted some of our attempts, and in Figure 7(c) we see a
strong indication that the query execution time is proportional to(

a ·
∣∣T+

∣∣ · ∑
t∈T+

post(t)

)
+

(
b ·
∣∣T−∣∣ · ∑

t∈T−

post(t)

)
+ c

24 Anagnostopoulos, Broder and Punera

(a) RCV1-v2 dataset (b) RCV1-v2 dataset

(c) RCV1-v2 dataset (d) 20-Newsgroup dataset

Fig. 7. “Query execution time” (in ms) is plotted against various parameters for the Reuters
and 20 Newsgroups dataset. All these queries were created using the Naive Bayes weighting
scheme and the IG term selection measure. Section 4.7 contains details about the final cost-
estimation formula we obtain.

where T+ (T−) is the set of terms in the query with positive (negative) weights,
post(t) is the length of the posting list of term t, and a, b, and c are constants.
We computed the values of these constants through regression analysis, and for
the RCV1-v2 dataset their values are a = 8.68 · 10−5, b = 3.57 · 10−6, and
c = 4.15 · 103.

This dependency is a result of our implementation of the WAND operator,
and a different implementation will presumably demonstrate a different depen-
dency. Despite this, the entire procedure that we have followed can be applied to
other implementations to deduce results of the same type, which can later guide
the term-selection mechanism.

The corresponding graph for the 20-Newsgroup dataset is depicted in Fig-
ure 7(d). We can still see the same trend, the linear dependency of the time on
the cost estimation formula presented above. However, there is more noise in this
case since 20 Newsgroups is a much smaller dataset, and therefore the running
time of queries is small (often a few milliseconds) making our measurements

Effective and Efficient Classification on a Search-Engine Model 25

(a) IG+RTFIDF(50 docs) (b) IG+RTFIDF(50 docs)

(c) IG+RTFIDF(50 docs) (d) Fisher+RTFIDF(50 docs)

Fig. 8. Graphs (a) and (b) depict the AUC and sum of postings lists as a function of the
number of query terms for different values of α (defined in Section 3.3.3). Graphs (c) and (d)
depict the Ratio of AUC and the Cost Estimate for queries created by α = 0.25 and α = 0,
for different query sizes.

more susceptible to other factors. The constants in the cost estimation formula
for the 20-Newsgroup dataset are a = 9.84 · 10−5, b = 3.2 · 10−5, and c = 5.6.

4.8. Using Posting-List Sizes for Term Selection

In this section we experiment with the term-selection-score in Equation (3).
Specifically, we vary the exponent α to observe the effect of normalizing the term-
accuracy-score with the size of the term’s postings list. All these experiments were
performed on the 20-Newsgroup dataset using RTFIDF based queries, trained
with 50 documents per class.

Figure 8(a) graphs the accuracy (in terms of AUC of query results) versus the
number of terms in the query. The different curves represent varying amount of
importance given to the size of the postings list in term selection (by varying α).
As expected, as α increases and more emphasis is laid on reducing the cost of the
query at the expense of discriminative power of the terms, the accuracy decreases.

26 Anagnostopoulos, Broder and Punera

Figure 8(b) shows how the sum of postings list of the terms in the query increases
with the number of terms in the query. Once again, the different curves represent
different values of α. As expected, for higher α the rate of increase of the sum
of postings list is lower. From these two plots (Figures 8(a) and 8(b)), we can
conclude that α = 0.25 seems to offer the best trade-off of accuracy of query
results and efficiency of query execution.

In Figures 8(c) and 8(d) we plot the ratio of AUC and “query execution
time” (cost estimate based on our investigation in Section 4.7) for the queries
generated at α = 0.25 over queries generated with the highest possible values
(queries created with α = 0). As we can see, for the IG selection measure, for
as low as 10–15 query terms the loss in accuracy over the best possible is < 7%
with a “time” savings > 50%. The tradeoff is even better for the Fisher selection
measure (< 3% and ≈ 70% respectively). For both selection measures the trade-
off between accuracy and efficiency gets better as the number of terms in the
query increases. Hence, we have shown that by selecting terms after normalizing
the term-accuracy-scores with the size of their postings list, we can obtain very
efficient queries with minimal loss in classification efficacy.

5. Conclusions

In this paper, we showed how classification can be performed effectively and
efficiently using a search-engine model. This model has several benefits; such
as “output-sensitive” classification time and the ability to function on a corpus
processed primarily for search. We detailed a framework for construction of short
queries via selection and weighting of terms. We showed that surprisingly good
classification accuracy can be achieved on average by queries with as few as 10
terms. More precisely, we show that on our set-up the best 10-term query can
achieve 93% of the accuracy of the best SVM classifier (which has 14,000 terms).
Further, we showed that this accuracy could be boosted by judicious addition
of negative terms in the query as well as by the use of term correlation in the
corpus. These two techniques can be of use in other contexts where feature-
selection methods are applied.

We studied the trade-offs between accuracy (effectiveness) and query pro-
cessing time (efficiency). As a part of this study, we performed experiments to
determine the relationship of the query execution time with number of terms
and their postings list sizes in our search engine. Furthermore, we showed that
by carefully selecting terms we can can further improve efficiency with minimal
loss in accuracy; continuing the above example, if we are willing to tolerate an
accuracy reduction to 89% of the best SVM, we can build a 10-term query that
can be executed more than twice as fast as the best 10 terms query.

Acknowledgements. For our large scale experiments with the Juru search engine, we
would like to thank David Carmel, Steve Gates, Jasmine Novak, and Wilfried Teiken
for their help and support. Ravi Kumar and Andrew Tomkins participated in the early
discussions that led to the problem formulation and to the paper approach. Finally, we
also want to thank Rie Ando, Roberto Bayardo, David Gondek, David Johnson, and
Tong Zhang for many useful discussions and suggestions on the content of the paper.

References

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval, Addison Wesley.

Effective and Efficient Classification on a Search-Engine Model 27

Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A. and Zien, J. (2003). Efficient query
evaluation using a two-level retrieval process, Proc. of the 12th International Conference
on Information and Knowledge Management, pp. 426–434.

Carmel, D., Amitay, E., Herscovici, M., Maarek, Y. S., Petruschka, Y. and Soffer, A. (2001).
Juru at TREC 10 - Experiments with Index Pruning, Proc. of the 10th Text REtrieval
Conference (TREC), NIST.
*1http://trec.nist.gov/pubs/trec10/papers/JuruAtTrec.pdf

Chakrabarti, S., Dom, B., Agrawal, R. and Raghavan, P. (1998). Scalable feature selection,
classification and signature generation for organizing large text databases into hierarchical
topic taxonomies, The VLDB Journal 7(3): 163–178.

Chang, C.-H. and Hsu, C.-C. (1999). Enabling concept-based relevance feedback for infor-
mation retrieval on the WWW, IEEE Transactions on Knowledge and Data Engineering
11(4): 595–609.
*2http://www.computer.org:80/tkde/tk1999/k0595abs.htm

Domingos, P. and Pazzani, M. J. (1997). On the optimality of the simple Bayesian classifier
under zero-one loss, Machine Learning 29(2-3): 103–130.
*3citeseer.ist.psu.edu/domingos97optimality.html

Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining
researchers, Technical Report HPL-2003-4, HP Laboratories.
*4http://www.hpl.hp.com/techreports/2003/HPL-2003-4.html;
http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf

Flake, G. W., Glover, E. J., Lawrence, S. and Giles, C. L. (2002). Extracting query modifi-
cations from nonlinear SVMs, Proc. of the 11th International Conference on World Wide
Web, pp. 317–324.
*5http://doi.acm.org/10.1145/511446.511488

Friedman, J. H. (1997). On bias, variance, 01 loss, and the curse-of-dimensionality, Data Mining
and Knowledge Discovery 1(1): 55–77.

Glover, E. J., Flake, G. W., Lawrence, S., Birmingham, W. P., Kruger, A., Giles, C. L. and
Pennock, D. (2001). Improving category specific web search by learning query modifications,
Symposium on Applications and the Internet, SAINT, pp. 23–31.

Haines, D. and Croft, W. B. (1993). Relevance feedback and inference networks, Proc. of
the 16th ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 2–11.
*6http://cobar.cs.umass.edu:80/info/psfiles/irpubs/relfeed.ps

Hancock-Beaulieu, M., Gatford, M., Huang, X., Robertson, S. E., Walker, S. and Williams,
P. W. (1997). Okapi at trec, 5th Text REtrieval Conference (TREC).

Joachims, T. (1998). Text categorization with support vector machines: Learning with many
relevant features, Proc. of 10th European Conference on Machine Learning, pp. 137–142.

Lewis, D. D., Yang, Y., Rose, T. G. and Li, F. (2004). RCV1: A new benchmark collection for
text categorization research, Journal of Machine Learning Research 5: 361–397.

McCallum, A. and Nigam, K. (1998). A comparison of event models for Naive Bayes text
classification, AAAI-98 Workshop on Learning for Text Categorization.
*7citeseer.ist.psu.edu/mccallum98comparison.html

Mitchell, T. (1997). Machine Learning, McGraw Hill.
Porter, M. F. (1997). An algorithm for suffix stripping, pp. 313–316.
Quinlan, J. R. (1993). C4.5: programs for machine learning, Morgan Kaufmann Publishers

Inc.
Rennie, J. and Rifkin, R. (2001). Improving multiclass text classification with the support

vector machine, Massachusetts Institute of Technology. AI Memo AIM-2001-026.
Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification, Journal of Machine

Learning Research 5: 101–141.

1 URL: http://trec.nist.gov/pubs/trec10/papers/JuruAtTrec.pdf
2 URL: http://www.computer.org:80/tkde/tk1999/k0595abs.htm
3 URL: citeseer.ist.psu.edu/domingos97optimality.html
4 URL: http://www.hpl.hp.com/techreports/2003/HPL-2003-4.html;
http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf
5 URL: http://doi.acm.org/10.1145/511446.511488
6 URL: http://cobar.cs.umass.edu:80/info/psfiles/irpubs/relfeed.ps
7 URL: citeseer.ist.psu.edu/mccallum98comparison.html

28 Anagnostopoulos, Broder and Punera

Robertson, S. E. and Jones, K. S. (1976). Relevance weighting of search terms, Journal of the
American Society of Information Science 27: 129–146.

Rocchio, J. J. (1971). Relevance feedback in information retrieval, in G. Salton (ed.), The
SMART Retrieval System: Experiments in Automatic Document Processing, Prentice-Hall,
pp. 313–323.

Salton, G., Buckley, C. and Yu, C. T. (1982). An evaluation of term dependence models in
information retrieval, SIGIR, pp. 151–173.

Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer.
Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods, Proc. of the

22nd ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 42–49.
*8citeseer.ist.psu.edu/yang99reexamination.html

Yang, Y. and Pedersen, J. (1997). A comparative study on feature selection in text categoriza-
tion, Proc. of the 14th International Conference on Machine Learning, pp. 412–420.

Author Biographies

Aris Anagnostopoulos received his Ph.D. in Computer Science from
Brown University. He is currently a Postdoctoral fellow at Yahoo! Re-
search. His main research interests lie on algorithmic issues in net-
works, search engines, and information retrieval.

Andrei Broder is a Yahoo! Research Fellow and Vice President for
Computational Advertising. Previously he was an IBM Distinguished
Engineer and the CTO of the Institute for Search and Text Analysis in
IBM Research. From 1999 until early 2002 he was Vice President for
Research and Chief Scientist at the AltaVista Company. Before that
he has been a senior member of the research staff at Compaq’s Systems
Research Center in Palo Alto. He was graduated Summa cum Laude
from Technion, the Israeli Institute of Technology, and obtained his
M.Sc. and Ph.D. in Computer Science at Stanford University under
Don Knuth. His current main research interest is computational ad-
vertising, a new sub-discipline at the intersection of large scale search
and text analysis, information retrieval, statistical modeling, machine
learning, classification, optimization, and microeconomics. Broder is
co-winner of the Best Paper award at WWW6 (for his work on du-
plicate elimination of web pages) and at WWW9 (for his work on
mapping the web). He has authored more than eighty papers and was
awarded over twenty patents. He is an IEEE fellow and served as chair
of the IEEE Technical Committee on Mathematical Foundations of
Computing.

8 URL: citeseer.ist.psu.edu/yang99reexamination.html

Effective and Efficient Classification on a Search-Engine Model 29

Kunal Punera is a Research Scientist at Yahoo! Research. Previ-
ously he was a doctoral student at the University of Texas at Austin,
where he was a member of the Intelligent Data Analysis and Explo-
ration Lab. There he received the Ph.D. degree in August 2007 and the
M.S.E degree in December 2004. He finished his undergraduate work
at University of Mumbai in 2001 and worked for a year as a researcher
with the Lab for Intelligent Internet Research at Indian Institute of
Technology-Bombay.

Correspondence and offprint requests to: Kunal Punera, Email: kunal @ lans.ece.utexas.edu

