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ABSTRACT

Although freelancing work has grown substantially in recent years,
in part facilitated by a number of online labor marketplaces, tradi-
tional forms of “in-sourcing” work continue being the dominant
form of employment. This means that, at least for the time being,
freelancing and salaried employment will continue to co-exist. In
this paper, we provide algorithms for outsourcing and hiring work-
ers in a general setting, where workers form a team and contribute
different skills to perform a task. We call this model team formation

with outsourcing. In our model, tasks arrive in an online fashion:
neither the number nor the composition of the tasks are known
a-priori. At any point in time, there is a team of hired workers
who receive a fixed salary independently of the work they perform.
This team is dynamic: new members can be hired and existing
members can be fired, at some cost. Additionally, some parts of the
arriving tasks can be outsourced and thus completed by non-team
members, at a premium. Our contribution is an efficient online
cost-minimizing algorithm for hiring and firing team members and
outsourcing tasks. We present theoretical bounds obtained using
a primal–dual scheme proving that our algorithms have logarith-
mic competitive approximation ratio. We complement these results
with experiments using semi-synthetic datasets based on actual
task requirements and worker skills from three large online labor
marketplaces.
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1 INTRODUCTION

Self-employment is an increasing trend; for instance, between 10%
and 20% of workers in developed countries are self-employed [24].
This phenomenon can be partially attributed to business down-
sizing and employee dissatisfaction, as well as to the existence of
online labor markets (e.g., Guru.com, Freelancer.com). This trend
has enabled freelancers to work remotely on specialized tasks, and
prompted researchers and practitioners to explore the benefits of
outsourcing and crowdsourcing [14, 15, 17, 22, 25, 28].

Although crowdsourcing adoption was driven, at least in part, by
the assumption that problems can be decomposed into parts that can
be addressed separately by independent workers, crowdsourcing
results can be improved by allowing some degree of collaboration
among them [20, 26]. The idea of combining collaboration with
crowdsourcing has led to research on team formation [2–4, 10–
12, 16, 18, 19, 21, 27], in which a common thread is the need for
complementary skills, and problem settings differ in aspects such
as objectives (e.g., load balancing and/or compatibility), constraints
(e.g., worker capacity), and algorithmic set up (online or offline).

Overview of problem setting and assumptions. We consider
tasks that arrive in an online fashion and must be completed by
assigning them to one or more workers, who jointly cover the skills
required for each task. At any point in time, there is a team of hired
workers who are paid a salary, independently of the work they
perform. This team is dynamic: new members can be hired and
existing members can be fired. Hiring and firing workers is expen-
sive, which is why companies routinely keep on the payroll skilled
workers even if they are temporarily idle; however, they also seek
to maintain “benching” to a minimum [29]. Outsourcing provides
additional flexibility as some parts of the incoming tasks can be
completed by non-team members who are outsourced. In practice,
outsourcing involves additional costs such as searching, contract-
ing, communicating with, and managing an expert or specialist
external to a company [6].

Deciding when to hire, fire, and outsource workers is a difficult
online problem with parameters that depend on job market con-
ditions and employment regulations. Intuitively: (1) if the cost of
hiring or firing workers is too high, outsourcing becomes preferable
to hiring; (2) if the cost of outsourcing work relative to salaries of
hired workers is too high, hiring becomes preferable to outsourcing;
and (3) if the workload consists of many repetitions of similar tasks,
hiring becomes preferable to outsourcing.

In this paper, we formulate this as an online cost minimization
problem, which we call Team Formation with Outsourcing (TFO).
We formally define this problem in Section 2 and solve it in Sec-
tions 3 and 4. Despite this being a model and hence not capturing
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every aspect of employment decisions in a company, we show how
it brings formalism to the intuitions we have outlined, helps un-
derstand under which circumstances a combination of hiring and
outsourcing can be cost effective, and motivates experimentation
on semi-synthetic data allowing us to cover a broad range of cases,
as we show in Section 5.

Algorithmic techniques. To the best of our knowledge, we are
the first to consider this problem and study some of its variants. Our
problem turns out to be an original generalization of online set cover
and online ski rental, two of the most paradigmatic online problems.
In fact TFO has elements that make it more complex; to solve it,
an algorithm has to address its various characteristics: (1) it is also
online, so decisions should be taken with limited information on
the input, but at each step, an entirely new instance of the set-cover
problem needs to be solved by using hired and outsourced workers;
(2) hired and outsourced workers collaborate with each other, and
this needs to be taken into account; and (3) workers can be hired,
fired, hired again, and so on, so one has to keep track of their status
at every point in time.

Several natural approaches inspired by online algorithms for
the problems we mentioned previously, fail to provide solutions
with theoretical guarantees. Therefore, we consider an approach
introduced in the last years for studying complex online problems,
the online primal–dual scheme [7]. The idea is to create a sequence
of integer programs to model the online problem by incrementally
introducing variables and constraints. We then consider their linear
relaxations and their duals to design an online algorithm and we
analyze it by comparing the costs of the primal and the dual pro-
grams as they evolve over time with the arrival of new tasks. This is
a powerful approach, which has so far been applied with success to
several classical online problems: packing and covering problems,
ski-rental, weighted caching, k-server among others [5]. We refer
to [5, 7] for a survey of the applications of the online primal-dual
method.

Our analysis results in polynomial-time algorithms that have
logarithmic competitive approximation ratios. This means that
despite the fact that our algorithms work in an online fashion and
they do not have any knowledge of the number and the composition
of future tasks, we can guarantee that the cost they will incur will
be, at every time instance, only a logarithmic factor worse than
the cost incurred by an optimal algorithm that knows the set of
requests a priori.

Contributions. The key contributions of our work are:
• We formalize TFO: the problem of designing an online cost-
minimizing algorithm for hiring, firing and outsourcing.
• We design efficient and effective approximation algorithms for
TFO using an online primal–dual scheme, and provide approxi-
mation guarantees on their performance.
• We experiment on semi-synthetic data based on actual task re-
quirements and worker skills from three large online labor mar-
ketplaces, testing algorithms under a broad range of conditions.
• We provide experimental evidence of the quality of the perfor-
mance of online primal–dual algorithms for a complex real-world
problem. Prior work has performed theoretical analysis mostly
for classical or practically motivated online problems [8, 9]. To

the best of our knowledge, the empirical validation was previ-
ously addressed only for the Adwords matching problem [13].We
demonstrate that such approaches, even though they are based
on heavy theoretical machinery, can be easily implemented and
are efficient in practice.

2 PRELIMINARIES

In this section, we formally describe our setting and problem, and
provide some necessary background.

2.1 Notation and Setting

Skills. We consider a set S of skills with |S | =m. Skills can be any
kind of qualification a worker can have or a task may require, such
as video editing, technical writing, or project management.
Tasks. We consider a set of T ∗ tasks (or jobs), J = {J t ; t =
1, 2, . . . ,T ∗}, which arrive one-by-one in a streaming fashion; J t is
the tth task that arrives. Each task J ∈ J requires a set of skills
from S , therefore, J ⊆ S . We use J t to refer to both the task and the
skills that it requires.
Workers. Throughout we assume that we have a setW of n work-
ers:W = {W r ; r = 1, . . . ,n}. Every worker r possesses a set of
skills (W r ⊆ S), and Pℓ denotes the subset of workers possessing a
given skill ℓ: Pℓ = {r ; ℓ ∈W r }. Similarly to the tasks, we useW r

to denote both the worker and his/her skills.
We partition the set of available workers W into the set of

workers who are hired at time t , denoted by H t , and the set of
workers who are not hired, denoted by F t (we sometimes refer to
these workers as freelancers, and they can be outsourced for J t ), so
thatH t ∩ F t = ∅ andW = H t ∪ F t .
Coverage of tasks. Whenever task J t ⊆ S arrives, an algorithm
has to assign one or more workers to it, i.e., a team. We say that
J t can be completed or covered by a team Q ⊆ W if for every skill
required by J t , there exists at least one worker in Q who possesses
this skill: J t ⊆ ∪W ∈QW . We assume that for every skill in the
incoming task there is at least one worker possessing that skill, so
all tasks can be covered.
Costs. Every workerW r potentially can charge the following non-
negative, worker-specific fees: (1) an outsourcing fee λr , (2) a hiring
fee Cr , and (3) a salary σr . Outsourcing fees λr denote the payment
required by a (non-hired) worker when a task is outsourced to
him/her. Note that λr depends on the worker but does not depend
on the task. Hiring fees Cr reflect all expenses associated to hiring
and firing a worker, such as signup bonuses and severance pay-
ments. Given that any algorithm commits to pay the firing costs the
moment in which it hires a worker, we follow a standard methodol-
ogy used in online algorithms for caching [7] and account for both
hiring and firing costs when the worker is hired. Once a worker r
is hired, s/he is paid a recurring salary σr , which recurs for every
step t that the worker is hired. The above notation is summarized
on Table 1.
Assumptions. To avoid making the model overly complicated, we
assume that the salary periods are defined by the arriving tasks, this
is, there is one task per salary period, and task completion takes
one salary period. A further assumption will be that σr < λr , as in
practice requesting a single task from an external worker involves
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Table 1: Notation

S Set of skills, sizem
J Set of tasks, size T ∗
T Number of tasks till current time
J t The t ’th task arriving

J t
ℓ
= 1 if task t requires skill ℓ, 0 otherwise

W Set of workers, size n.
W r

ℓ
= 1 if worker r possess skill ℓ, 0 otherwise

Pℓ Subset of workers possessing skill ℓ

Cr Hiring fee, paid when worker r is hired
λr Outsourcing fee, paid every time r performs a task
σr Salary paid to a hired worker r

extra costs [6], which are reduced when the worker is hired (or
when an outsourcing arrangement for an external group of workers
to perform a specific recurring task is done, which is different from
the individual outsourcing we discuss here). Finally, we assume
λr < Cr + σr , because otherwise workers would be hired and fired
for every task.

2.2 Problem Definition

We now define the problem that we study:

Problem 1 (Team FormationwithOutsourcing – TFO). There
exists a set of skills S . We have a pool of workersW , where each

workerW r ∈ W is characterized by a subset of skillsW r ⊆ S , an
outsourcing cost λr ∈ R≥0, a hiring cost Cr ∈ R≥0, and a salary cost

σr ∈ R≥0. Given a set of tasks J = {J1, J2, . . . , JT
∗

}, with J t ⊆ S ,
which arrive in a streaming fashion, the goal is to design an algorithm

that, when task J t arrives, decides which workers to hire (paying cost

Cr + σr ), keep hired (paying cost σr ), and outsource (paying cost λr ),
such that all the tasks are covered by the workers who are hired or

outsourced and the total cost paid over all the tasks is minimized.

TFO is an online problem: J is revealed one task at a time. Our
goal is to guarantee that for any input stream J the total cost of
our online algorithm, ALG (J ), is at most a small factor greater
than the total cost of the optimal (offline) algorithm that knows
J in advance, OPT (J ). This factor, maxJ ALG (J )/OPT (J ), is
called the competitive ratio of the algorithm.

We solve the TFO problem in Section 4. Because neither the
algorithm nor its analysis are trivial, we introduce them gradually
by first solving a simplified version of TFO, which we describe and
solve in Section 3.

2.3 Background Problems

Two special cases of TFO are SetCover and SkiRental.
SetCover: the single-task,multiple-skill case.The set cover

problem is an instance of our problem when there is a single task
J ⊆ S and for each workerW r , Cr = ∞. Then, as soon as the task
J arrives, the algorithm needs to cover all skills in J by selecting
a set of workers Q ⊆ W such that Q covers J and

∑
r ∈Q λr is

minimized. In this case, our problem can be solved using the greedy
algorithm for the set-cover problem (see [30, Chapter 2]).

SkiRental: the single-skill, single-worker case. The ski
rental problem is an instance of our problem when the sequence of

tasks J consists of a repetition of the same single-skill task J and
the workforceW consists of a single workerW r who possesses
the same one skill, and has σr = 0 and some Cr , λr . In this ski-
rental version of our problem [23], the question is the following:
without knowledge of the total number of tasks that will arrive,
when shouldworkerW be hired so that the total cost paid to him/her
in outsourcing plus hiring fees is minimized?

A well-known algorithm for this problem is the following: for
every instance of J t that arrives outsource J t to workerW r as long
as:
∑t
t ′=1 λr < Cr . Then, hire the worker when

∑t
t ′=1 λr ≥ Cr . The

above algorithm achieves a competitive ratio of 2.

3 THE LUMPSUM PROBLEM

First, we solve a simplified version of the TFO problem, where for
every workerW r the salary is equal to 0 (σr = 0). In this version
of the problem, which we call LumpSum, a hired workerW r is
paid a lump sum of Cr the moment s/he is hired and this amount
is assumed to cover all future work done by the worker. Instead,
when a workerW r is outsourced, a payment of λr is done every
time s/he performs a task.

3.1 The LumpSum-Heuristic Algorithm

A natural algorithm for solving the LumpSum problem combines
ideas from SetCover and SkiRental as follows: first, it starts with
no worker being hired and each workerW r is associated with a
variable δr initially set to 0.

For any T ∈ {1, . . . ,T ∗}, when task JT arrives, the algorithm
proceeds as follows: first, it identifies JT

F
to be the set of skills of JT

that cannot be covered by already-hired workers. Then, it covers
the skills in JT

F
using the greedy algorithm for SetCover. This way

it finds QT ⊆ W such that
∑
W r ∈QT λr is minimized. Finally, for

each workerW r ∈ QT , it updates δr ← δr + λr . WorkerW r is
hired when δr ≥ Cr . Clearly, since there are no salaries there is no
motivation to fire a worker once s/he is hired.
LumpSum-Heuristic has arbitrarily bad competitive ratio. Al-
though our experiments (Section 5) demonstrate that the above al-
gorithm, which we call LumpSum-Heuristic, performs quite well in
many practical cases, we can show that its competitive ratio can be
arbitrarily bad. For this, consider an example whereW = {W 1,W 2}
and both workers have the same skill:W 1 = W 2 = {ℓ}. Further
assume that λ1 = 1, λ2 = 1 + ϵ and C1 = M , C2 = 2, where
M is a large value and ϵ a small one. For a sequence of tasks
J1 = J2 = . . . = JT

∗

= {ℓ}, it is clear that LumpSum-Heuristic
will always outsource toW 1 until hiring him/her and will incur
worst-case cost 2M , whereas the optimal algorithm pays justC2 = 2.

3.2 A Primal–Dual Algorithm

The above discussion illustrates that to obtain an algorithm with
bounded competitive ratio, we need to take into account both the
outsourcing and hiring costs of all workers. To do so, we deploy an
online primal–dual scheme, which drives our algorithm design.
The integer and linear programs. The first step of the primal–
dual approach, is to define an integer formulation for the problem,
for each step T ∈ {1, . . . ,T ∗}. We assume that the current task is
the T th task and we use the following variables:
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• xr = 1 if workerW r is hired when task JT arrives; otherwise
xr = 0.
• fr t = 1 if worker W r is outsourced for performing task J t ;
otherwise fr t = 0.
Using this notation, LumpSum can be formulated as follows:

Linear program for LumpSum:

min
n∑
r=1

*.
,
Crxr + λr

T∑
t=1

fr t
+/
-

subject to:

∀t = 1, . . . ,T , ℓ ∈ J t :
∑

W r ∈Pℓ

(xr + fr t ) ≥ 1 (1)

∀t = 1, . . . ,T , r = 1, . . . ,n: xr , fr t ≥ 0

The above, in addition to the integrality constraints xr , fr t ∈ N,
form the integer program for LumpSum. In this formulation, the
objective function sums over all workers the hiring costs (paid if the
correspondingworker has been hired by time t ) and the outsourcing
cost for the tasks for which the worker has been outsourced. This is
the total cost of the solution until the current task JT . Note that in
this formulation of the problem there is no motivation for a worker
who is hired to be fired. Therefore, once xr is set to 1, it does not
change its value to become 0 again.

The first constraint (1) in the above program is the covering con-
straint: it simply enforces that for every skill required for each task,
there exists a hired or outsourced worker who has this skill. This
guarantees that the team selected for each task J t covers all the
required skills. The nonnegativity and the integrality constraints,
ensure that the solutions that we obtain from the integer-program
formulation can be transformed to a solution to our problem: even-
tually, every variable will take the value 0 or 1.1

To apply the online primal–dual approach, we first consider
the linear relaxation of the integer program, which simply drops
the integrality constraints xr , fr t ∈ N. In a solution to this linear
program (LP) each variable takes values in [0, 1]. Given this LP, we
can write its dual as follows:

The dual of the linear program for LumpSum:

max
T∑
t=1

∑
ℓ∈J t

uℓt subject to:

∀r = 1, . . . ,n:
T∑
t=1

∑
ℓ∈J t∩W r

uℓt ≤ Cr (2)

∀t = 1, . . . ,T , r = 1, . . . ,n:
∑

ℓ∈J t∩W r

uℓt ≤ λr (3)

∀t = 1, . . . ,T , ℓ ∈ J t : uℓt ≥ 0

Note that at every time t ∈ {1, . . . ,T } we have such a pair of
primal–dual formulations. We are now going to use these two
formulations for designing and analyzing our algorithm.

1A solution in which some variables take values greater than 1, can be transformed to
another feasible solution with lower cost by setting these variables to 1.

The LumpSum algorithm: Next, we present the LumpSum algorithm,
which is designed and analyzed using the primal and the dual linear
programs. We assume that task JT ,T ∈ {1, . . . ,T ∗}, has just arrived
and the algorithm must act before task JT+1 arrives (or the stream
finishes if T = T ∗).

All the variables used in our algorithm are initialized to 0 before
the arrival of the first task. When task JT arrives the following
steps are done:

1. Let F T and HT represent the workers who are not hired
and hired, respectively, at the time that JT arrives. Clearly,
when the first task arrives (T = 1), F T =W and HT = ∅.
For T > 1, the values ofHT and F T are updated in the last
step (step 10) of the previous round.

2. Let JT
H
= JT ∩ ∪W r ∈HTW r be the skills from JT that are

covered by already-hired workers and JT
F
= JT \ JT

H
.

3. For every skill ℓ ∈ JT
F

let P F
ℓ
= Pℓ ∩ F

T be the set of
workers in F T such that every worker in P F

ℓ
has skill ℓ.

Also let P FT = ∪ℓ∈JT
F

P F
ℓ

be the set of unhired workers who
possess at least one skill that is required and not covered by
already-hired workers.

4. for eachW r ∈ P FT : set x̃ ′r ← x̃r .
5. for each skill ℓ ∈ JT

F
:

while

∑
W r ∈Pℓ

(
x̃r + f̃rT

)
< 1:

for eachW r ∈ Pℓ : x̃r ← x̃r
(
1 + 1

Cr

)
+ 1

nCr
for eachW r ∈ Pℓ : f̃rT ← f̃rT

(
1 + 1

λr

)
+ 1

nλr
6. for eachW r ∈ P FT : set ∆x̃r ← x̃r − x̃

′
r .

7. SetH ′ ← ∅.
8. repeat ρ1 times:

for eachW r ∈ P FT
with probability ∆x̃r :

hire workerW r (set xr ← 1,H ′ ← H ′ ∪ {r })
with probability f̃rT :

outsource workerW r (set frT ← 1)
9. for each skill ℓ ∈ JT

F
:

if skill ℓ is not covered:
hire workerW r ∈ P F

ℓ
with minimum cost Cr

(set xr ← 1,H ′ ← H ′ ∪ {r })
10. HT+1 ← HT ∪H ′, F T+1 ←W \HT+1.

For T = 1, the LumpSum starts with no worker being hired. Intu-
itively, as tasks arrive, the algorithm tries to gauge two quantities:
(1) the usefulness of every worker for the task at hand JT and (2)
the overall usefulness of every worker for tasks J1, . . . , JT . This is
done in step 5, via variables f̃rT (for (1)) and x̃r (for (2)). In particu-
lar, the more usefulW r proves over time, the larger the value x̃r .
Subsequently, in step 8 every worker is outsourced or hired based
on the increase in the values of f̃rT and x̃r observed in step 5. Fi-
nally, for every skill that remains uncovered after step 8 (which
is randomized), LumpSum hires workerW r with the minimum Cr
that covers the skill. Note that the increase of the variables uℓT in
step 5 is not required for solving the LumpSum, but it is used in our
analysis and thus we leave it in the description above.

Our analysis requires to set the value of ρ1 in step 8 to ρ1 =
lnm + lnC∗, where C∗ = maxW r ∈W Cr .

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1112



Although one may think that an additive update of variables in
step 5 would seem more natural, such an update would introduce
a Θ(m) factor in the competitive ratio. On the other hand, the
multiplicative update that we adopt, has the property that the more
a workerW r is required over time the higher the increase of the
corresponding variable x̃r . This fact, leads us to Theorem 3.1 below.
Analysis. We have the following result for LumpSum.

Theorem 3.1. LumpSum is an O (logn(logm + logC∗))- competi-

tive algorithm for the LumpSum problem, whereC∗ = maxW r ∈W Cr .

Running time. The running time of LumpSum per task is domi-
nated by the execution of steps 5 and 8. For step 5, using binary
search, the algorithm can determine in O (logC∗) steps the min-
imum increase of x̃r and f̃rT that makes false the condition of
the while loop for at least one uncovered skill ℓ. Therefore, the
running time of step 5 is O

(���JT ���n logC∗) . Step 8, using a hash
table to store hired workers, can be executed in expected time
O (ρ1n) = O (n(logm + logC∗)). Therefore, the expected time re-
quired for processing task JT is O

(
n
(
logC∗ ���J

T ��� + logm
))
.

4 THE TFO PROBLEM

In this section, we provide an algorithm for the general version
of TFO (Problem 1). In contrast with LumpSum, now after hiring
a worker we must pay a salary σr ≥ 0, complicating the problem
significantly as it may now be cost-effective to fire workers.
The integer and linear programs for TFO. Given that work-
ers can be hired, then fired and potentially hired again, and so
on, we introduce in this new LP the notion of intervals. These
intervals are used to model periods in which workers are hired
I =
{{
ta , tb

}
| ta , tb ∈ N, ta ≤ tb

}
. Intuitively, an interval is a sub-

set of time steps during which an algorithm decides to hire a given
worker. The new LP, (omitted) uses the following variables:
• x (r , I ) with I ∈ I: x (r , I ) = 1 if workerW r is hired during the
entire interval I ; otherwise x (r , I ) = 0.
• fr t : fr t = 1 iff workerW r is outsourced for performing J t .

It turns out that it is hard to design an approximation algorithm
with proven guarantees using this program, mostly because it is
hard to keep track of the costs being paid for every worker when the
intervals of him/her being hired, outsourced, or idle are of variable
length. Therefore, we resort to a different overall strategy: First, we
define the Alt-TFO problem, in which the solutions are restricted
such that every worker is hired for fixed-length (worker-specific)
intervals (Section 4.1). Then, we design an algorithm for Alt-TFO
with good competitive ratio (Section 4.2). Finally, we prove that a
solution to Alt-TFO can be transformed to a solution for TFO, and
that any solution of TFO can be transformed to a feasible solution
of Alt-TFO that is a factor of at most 3 times higher (Section 4.3),
obtaining an approximation algorithm for TFO.

4.1 The Alt-TFO Problem

The difference between Alt-TFO and TFO is that we restrict the
solutions of the former to have a specific structure; whenever
worker W r is hired s/he is then fired after ηr

△
= ⌈Cr /σr ⌉ time

units—independently of whether s/he is used or not in tasks within
these ηr time units.

In this case, every workerW r is associated with a new hiring
cost Ĉr , which is the summation of his/her original hiring cost
Cr plus the salaries paid to him/her for the ηr time units he is
hired. Thus, the total hiring cost and salary for an entire interval is
Cr + ηr · σr ≤ Cr +

(Cr
σr + 1

)
· σr ≤ 3Cr .We will use Ĉr

△
= 3 ·Cr .

We can nowwrite the LP forAlt-TFO. In addition to the notation
we discussed in the previous paragraph, we use I t ∈ I to denote
the interval that starts at time t . WorkerW r has x (r , I ) = 1 iff
s/he is hired during the entire interval I . All intervals I for which
x (r , I ) = 1 are of fixed length ηr .
Linear program for Alt-TFO:

min
n∑
r=1



∑
I ∈I

Ĉrx (r , I ) +
T∑
t=1

λr fr t


subject to:

∀t = 1 . . .T , ℓ ∈ J t :
∑

W r ∈Pℓ

*.
,
fr t +

∑
I ∈I:t ∈I

x (r , I )+/
-
≥ 1 (4)

∀t = 1 . . .T , r = 1 . . .n, I ∈ I : x (r , I ), fr t ≥ 0

4.2 Solving the Alt-TFO Problem

In this section, we design and analyze an algorithm for the Alt-
TFO problem. The similarity between the LPs for Alt-TFO and
LumpSum (Section 3) translates into a similarity in the algorithms
(and their analysis) of the two problems. The key difference now is
that we need to take care of the firings.

Our algorithm for Alt-TFO differs from the algorithm for Lump-
Sum in steps 1, 5, 8, and 9, which are changed as follows:

1’. LetF T andHT represent theworkerswho are not hired and
hired, respectively, at the time that JT arrives. Clearly, when
the first task arrives (T = 1), then F T =W andHT = ∅. For
T > 1, the values ofHT and F T are updated in the last step
(step 10) of the previous round and then we remove workers
whose hiring interval finished in the previous step:
F ′ ← {r ∈ W ; x (r , IT−ηr ) = 1}
HT ← HT \ F ′, F T ←W \HT

for eachW r ∈ F ′: set x̃r ← 0
5’. for each skill ℓ ∈ JT

F
:

while

∑
r ∈Pℓ

(
x̃r + f̃rT

)
< 1:

for each r ∈ Pℓ : x̃r ← x̃r

(
1 + 1

Ĉr

)
+ 1

nĈr
for each r ∈ Pℓ : f̃rT ← f̃rT

(
1 + 1

λr

)
+ 1

nλr
8’. repeat ρ2 (T ) times:

for each r ∈ P FT
with probability ∆x̃r :

hire workerW r (set x (r , IT ) ← 1,H ′ ← H ′ ∪ {r })
with probability f̃rT :

outsource workerW r (set frT ← 1)
9’. for each skill ℓ ∈ JT

F
:

if skill ℓ is not covered:
outsource workerW r , r ∈ P F

ℓ
, with minimum cost λr

(set frT ← 1)
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Our analysis requires to set ρ2 (T ) = lnm + ln λ∗ + 2 lnT , where
λ∗ = maxW r ∈W λr .
Analysis of Alt-TFO. Algorithm Alt-TFO gives a solution with
proven theoretical guarantees for Alt-TFO. As before, the multi-
plicative update is needed to obtain this competitive ratio. We have
the following theorem (proof omitted due to space constraints).

Theorem 4.1. Alt-TFO is an O (logn(logm + log λ∗ + logT ∗))-
competitive algorithm for the Alt-TFO problem.

4.3 Solving TFO Using Alt-TFO

Note that any solution output by Alt-TFO can be transformed into
a feasible solution to the original TFO problem by setting дr t ← 1
for each r , t ∈ I for which x (r , I ) = 1, and дr t ← 0 otherwise. We
call the algorithm that runs Alt-TFO and subsequently does this
transformation a its final step, the TFO algorithm.

The question is whether TFO provides a solution with bounded
competitive ratio for the TFO problem. We answer this question
affirmatively by showing (1) that the solution of TFO for the TFO
problem is feasible and has a cost bounded by the cost of Alt-TFO
for the Alt-TFO problem, and (2) that any solution for the TFO
problem can be turned into a feasible solution to the Alt-TFO
problem at the expense of a small loss in the approximation factor.
These two suffice to prove that the solution produced by TFO is a
good solution for the TFO problem. We have the following result
(proof omitted due to space constraints):

Theorem 4.2. TFO is anO (logn(logm+log λ∗+logT ∗))-competitive

algorithm for the TFO problem.

Running time. Similarly to Section 3, the expected time required
to process task JT is O

(
n
(
logC∗ ���J

T ��� + logm + logT
))
.

Lower bound.Note that there is little hope for significant improve-
ment of our theoretical results. In particular, Alon et al. [1] have
proven a lower bound of Ω

(
logn logm

log logn+log logm

)
on the competitive-

ness of any deterministic algorithm for the unweighted online set
cover problem. The unweighted online set cover problem, is a special
case of TFO (and of LumpSum) where for each workerW r we have
Cr = λr = 1, σr = 0, and for each task JT we have JT−1 ∪ {ℓ}, for
some skill ℓ ∈ S \ JT−1 (with J0 = ∅).

4.4 The TFO-Heuristic
Similarly to LumpSum, we also consider the heuristic TFO-Heuristic,
which is a generalization of LumpSum-Heuristic, for general val-
ues of σr . Specifically, the difference is that workerW r is hired
when δr ≥ Cr+ηr ·σr , and is fired afterηr tasks (see Sections 3.1 and
4.1 for definitions ofδr andηr ). Note that theoretically TFO-Heuristic
may perform arbitrarily bad: the example of Section 3.1 holds for
TFO-Heuristic for small σr . Yet, in Section 5 we observe that even
though it does not offer the theoretical guarantees of TFO, it per-
forms well in practice.

4.5 The TFO-Adaptive algorithm

As we will see in Section 5, although TFO gives theoretical guaran-
tees for the worst-case performance, in practice some of our other
algorithms for the TFO problem may perform better under some
input parameters. Given the low running time of all our solution

Table 2: Characteristics of the three source datasets used to

generate workloads for our experiments. Numbers in italics

correspond to tasks generated for the Upwork dataset, as ex-

plained in Section 5.1.

Dataset UpWork Freelancer Guru

Skills (m) 2,335 175 1,639
Workers (n) 18,000 1,211 6,119
Tasks (T ) 50,000 992 3,194
... distinct 50,000 600 2,939
... avg. similarity (Jaccard) 0.095 0.045 0.018

Average Skills/worker 6.29 1.45 13.07
Average Skills/task 41.88 2.86 5.24

approaches to TFO, we implemented the TFO-Adaptive algorithm.
This algorithm runs in parallel all the presented methods for solv-
ing the TFO problem (TFO, TFO-Heuristic, Always-Outsource
and Always-Hire), and selects at each time the current minimum-
cost algorithm to apply to solve the current task, switching between
algorithms when it is advantageous. The asymptotic worst-case
results hold for the TFO-Adaptive algorithm as well. Furthermore,
our experiments (see Section 5) show that it is beneficial to change
the hiring policy even if we pay switching costs.

5 EXPERIMENTS

Our experiments seek to compare the total cost that would be in-
curred by companies using different algorithms to assign workers
to a stream of incoming tasks. We use synthetic datasets represent-
ing possible workloads, built using actual task requirements and
worker skills from three large online marketplaces. Synthetic data,
while having the limitation of not reflecting the particular condi-
tions of a specific company, allows us to evaluate the effectiveness
of our algorithms under a broad range of conditions. Section 5.1 in-
troduces our datasets, Section 5.2 presents results on the LumpSum
problem, and Section 5.3 on the TFO problem.

5.1 Datasets

We start by introducing our datasets and discussing our choice of
cost parameters for experimentation.
Source datasets. To create a large pool of tasks from which to
sample workloads, we use datasets obtained from three large online
marketplaces for outsourcing: UpWork, Freelancer and Guru (the
authors are not associated with any of these services). All three are
in the top-30 of traffic in their category (“consulting marketplaces”)
according to data from Alexa (Feb. 2018), indeed, Freelancer and
Guru are respectively number 1 and number 3. General statistics of
these datasets are shown on Table 2.
Worker skills.The input data that we obtained contain anonymized
profiles for people registered as freelancers in these marketplaces.
These include their self-declared sets of skills, as well as the average
rate that they charge for their services. There is a large variation
in the number of skills per worker among datasets, as can be seen
in Table 2. Data have been cleaned to remove skills that were not
possessed by any worker and skills that were never required by
any task. The numbers in Table 2 refer to the clean datasets.
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Figure 1: Experimental comparison of algorithms showing

total cost due to outsourcing, hiring, and paying salaries as a

function of the number of tasks in the input, averaged over

100 workloads generated with p = 100. Left: Algorithms for

problem LumpSum. As expected, Always-Hire has the small-

est cost if the number of tasks is large, however an online

algorithmdoes not know the number of tasks. Our online al-

gorithm and its heuristic version (LumpSum-Heuristic) show
a cost that does not exceed twice of that of Always-Hire.
In contrast, Always-Outsource has cost proportional to the

number of tasks. Parameters Cr = 4λr and T = 40K.
Right: Algorithms for problem TFO. Our online algorithm,

its heuristic version (TFO-Heuristic) and the TFO-Adaptive
have smaller cost than Always-Outsource and Always-Hire.
The latter diverges rapidly due to salary costs. Parameters

Cr = 4λr , σr = 0.1λr and T = 10K.

Tasks. For both Freelancer and Guru we have access to a large
sample of tasks commissioned by buyers in the marketplace; they
are included as tasks on Table 2. They correspond to actual tasks
brought to these marketplaces by actual users. These samples are
anonymized: we do not know the name of the company commis-
sioning them, and there are no timestamps in this data. In the case
of Upwork, we generate synthetic tasks following a data-generation
procedure used in previous work [4]: we remove a small number of
workers (10%), who are excluded from the pool of workers in the

dataset, and then repeatedly sample subsets of them to create tasks,
by interpreting the union of their skills as task requirements.
Workloads. Marketplaces for online work cover a broad range of
tasks from graphic design and web development to accounting,
administrative assistance, and legal consulting. Except for huge
conglomerates, most firms will not outsource work across all cate-
gories at the same time. The workload-generation process that we
use has a single parameter p, which we call the coherence parameter

of the workload, and works as follows. First, we start with a random
task, which we select as pivot. To select the next task, with proba-
bility 1/p we select a random task from the pool of distinct tasks in
the dataset and make this task the new pivot, and with probability
1 − 1/p we select another task with Jaccard similarity at least 0.5
to the pivot, The expected length of a sequence of “similar” tasks
is p. Each workload stream that we create has 10K tasks. We also
experimented with streams of up to 100K tasks, but we observed
that 10K tasks suffice to expose the trends of the algorithms that we
compare. We believe that in general a large value of p is realistic for
a company, as customers would probably procure from it services
exhibiting a certain coherence; we also evaluate our algorithms for
a broad range of values for p.

For each dataset and for each coherence parameter that we use,
we generated 100 workload streams; the costs that we report in our
experiments are averages over these 100 workloads.
Cost parameters. We have data about the rates charged by work-
ers in each marketplace, which we directly interpret as their out-
sourcing costs λr . However, we do not have their hiring or salary
costs, so we experiment with different values for these costs.

For hiring costs, which are characterized by Cr > λr , we assume
they are a multiplicative factor larger than the hiring cost, Cr =
αr λr . We performed extensive experiments in which Cr varied
between 1λr and 30λr , either as a fixed value, or setting αr to be a
random variable distributed uniformly in a small range.

For salary costs, we assume that they are a fraction of outsource
costs, experimenting with values from σr = λr /100 to σr = λr /4.
Salaries σr are smaller than outsourcing costs λr because the latter
includes many costs in which a company incurs when outsourc-
ing [6], including: (i) outside-hired consultants are usually more
highly paid per hour/day than regular employees for a company,
(ii) there are transaction costs involved in locating and contracting
and outsourced worker that do not exist for regular employees, and
(iii) there are communication and management costs of handling
someone external to a company.

5.2 Experiments with LumpSum

Baselines. We consider two baselines. The Always-Hire base-
line solves the SetCover problem for finding a low-cost set of
workers that cover the task’s uncovered skills and hires them. The
Always-Outsource baseline never hires, instead it outsources to
workers that cover the required skills for the task, by solving a
SetCover problem instance.
Results. Figure 1 (Left) summarizes our results for LumpSum for
workloads generatedwith the UpWork, Freelancer andGuru datasets,
depicting total cost as a function of the number of tasks.

We observe that under all these workloads the algorithms behave
similarly. Always-Outsource has cost proportional to the number
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of tasks and is not competitive, its cost is mostly outside the range of
Figure 1 (Left). As expected, Always-Hire performs the best in the
long run, because if the number of tasks is large, hiring is a dominant
strategy; however the online algorithm does not know the number
of tasks. Experimentally, the LumpSum algorithm has a cost that does
not exceed that of Always-Hire by more than a factor of 2, across
all the scenarios that we tested. We note that for short sequences
LumpSum has lower cost; this difference in the cost can sometimes be
an order of magnitude smaller (plots omitted for brevity). We also
note that although LumpSum-Heuristic can, theoretically, perform
arbitrarily bad, in our experiments it performs quite well—although
worse than the theoretically justified LumpSum.
Variations (plots omitted for brevity). Figure 1 (Left) is obtained
withCr = 4λr . We do not observe dramatic variations in the results
when varying this parameter in the studied range (1λr through
30λr ): LumpSum has a smaller cost than Always-Outsource. In gen-
eral, higher hiring costs mean the number of tasks required before
hiring a worker is larger, the costs of LumpSum and Always-Hire
are higher, and the advantage for LumpSum over Always-Hire for a
small number of tasks holds for a longer period of time.

In all plots of Figure 1 we use coherence parameter p = 100,
which means we expect the input stream to be composed, on aver-
age, of runs of 100 similar tasks (i.e., having Jaccard coefficient of
at most 0.5 between consecutive ones). In this setting, even if the
workload is not coherent (experimentally, even for p = 1), LumpSum
is still better than Always-Outsource.

5.3 Experiments with TFO

Baselines. As in LumpSum, we consider baselines Always-Hire
and Always-Outsource. Additionally, we consider TFO-Heuristic
(defined in Section 4.4), which does not have a theoretical guarantee.
Results. Figure 1 (Right) summarizes our results for TFO. We ob-
serve that TFO,TFO-Heuristic, and TFO-Adaptive have the small-
est total cost, followed by Always-Outsource. In contrast, the
Always-Hire strategy has much higher cost due to mounting salary
costs. We also observe that while TFO-Heuristic does not offer
the theoretical guarantees of TFO, it performs well in practice.
Variations. Similarly to LumpSum, varying Cr does not bring dra-
matic changes, but as Cr increases while maintaining workload
coherence and salary to outsource cost ratios constant, the ad-
vantage of TFO over Always-Outsource decreases, and for large
hiring costs Always-Outsource has the smallest cost (plots omit-
ted for brevity). Concretely, for p = 100 and σr = λr /10, if we
vary the hiring cost Cr (from 1λr to 30λr ), the total cost of TFO
remains less or equal than the total cost of Always-Outsource un-
til Cr = 16λr , when the cost of TFO becomes larger than the cost
of Always-Outsource for the workload generated using the Guru
dataset. The corresponding values of Cr for workloads generated
with Freelancer and Upwork data are Cr = 18λr and Cr = 26λr
respectively. As expected, if the hiring costs are sufficiently large,
Always-Outsource becomes a dominant strategy.

Figure 2 (Left) compares TFO and Always-Outsource experimen-
tally by varying the coherence parameter p from 20 to 200 and σr
from λr /50 to λr /4. We observe that less coherent workloads and
high salaries make hiring more expensive; Always-Outsource then
becomes a dominant strategy. Figure 2 (Right) shows the power of
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(f) Guru: TFO-Adaptive vs.
Always-Outsource

Figure 2: (Best seen in color.) Left: ratio of the cost achieved

by TFO and Always-Outsource. Right: ratio of the cost

achieved by TFO-Adaptive and Always-Outsource. Coherence
parameter p varies from 0.02 to 0.24; salary-to-outsource ra-

tio varies from 20 to 200; the number of tasks is 10K. Col-

ors represent the ratio of costs: blue (dominant towards

the bottom-left) indicates the region where our algorithms

TFO and TFO-Adaptive have smaller cost, while red indicates

the region where the baseline Always-Outsource has smaller

cost. In the white region both algorithms have similar costs.

the TFO-Adaptive algorithm. We observe that it performs equal or
better than Always-Outsource for all the range of parameters.

Performance. Our code, which will be released with this paper,
is a relatively straightforward mapping of the algorithm to simple
counters.Written in Java, it requires about 5 to 8 seconds on average
to process 10K incoming tasks using commodity hardware. We
remark that, although our formulation is a linear program, the
method does not involve solving the linear program, instead, we
obtain the solution using the specific primal–dual method that we
have described and analyzed.
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6 RELATEDWORK

To the best of our knowledge, we are the first to introduce and solve
the Team FormationwithOutsourcing (TFO) problem. However, our
work is related to existing work on crowdsourcing, team formation,
and online algorithms design, which we outline next.

Crowdsourcing. Among the extensive literature in crowdsourc-
ing, the most related to ours is the work of Ho and Vaughan [13].
Their goal is to assign individual workers to tasks, based on the
workers’ skills. Although Ho and Vaughan also deploy the primal–
dual technique to solve the task-assignment problem, the tasks they
consider can be performed by individual workers and not by teams.
Thus, both their problem and their algorithm is different from ours.

Team formation. A large body of work in team formation consid-
ers the following problem: given a social or a collaboration network
among the workers and a set of skills that needed to be covered,
select a team of experts that can collectively cover all the required
skills, while minimizing the communication cost between the team
members [2, 4, 10, 11, 16, 18, 19, 27]. Other variants of this problem
have also considered optimizing the cost of recruiting promising
candidates for a set of pre-defined tasks in an offline fashion [12]
and minimizing the workload assigned to each individual team
member [3, 21].

Although the concept of set-cover is common between our work
and previous work, the framework we propose on this paper is dif-
ferent in multiple dimensions. First, we do not focus on optimizing
the communication cost; in fact we do not assume any network
among the individual workers. Our goal is to minimize the overall
cost paid on hiring, outsourcing, and salary costs. This difference
in the objectives leads to different (and new) optimization problems
that we need to solve. Secondly, most of the work above focuses
on the offline version of the team-formation problem, where the
tasks to be completed are a-priori known to the algorithm. The
exception is the work of Anagnostopoulos et al. [3, 4]. However,
in their setting they aim to distribute the workload as evenly as
possible among the workers, while our objective is to minimize the
overall cost of maintaining a team that can complete the arriving
tasks. Moreover, the option of outsourcing that we propose is new
with respect to the team formation literature. Finally, in the design
of our online algorithms we use the primal–dual framework, which
was not the case for previous work on online team formation.

Primal–dual algorithms for online problems. The algorithms
we design for our problems use the primal–dual technique. A thor-
ough analysis on the applicability of this technique for online prob-
lems can be found in the book by Buchbinder and Naor [7] and in
[5]. Probably the most closely related to problem are the ski-rental
and the set cover problems. We have already discussed the connec-
tion of TFO to ski-rental and set cover in Section 2. One can also
draw the analogy with caching; one can think that bringing a page
to the main memory is analogous to hiring a person. The main
differences are that in the typical caching problem we do not have
covering constraints, there are no recurring costs for keeping pages
in the cache, and there is a fixed limit on the number of pages we
can insert in the cache.

7 CONCLUSIONS

In this paper, we introduced and studied Team Formation with Out-

sourcing. We showed that hiring, firing, and outsourcing decisions
can be taken by an online algorithm leading to cost savings with
respect to alternatives. These cost savings are more striking when
(1) the hiring and salary costs are low, because then hiring becomes
an attractive option; (2) the tasks exhibit high coherence, i.e., con-
secutive tasks are similar to each other; and (3) the time horizon is
long enough that we can find a core pool of workers to stay hired
and satisfy a large fraction of the skills required by incoming tasks.

Technically, the problems we have analyzed in this paper involve
embedding a set-cover problem in an online algorithm. Our main
algorithms (LumpSum, TFO) are able to give results that are competi-
tive in practice and, equally importantly, theoretically close to the
best one can hope for. The design of our algorithms is based on
the online primal–dual technique; we provide an experimental evi-
dence of the goodness of this method even for a complex real-world
problem. Furthermore, we present two heuristics which, although
in theory are not competitive, perform well in practice. Future
work may extend this by considering worker compatibility [4, 18],
learning of new skills by hired workers, or other extensions.
Future work. As most problems, we can introduce further ele-
ments to introduce even more generality. For instance, the algo-
rithms we have described assume one and only one task arrives
per unit of time, can be extended trivially to cases in which task
arrivals occur at arbitrary times.

As we noted in Section 6, there are also parallels with scenarios
of caching and paging. Extending TFO when the number of hired
workers is limited turned out to be a challenging combination of
set cover, weighted caching and ski rental. We have began to study
these problems, our preliminary results show that we can achieve
a O (logk logm) approximation, in which k is the maximum size
of the worker pool. A more natural constraint could be that, for
instance, the total cost paid per unit of time cannot exceed a certain
budget, which would represent a cap in weekly or monthly personel
expenses. Another element we could incorporate is the possibility
of not handling a task, but instead paying a penalty when a task
is too difficult to handle with current workers and it is expensive
to replace the worker pool with new workers. Other variants can
include workers with different ability levels. We plan to study some
of these variants in future work.

Additionally, we note that all the algorithms we have presented
in this paper are deterministic. Just as randomized algorithms for
paging can be defined in the primal–dual framework [7], it is of
interest to introduce other update rules for the primal variables
that allow us to describe a randomized algorithm.
Reproducibility. The code and data of this paper can be found at
https://github.com/adrianfaz/Algorithms-for-Hiring-and-Outsourcing-

in-the-Online-Labor-Market.
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