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ABSTRACT

In the last two decades, we have witnessed an immense
increase in the use of multimedia content on the internet,
for multiple applications ranging from the most innocuous
to very critical ones. Naturally, this emergence has given
rise to many types of threats posed when this content can
be manipulated/used for malicious purposes. For example,
fake media can be used to drive personal opinions, ruining
the image of a public figure, or for criminal activities such as
terrorist propaganda and cyberbullying. The research com-
munity has of course moved to counter attack these threats
by designing manipulation-detection systems based on a
variety of techniques, such as signal processing, statistics,
and machine learning. This research and practice activity
has given rise to the field of multimedia forensics.

The success of deep learning in the last decade has led to
its use in multimedia forensics as well. In this survey, we
look at the latest trends and deep-learning-based techniques
introduced to solve three main questions investigated in the
field of multimedia forensics. We begin by examining the
manipulations of images and videos produced with editing
tools, reporting the deep-learning approaches adopted to
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counter these attacks. Next, we move on to the issue of the
source camera model and device identification, as well as
the more recent problem of monitoring image and video
sharing on social media. Finally, we look at the most recent
challenge that has emerged in recent years: recognizing deep-
fakes, which we use to describe any content generated using
artificial-intelligence techniques; we present the methods
that have been introduced to show the existence of traces
left in deepfake content and to detect them. For each prob-
lem, we also report the most popular metrics and datasets
used today.




1

Introduction

Over the past years, online and multimedia content has passed tradi-
tional media as a preferred source of information, especially for young
people (Richard Fletcher, 2020), and in the next few years visual con-
tent offered by social networks like Instagram could possibly overtake
other platforms as a news source. The web and social media have fa-
vored the democratization of information and have allowed much more
widespread dissemination of news (BBC-News, 2020). Although access
to this content should have promoted the dissemination of reliable and
validated content from multiple sources of information, the web and
in particular social networks have also become a dangerous source of
disinformation and dissemination of criminal content. Recently, fake
videos of political leaders like Donald Trump, Vladimir Putin and North
Korean leader Kim Jong-un have become increasingly realistic, opening
up to the possibility of manipulating elections or public opinion (Staff,
2021 and Hao, 2020). Likewise, fake images and videos can be used for
cyberbullying, military propaganda, or other criminal acts. All these
problems have something in common. The widespread use of photo and
video editing applications and the ease of use and retrieval of these
tools have made multimedia manipulation a powerful instrument in the
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hands of criminals and attackers. Fake news, fake political campaigns,
and porn videos, as well as fraud attempts are becoming much easier to
spread and produce with a high level of realism. Distinguishing between
fake and real is becoming an extremely important but difficult task.
When multimedia contents are published on the web, they can easily
go viral on social media. Also, deepfakes, which consist of fake content
artificially generated typically using modern deep-learning approaches,
have received a lot of attention in the last few years thanks to the high
level of realism reached by this technology. Sophisticated deep-learning
architectures such as autoencoders (AE) and generative adversarial
networks (GANSs) can be used to create highly realistic fake images and
videos. Building trust and enabling the assessment of the authenticity
of multimedia content is no longer an option but a real necessity.

The area of multimedia forensics combines principles and approaches
from diverse research areas such as computer vision and signal processing,
when it comes to addressing the authenticity and source of an image or
a video. The three topics that multimedia forensics investigates mostly
are the following: (1) forgery detection, which involves the detection
of the authenticity of an image or video as well as of the presence of
any manipulations; (2) source identification, which is the reconstruction
of the history of some digital content, addressing which camera model,
brand, or even specific device has captured that content, or whether it
has been downloaded from social media; (3) deepfake detection, defining
a deepfake as any synthetic medium accounting for the replacement of
a person in an existing image or video with someone else’s likeness (see
Fig. 1 for instance). Figure 1.1 shows these three main problems.

Researchers have been studying the problem of forgery detection
for more than twenty years now. Every day, thousands of professionals
around the world use editing tools such as GIMP, Photoshop, Lightroom,
After Effects Pro, and Final Cut Pro X as basic applications for their
work. Multimedia forensic researchers have tried to provide an immediate
response to all such applications, developing new tools to spot fake
content. These methods can be used to detect subtle modifications, such
as double compression or blurring, as well as more sophisticated attacks
that could be used to change the semantic of a content. The most
widespread examples of these manipulations are splicing (an object is
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Figure 1.1: An overview of multimedia forensic investigations that we present in
this work.

copied from an image and pasted into another picture), copy—move (the
reproduction of an object into the same image), and video-frame deletion
and addition in the case of video sequences. Recently, the advancements
of artificially generated manipulations have attracted the attention of
many researchers. Deepfakes are raising new alarms for the production
of fake news, and their entry into the field of large technology giants has
accelerated the design of new methods. Figure 1.2 shows some examples
of the most recent fakes that spread out over the world.

Parallel to this problem, the identification of the source has been
carefully studied as a forensic analysis tool. This becomes extremely
important today in a hyper-connected world where information spreads
all over the web. In some scenarios, multimedia content may constitute
proof in the court proceedings and it becomes necessary to prove not only
the authenticity of an image or video but also the source of the image or
video itself. First of all, when it comes to assessing the authenticity of
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Figure 1.2: Some of the most recent fakes that spread out over the world.

an image or video, the most advanced techniques for forgery detection
allow to identify dishomogeneities in the considered image or video as
well as any tampered features responsible for introducing differences
from the original image/patch, especially any differences that are not
so evident to the naked eye. Source identification can then be used to
determine if the content was captured with a specific camera model or
brand and even with a specific device. This can be done by exploiting
the sequence of processes that a camera uses to convert the input light
hitting the lens into an output image or video. This operation leaves
important traces on the acquired files that can be used for forensic
purposes. With the widespread adoption of social media and messaging
applications, the task of deciding whether an image or video has been
downloaded from these platforms has become important as well.
Forensic problems have been studied for a long time and they
have been surveyed in multiple works such as Stamm et al. (2013),
Verdoliva (2020), and Yang et al. (2020b). For years, researchers with
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different backgrounds have adopted signal-processing, computer-vision,
and machine-learning techniques to solve the main challenges in this
research field. Deep learning has recently come up with new designs that
are capable of automatically learning both low- and high-level features
to be analyzed to solve forensic problems.

In this survey, we present deep-learning methods for multimedia
forensics, discussing the most important trends in both architectural and
data-processing choices. We begin discussing different techniques used
to manipulate content in Section 2. Next, we discuss image and video
forgery techniques in Section 3. In Section 4, we review deep learning
methods for source identification. Finally, in Section 5 we present the
recent solutions for deepfake detection. Section 6 recaps the evaluation
metrics considered throughout the cited works and Section 7 lists the
datasets that have been mostly adopted for the above-mentioned tasks.
Finally, in Section 8 we draw the conclusions.



2

Generating Fake Image and Video Content

The ultimate goal of multimedia forensics is to be able to detect and
track modified and generated content. Although the purpose of this
survey focuses on reporting the cutting-edge methods based on deep
learning that the research community has developed in recent years, it
is worth taking a step back at the various techniques that can be used
to generate fake images and videos and manipulation attacks in general.
In this section, we propose a fast introduction to different manipulations
and generative techniques that will be cited in Section 3 and Section 5
of this review.

Before moving on, we want to clarify the difference between image or
video forgery and generation. We refer to the term forgery whenever we
apply some manipulation to an existing image or video via traditional
editing software. This could be any kind of commonly used editing
operation such as image resizing or color correction, or content editing
operations such as adding a new object in an image or a frame in a video
to alter its semantic content. In Sections 2.1 and 2.2 we discuss both
image and video forgery attacks. When we refer to image and video
generation we instead refer to generated content through methods based
on computer graphics or on artificial intelligence. These last two types
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of attacks (both multimedia forgery and generation can be thought of
as attacks from the point of view of a multimedia-forensic researcher),
are typically used to generate realistic faces that do not exist or modify
in a realistic way the attributes of a source face in a video with that
of a target person. Fakes generated with computer graphics and deep-
learning approaches have much in common because they both lack the
characteristic features that are typical of images and videos acquired
by real cameras. We discuss these techniques in Section 2.3.

Following the classification of attacks that we described, we treat the
detection of manipulated content in three ways: (1) as a classification
problem where an image/video is classified as real or fake, (2) as a
regression problem where you want to locate the manipulated area of an
image or video, or (3) as an anomaly detection problem where a model
is trained on authentic examples and learns to reveal these attacks as
anomalies.

2.1 Multiple Compression

An image can be forged in many different ways. For example, you could
simply correct the colors and dimensions of a photo to improve its visual
quality before making it published on the Internet, or you could modify
the content by introducing new elements from other images with the
aim of changing the meaning of what has been caught in the image
itself. Regardless of the type of operations performed on the image, it
must be saved and recorded in a standard format. The same is true
for videos. The traces of multiple compression (or double compression
in the simplest case) do not tell us that a manipulation necessarily
took place, as it is still possible that a photo was compressed before
being shared in order to reduce the file size or exported in a format
other than the original one, however, it can be useful information to be
reconstructed to verify the genuineness of a multimedia content or to
trace its source as will be discussed in Section 4.

Image compression. Whenever we edit an image or we simply
export it with an editing application, this will be recompressed in the
current or a new file format. For example, when a grayscale image
undergoes JPEG compression, it is segmented into nonoverlapping
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patches. Next, the discrete cosine transform (DCT) of each patch is
computed and quantized. When the image is decompressed, each of the
steps performed during the encoding process, except for quantization,
is inverted. Therefore, each dequantized DCT coefficient is unlikely
to correspond to its original value, causing distortion on the original
image. These distortions left by multiple compressions can be exploited
to extract some relevant information about the history of an image.
Although this kind of traces typically suggest that an image may have
undergone manipulation (see Section 3), this information can also be
used to track image sharing on social media or to reconstruct the source
of a picture as discussed in Section 4.

Video Compression. Multiple compression can also be used for
videos. In fact, because the size of an uncompressed video file makes
it difficult to store or share it on the Internet, virtually all digital
video is compressed. Most of the compression algorithms used today
share the same basic idea. Instead of processing the entire video at
once, the encoder splits the video frame sequence into smaller seg-
ments. Each segment, known as a group of pictures (GOP), starts
with an intra-frame (I-frame) which is independently encoded using
a process similar to JPEG compression and continues with the pre-
dicted frames (P-frames) and bidirectional frames (B-frame). P-frames
are predicted from preceding frames and B-frames can be predicted
from I-frames or P-frames preceding or following them in the GOP.
As a result of this structure, multiple compression leaves two kinds
of traces: spatial and temporal. Spatial traces manifest to a single
video frame and are very similar to image compression fingerprints.
Temporal fingerprints are spread throughout the entire video and are
really useful when some frames are added to or deleted from the video.
In fact, this will cause a shift in the sequence of video frames, re-
sulting in the formation of a new set of GOPs when the video is
recompressed.

2.2 Manipulated Media

To detect the traces left by these editing operations, it is important to
list the most common operations that we want to recognize.
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Copy-move. A forger alters an image by replacing some part of
the image with content copied from somewhere elsewhere within the
same image. This is often done to hide the presence of an object by
covering it with other elements in the image (also know as removal) or
to create duplicates of a significant object within the image.

Splicing/cut-paste. Similar to copy-move, a forger alters an image
with content copied from another image. Because the two images usually
have different statistical properties, this kind of manipulation is typically
easier to detect with respect to copy-move.

Resampling. Resampling is performed whenever an image is re-
sized, rotated, or undergoes an affine transformation. Resampling is
the mathematical technique used to create a new version of the image
with a different size. For example, increasing the size of an image is
called upsampling; reducing its size is called downsampling. When you
downsample, you delete the information and therefore the details from
the image by computing the convolution of the image with a low-pass
filter (to avoid aliasing). However, when you upsample, you convolve
the image with some interpolation kernel, which means that the editing
software examines the colors and details of the original photo and cre-
ates new ones, which are then added to the existing details. In general,
resampling can be performed with several filters like nearest neighbor,
bilinear, bicubic, and windowed sinc functions. Even though the detec-
tion of resampling proofs in the entire image does not necessarily imply
that the image has been manipulated, it surely indicates that the image
has been processed. In fact, when creating a splice or copy-move image
fake, it is often necessary to resize or rotate an object in the image to
make the fake look visually realistic.

Contrast enhancement. This technique is typically used to adjust
the lighting within an image. Contrast enhancement works by apply-
ing a nondecreasing nonlinear mapping to the values of a signal that
can leave traces in the form of impulsive peaks and gaps introduced
into an image’s pixel values. Although it can be used to enhance a
photo that is too dark or too light, it is sometimes applied in conjunc-
tion with splicing to mask the difference in brightness between the
image from which the object introduced with the manipulation comes
from.
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Denoising/Median filtering. It is often used to denoise or smooth
an image through a nonlinear operation that smoothes the signal while
preserving its edge content. Through this technique a sequence of
observations of adjacent signals all ends up assuming the same value,
this operation leaves streaks in the signals.

2.3 Generated Media

The advancement of computer graphics and deep learning has led to
the emergence of more advanced manipulation techniques. Today, most
of the researchers’ efforts focus on detecting manipulations on faces. As
suggested by Rossler et al., 2019, current manipulation methods can
be grouped into two classes: facial expression manipulation and facial
identity manipulation. The first class allows the transfer of a person’s
facial expressions another. The latter consists in the replacement of the
face of a person with the face of another one. In the remainder of this
section, we report the most common attacks that have been studied in
recent years. Most of the attacks analyzed in recent years are collected
in the richest datasets containing deepfakes: FaceForensics++ and the
Deepfake Detection Challenge (DFDC) datasets (see Section 7.3).

Deepfake. The term Deepfakes has been widely adopted to indi-
cate face replacement methods based on deep learning. This term was
originated after a Reddit user named deepfakes claimed in late 2017 to
have developed a machine learning algorithm that helped him to trans-
pose celebrity faces into porn videos. However, it also represents the
name of a specific manipulation method that originally spread through
online forums. In a deepfake, the face of a target person is replaced by
another face from a source video or image. There are various public
implementations of DeepFakes available, most notably the FaceSwap
Github (Deepfakes Faceswap 2018) and FakeApp (Fake App 2018). The
model uses one shared encoder, but two separately trained decoders,
one for each identity in the swap. This architecture forces the encoder
to learn common features across both identities (e.g., lighting, pose,
facial expressions); then each decoder learns person-specific features
such as to produce a realistic swap.
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Face2Face. Face2Face (introduced by Thies et al., 2020) is a facial
reenactment method that transfers the expressions of a source face to a
target video while maintaining the identity of the target person. The
original method is based on two video input streams and a manual
keyframe selection. Through these frames, the model generates a dense
reconstruction of the face that can be used to reproduce the face in new
sequences.

FaceSwap. FaceSwap is a computer-graphics based method used to
transfer the face from a source to a target. Ic computes facial landmarks
in both source and target images, and it morphs the pixels from the
source image by fitting a 3D template model to match the landmarks in
the target image. This model is back-projected to the target image by
minimizing the difference between the projected shape and the localized
landmarks using the textures of the input image and blended with the
image.

Neural Textures. According to Thies et al., 2019, this approach
consists in training on original videos to learn object-specific neural tex-
tures (learned feature maps that are trained as part of the scene capture
process), which can be interpreted by a neural renderer. The model is
trained with a photometric reconstruction loss and an adversarial loss.

This completes our brief introduction on the manipulations and
generative techniques. We refer to them in the rest of our text. We
start in the next section by presenting the state-of-the-art on image
and video forgery techniques.
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Forgery Detection on Images and Videos

The widespread adoption of easy-to-use photo editing tools has made
image manipulation a powerful tool for criminals and attackers. Fake
news and fake political-campaign videos, as well as fraud attempts, are
becoming much easier to generate and spread, also with an extremely
high degree of realism.

Convolutional neural networks (CNNs) achieve highly accurate re-
sults on object detection tasks. However, standard CNNs tend to learn
features related to the image-specific content, whereas, image forensic
usually requires to suppress the semantic content and capture pixel
value dependencies left by editing operations. Therefore, the multimedia
forensics community has seen an increasing interest in the development
of new deep-learning solutions explicitly designed to solve the prob-
lem of forgery detection as much independently of the image-specific
content as possible. To address this problem, they have proposed dif-
ferent architectures to analyze both low-level and high-level features
left by image or video manipulations. In this section, we review the
actual state-of-the-art solutions, describing both the methodological
and the architectural choices that have been introduced in the last few
years.

322
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According to the definition given in Section 2, a forgery could be ev-
ery kind of editing operation that is performed over multimedia content,
therefore compromising the authenticity of the file. Such manipulations
can be the result either of a manual forgery procedure, for instance, a
manipulation carried out by a human with the help of software such
as Photoshop or GIMP, or of an automatic computer-generated one,
such as in the case of deepfakes or Computer-Generated Imagery (CGI).
Multimedia forensics is aimed at recognizing all these sorts of forgeries
and, in fact, we will examine all of them in this work. However, it is
common to treat these problems as separate because they could leave
different traces. Thus, in this section, we take care of manual forgeries
traces left by photo editing operations, and we discuss the second group
of computer-generated images or videos in detail in Section 5.

As new solutions for image forgery detection emerge, two impor-
tant design choices seem to guide all recent publications: the network
architecture and the set of features extracted. The rest of this sec-
tion explores recent trends involving deep neural networks; Tables B.1
and B.2 summarize some of the most innovative solutions related to
images and videos, respectively. We begin by discussing network ar-
chitectures targeting a single typology of attack and referenced in the
following as manipulation-specific architectures (see Section 3.1), then
we move on to the most recent trends involving the detection of multiple
kinds of different manipulations (referred to as multimanipulations from
Section 3.2 onwards). Finally, we conclude the section by reviewing
anomaly-based architectures (see Section 3.3), in which manipulations
are treated as anomaly points, therefore possibly enabling the detection
of general manipulations. Please see Figure 3.1 for the organization of
topics in this chapter.

3.1 Manipulation-Specific Architectures

The simplest family of deep learning models for detecting fake images
and videos is the one looking for a specific type of counterfeit attack.
Most of these models are usually borrowed from other computer vision
applications such as object detection and segmentation. We categorize
the detectors into two families based on their architecture: (1) single-
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Figure 3.1: An overview of forgery-detection approaches.

stream architectures, which are architectures composed of a single deep
learning classifier and (2) multistream solutions, which combine two or
more architectures targeting different forgery traces.

3.1.1 Single-Stream Architectures

The most straightforward detectors usually implement an established
deep learning model. These detectors (see Figure 3.3), usually take
as input a preprocessed image or patch residual, extracted through
constrained layers or filters. Then, convolutional layers learn to map
low-level features, which subsequently can be either fed to a classifier
or used to reconstruct the so-called manipulation mask, that is, the
image portion labeling the manipulated part of the image, as shown
in Figure 3.2. Various works have adopted these network architectures
to detect several types of processing applied to the images and videos,
including different kind of forgeries. In this section, we present their use
on resizing, splicing, image warping on faces, JPEG compression, and
video frame drop.

We start by describing some general approaches for detecting image
tampering.

Residual-based local descriptors have been proven successful in both
image forgery detection (Cozzolino et al., 2014a) and localization (Coz-
zolino et al., 2014b), thus attracting a lot of interest in the forensic
community. Such descriptors reveal anomalies by extracting Spatial
Rich Model (SRM) based (as in Fridrich and Kodovsky, 2012) or
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(a) Splicing. (b) Mask. (c) Ground truth.

(e) Mask. (f) Ground truth.

(i) Ground truth.

(g) Removal.

Figure 3.2: An example of most common image manipulation techniques. (a) a
portion of an image is copied and pasted into another image. (d) a portion of an
image is reproduced inside the same image. (g) a portion of the image is removed.
From Guan et al., 2019.
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Figure 3.3: An example pipeline for manipulation-specific single-stream architec-
tures. The input image, patch, or frame usually goes through a preprocessing step
where a constrained convolutional layer or filter is applied. Next, the convolutional
layers learn to extract relevant features, which subsequently can be either fed to a
classifier or used to reconstruct the manipulation mask.
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from image noise residuals. Once the image content is removed, the
so-called residual noise contains specific micro-patterns that can allow
for reliable analysis. In this respect, Cozzolino et al., 2017 have shown
that a class of residual-based characteristics can be extracted by means
of convolutional neural networks.

A paper that has been the basis of multiple subsequent researches
employing residuals is the work of Bayar et al., 2017. It investigates
the effect of several CNN design choices, tracing different guidelines
for designing and training CNN architectures for multimedia forensics.
As an initial step, the designer should pay particular attention to the
choice of the first convolutional layer, which is very crucial for CNN
performance. This layer is in charge of extracting the lowest-level features
from the input data. Thus, the authors compare the performance of a
predetermined high-pass filter (HPF) and of constrained convolutional
layers (Bayar and Stamm, 2016; Bayar and Stamm, 2017b), discussing
the important improvement brought by residual-based descriptors. Next,
the authors claim that the image manipulation detection rate could be
improved using deeper CNN architectures until the optimal depth is
achieved. Additionally, the use of 1 x 1 convolutional filters after the
highest-level feature maps i.e., the output of each convolutional layer)
and average-pooling instead of max-pooling operations help to increase
the detection rate (Xu et al., 2016). The 1 x 1 filters learn the association
between the highest-level feature maps in the network before the fully
connected layers perform the classification. The average-pooling layer
retains the most representative features from the deepest convolutional
feature maps in the network, which could be destroyed by means of
max-pooling. Finally, the authors show that batch normalization layers
can be used to reduce overfitting. They test their solution on a set
of experiments. At first, they evaluate the CNN’s ability to detect
a single manipulation (precisely, median filtering, Gaussian blurring,
additive white Gaussian noise, resampling using bilinear interpolation
and JPEG compression). Next, they evaluate the CNN’s ability to be
used as a multiclass classifier to perform general image-manipulation
detection with different editing operations and parameters. Eventually,
they prove the CNN’s ability to detect a sequence of two different
editing operation. To conduct these experiments, they create 10 different
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databases, each one corresponding to one type of manipulation with
different editing parameters. Each database consists of both manipulated
and unaltered grayscale image patches. The proposed CNN achieves at
least a 99.36% detection rate with all types of manipulations for single
manipulation detection (with a training set of 25,000 manipulated and
25,000 authentic patches), and an overall manipulation identification
rate of 99.66% for multiple manipulation detection (with a training
set of 100,000 patches, 16,667 of which are unaltered). In Bayar and
Stamm, 2018, the same research group later proposed a deeper and
more sophisticated architecture, introducing important refinements on
different components of the network.

Resizing high quality images tends to destroy precious high-frequency
details, deeply affecting the performance of image-forensics tasks. In
some cases, manipulated regions can be so small that they become
practically invisible after a down-sampling operation. Still, some ad-
vanced attacks can only be detected based on the statistical analysis of
micro-textures. To deal with this challenge, Marra et al., 2019b suggest
an architecture made of three blocks performing, respectively, patch-
level feature extraction, feature aggregation, and classification. Their
approach first divides the image into overlapping patches, subsequently
it extracts the high-pass image residuals noise fingerprint (or Noiseprint)
similar to photo response non uniformity (PRNU, see Section 4.3), and,
then, it passes them through the aggregation pooling layer. As the
authors suggest, the most appropriate type of pooling strictly depends
on the problem of interest; therefore, they consider several forms and
combinations of pooling. Finally, they aggregate the local information
in a single descriptor for the whole image, which is then classified with a
fully connected network. The network is trained end-to-end, forcing all
the patches of the same image to share the same label, thus, forcing the
network to learn how to manage differences between forged and pristine
patches belonging to the same image to make the correct decision. To
train the networks, they generate a suitable synthetic dataset splicing 81
objects manually cropped from the uncompressed images of the UCID
dataset (introduced in Section 7.2) into background images taken from
the Vision dataset (see Section 7.2). Next, they test the performance
of their method on several datasets (a synthetic Dresden/FAU dataset
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described in Section 7.2, Carvalho coming from Carvalho et al., 2013,
Korus introduced by Korus and Huang, 2016, NC2017, MFC2018, and
MFC2019 described in Section 7.1) comparing it with the performance
of reference methods. The proposed method achieves an average AUC
of 82.4%. The performance of the model is consistently good in all
cases including the NIST datasets, despite their great variety and the
abundance of counter-forensic measures. Moreover, although the model
is trained only on splicing manipulations, it works well also on all other
localized manipulations that the authors tested against. Next, they
compare the ROC curves, with and without fine tuning on the NIST
dataset, suggesting that fine tuning on the development set grants fur-
ther performance gains. With fine tuning, the AUC grows from 84.6%
to 93.2% on NC2017, and from 83.8% to 90.2% on MFC2018.

Having presented the main works that address general types of
manipulations (i.e., approaches developed for and tested against a
variety of manipulation attacks), we now turn our attentions to specific
attacks.

Splicing. As stated in Section 2, splicing is one of the most used
manipulation techniques, where the content of an image is copied into
another image. Bi et al., 2019 introduce a Ringed Residual U-Net (RRU-
Net) network for splicing attacks. The network takes spliced images
as input and automatically learns how to extract relevant features to
distinguish between tampered and untampered artifacts. Because the
tampered regions come from other images, different clues of the im-
age characteristics between the tampered and untampered regions are
utilized to identify and locate the manipulated regions. However, the
gradient degradation problem will destroy the performance when the
network architecture gets deeper (He et al., 2015). This well-known
problem arises when training deep networks where the gradient dimin-
ishes dramatically as it is propagated backward through the network.
The error may become so small by the time it reaches layers close to
the input of the model that it may have very little effect. This problem,
frequently encountered in the training of neural networks, is known as
the vanishing gradient problem (Hochreiter et al., 2001). To address this
issue, the authors construct the network implementing dilated convolu-
tion blocks (as in Yu and Koltun, 2015). Then, taking advantage of the
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ideas of Hu et al., 2017, Bi et al., 2019 design an attention system and
add on to the residual feedback to draw attention to the discriminative
features of the input information. A sigmoid activation function is used
to learn a nonlinear interaction between discriminative feature channels.
The residual feedback consolidates the input feature information to
make the differences of image essence attributes between the untam-
pered and tampered regions be amplified. The authors evaluate the
performance of the proposed method under various attacks, includ-
ing JPEG compression and noise corruption. The network achieves an
F1-score (see Section 6 for the definition of this evaluation metric) on
splicing detection of 84.1% on Casia (see Section 7.1) and 91.5% on
Columbia (as introduced in Section 7.1) datasets.

Face manipulation. Because a huge amount of selfies and face
images are shared every day on social networks, image manipulation
applied to faces is becoming a common tampering technique used for
beautification and expression editing. Wang et al., 2019a propose a
methodology to detect retouched faces. First, they generate a dataset
of realistic manipulations using Adobe Photoshop to automatically
generate fake training data. Then, a dilated residual network variant
(DRN-C-26) similar to the one proposed by Yu et al., 2017a is trained
with both high and low resolution images augmenting the data with
several methods, including resizing methods (bicubic and bilinear),
JPEG compression, brightness, contrast, and saturation. Lastly, they
propose an unwarping operation on the manipulated image to make it
more similar to the original one. They evaluate the model first on auto-
generated fake images and next they test it with a real-world setting
collecting data from a professional artist, tasked with the goal of making
a subject more attractive or changing the subject’s expression. In the
first case, the models achieve a 93.7% accuracy and a 98.9% average
precision (AP) on low-resolution images (400 pixels on the smaller side)
up to a 97.1% accuracy and a 99.8% AP on higher-resolution images
(700 pixels on the shorter side). With real-world images, the accuracy
drops from 97.1% in the validation set to 90.0% and the AP drops from
99.8% to 97.4%.

Fernando et al., 2019 introduce a hierarchical memory network
(HMN) architecture, which is able to successfully detect faked faces.
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A pretrained residual neural network (ResNet) extracts visual facial
features from the input images, next the convolutional feature maps
are rearranged in a sequence and passed through a bidirectional GRU
(as in Cho et al., 2014) to map their relationships. Since not all output
components contribute equally to the representation of the dominant
attributes of a face, the authors introduce an attention mechanism
that learns to pay varying levels of attention to different parts of the
feature map, therefore producing an output query vector that highlights
the most relevant information. Finally, the memory module outputs
information regarding the authenticity of the face region. The authors
test their method on the FaceForensics (as introduced by Rossler et al.,
2018a), FaceForensics++ (as introduced by Réssler et al., 2019), and
FakeFace in the Wild (FFW, as introduced by Khodabakhsh et al.,
2018) datasets. The model achieves 99.43% accuracy on seen attacks,
and 84.12% and 86.53% on Deepfake and FaceSwap unseen attacks on
FaceForensics++ dataset.

Dang et al., 2019 propose the use of an attention layer, which can
be inserted into any network architecture to improve the selection of
relevant feature maps of manipulated face images by focusing the net-
work’s attention on discriminative regions. It takes the high-dimensional
features extracted by the convolutional network as input and estimates
an attention map using a new technique called manipulation appearance
model (MAM). MAM assumes that any manipulated map can be repre-
sented as a linear combination of a set of map prototypes calculated
from predefined average map and basis functions of maps (i.e., the
first 10 components of principal component analysis applied to 100
ground-truth manipulation masks computed from FakeApp). Next, the
high-dimensional feature map is multiplied with the attention map and
fed back into the backbone. The experiments on Xception (introduced
by Chollet, 2016) and VGG16 (introduced by Simonyan and Zisserman,
2014) networks show that using an attention mechanism improves the
detection on both backbones, with a slight increase of the AUC and
True Detect Rate (TDR) compared to the same architectures without
the attention mechanism.

Double JPEG compression. Many digital images are JPEG
compressed instantly when captured or uploaded on the web, which, by
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the lossy nature of such compression operation, eliminates or changes
high-frequency signals within the image. Even though JPEG compres-
sion deletes some fine-grained traces, quantization still leaves traces,
and researchers came up with techniques that make use of these traces
to detect image manipulations. Mandelli et al., 2020a show that CNNs
are extremely delicate in the multimedia-forensic scenario. If we train a
CNN considering only uncompressed images, it fails when applied to
compressed ones. If we train a CNN only considering a specific JPEG
grid alignment, it will fail on randomly cropped images. Conversely,
computer-vision tasks involving image analysis and understanding are
inherently more robust to JPEG compression, given that image visual
quality remains good. Park et al., 2018 exploit a CNN that takes the
Discrete Cosine Transform (DCT) domain of the Y channel (i.e., the
luminance component of the image converted into YCbCr color space)
of an image block and its histogram feature as input. The network
consists of four convolutional layers, three max pooling layers, and three
fully connected layers. The quantization table from the JPEG header is
concatenated with the last max pooling layer and two fully connected
layer activations. The authors generated a dataset of 18,946 RAW im-
ages (starting from the previous works of Gloe and Bohme, 2010, Bas
et al., 2011, and Dang-Nguyen et al., 2015) from 15 different camera
models and split the images into 256 x 256 blocks. The single JPEG
blocks were produced by compressing each RAW block with a randomly
chosen quantization table, and the double JPEG blocks were produced
by further compression with another random quantization table with a
quality factor between 51 and 100. The experiments were performed
using 1,026,387 patches for training and 114,043 patches for testing. The
proposed method achieves 92.76% accuracy, with 90.90% true positive
rate and 94.59% true negative rate on the test set. Similarly, Wang and
Zhang, 2016 propose a network composed of two convolutional connec-
tions followed by two pooling connections and three full connections to
classify the DCT coeflicient histograms. Still in the same direction, Niu
et al., 2021 use a local estimate of the primary quantization matrix to
distinguish between spliced regions taken from different sources. Splic-
ing detection is achieved by recognizing the presence of more than one
clusters according to the estimated primary quantization matrix. To
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determine the number of clusters, the authors train a CNN taking as
input the estimated quantization steps.

Until now, we have presented techniques for image manipulation.
In the last few years, the forensics community has put its attention to
video manipulation as well. Next we discuss some approaches.

Inter-Frame Video Forgery. Inter-frame video forgery can be
applied to manipulate a video by introducing or removing frames to
alter the content of the video for malicious purposes. Long et al., 2017
propose a tool for video frame drop detection based on a 3D convolu-
tional network (C3D) similar to the one proposed in Tran et al., 2014.
At training time, the C3D-based network takes 16-frame video clips
extracted from a video as input to detect if there has been a frame drop.
At test time, the video is decomposed into a sequence of continuous
16-frame clips that are fit into the network to obtain the output scores.
The authors measure the performance of the proposed approach on the
YFCC100m (Kalkowski et al., 2015) and the Nimble Challenge 2017
(see Section 7.1) datasets, achieving 99.83% Area Under the ROC Curve
(AUC) — see Section 6 for the definition of AUC — and 96.0% AUC,
respectively. Analyzing the predictions of their method, the authors
comment on the failed cases. Some false positives are caused by camera
shakes during the video capture and some false negatives occur when the
scene has almost no visible changes between two frames. The same C3D
network is used by Bakas and Naskar, 2018, who introduce an initial
pixel-wise difference layer to generate spatio-temporal features. This
pixel difference provides temporal information about a video sequence.
Because inter-frame forgery is a form of temporal domain forgery in
videos, therefore feeding raw image pixels directly as inputs to CNN
does not provide efficient performance. The authors generate test forged
video sequences from the UCF101 dataset (as introduced by Soomro
et al., 2012). On the experiments, the proposed method achieves a
maximum accuracy of 99.35% on frame insertion forgery detection, a
maximum accuracy of 95.89% on frame deletion detection, and an accu-
racy between 97.86% to 98.4% for frame duplication forgery detection.
In a later work, Long et al., 2018 propose a coarse-to-fine CNN for frame
duplication detection and localization based on the I3D network intro-
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duced by Carreira and Zisserman, 2017. The pretrained I3D network is
used to extract a 1024-dimensional feature vector for 64 frame sequences
because the input for the standard I3D network is 64 RGB-data and
64 flow-data. The network is used to obtain the candidate duplicate
sequences at a coarse level for a faster search through longer videos.
Then, at a finer level, they apply a Siamese architecture (introduced
in Section 3.3.1) composed of two ResNet networks (He et al., 2015),
to detect duplication at the frame level and to obtain accurate corre-
sponding pairs of duplicated and selected original frames. Finally, when
a duplication is detected, a temporal localization is determined with an
I3D-based inconsistency detector to distinguish the duplicated frames
from the selected 16-frames input video clips. The authors evaluate the
proposed C2F-DCNN method on a self-collected video dataset and the
Media Forensics Challenge 2018 (MFC18) dataset (which consists of
two subsets: Dev dataset and Eval dataset). The method achieves an
AUC score between 81.46 to 84.05 on the self-collected dataset, 99.66%
on MFC18-Dev and 98.02% on MFC18-Eval.

Yao et al., 2017 convert the input video frames to motion residual
images by means of an absolute difference algorithm. The proposed
algorithm works in three steps: (1) it converts each frame of the video
sequence into a gray-scale image, (2) starting from the second grayscale
image, it subtracts its previous grayscale image from the current ones,
and (3) finally it takes the absolute value of the subtracted result to
obtain absolute difference images. A max-pooling layer and a high-pass
filter are used to make the network robust to the variations on motion
residual values of the frame absolute difference image and reduce the
impact caused by video object motion between video frames. Next,
five convolutional layers each one followed by batch normalization,
ReLU, and average pooling extract relevant feature maps. Finally, a
fully connected layer and a softmax layer classify the feature maps. On
the SYSU-OBJFORG data set (Chen et al., 2016) the model achieves
96.79% frame accuracy and 94.08% recall.

As we have seen, deep-learning architectures can be effectively
adopted to spot fake images or videos. Single-stream neural networks
are surely the most simple and standard application of deep-learning,
but most complex models could be designed to analyze several traces



334 Forgery Detection on Images and Videos

or inputs left in the manipulated multimedia file. The next section will
discuss more complex architectures for specific attack detection.

3.1.2 Multistream Architectures

Manipulation techniques usually leave subtle traces that cannot be
easily detected by extracting only a specific type of feature maps. Most
commonly in forensics problems, it is useful to analyze an image or
video by extracting different types of information and combining them
together. Therefore, most of the time, multistream networks are used to
exploit both low-level and high-level features left by these attacks. To
do this, the network is typically structured with two or more backbones
in parallel (see Figure 3.4). Each stream analyzes the input looking for
a specific trace. The models that we review in this section have been
proposed to recognize image forgeries such as double JPEG compression,
copy-move, and splicing, and to detect video forgeries such as double
MPEG compression and video temporal splicing.
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Figure 3.4: Manipulation-specific multistream architectures. The input image,
patch, or video frame can be analyzed with two or more backbones in parallel. The
input can be preprocessed in different ways to combine both low-level and high-level
features left by forgeries.

Double JPEG compression. Amerini et al., 2017b design and
compare the effectiveness of three approaches and different inputs to
detect double JPEG compression. First they use a spatial domain-
based CNN made of two convolutional blocks and two fully connected
layers to perform image forgery detection starting from the RGB color
images. Second, they propose a frequency domain-based CNN taking
the histogram of the DCT coeflicient as input as done in Wang and
Zhang, 2016. Last, they introduce a two-stream multidomain based
network combining the two previous pieces of input information on
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RGBs patches and on DCT histograms. The CNN is trained to learn
the inter-modal relations between feature maps coming from the RGB-
domain, and the frequency-domain features from the histogram of DCT
coefficients extracted from the second stream. The fully connected layers
of the two networks are joint together for classification. The authors
test their proposal on the the UCID dataset) by considering 8 diverse
JPEG quality factors (QF) ranging from 60 to 95 and extracting 28,944
64 x 64 image patches for test. Results (over 95% accuracy when QF
is higher than 80) suggest that there is a significant improvement of
the performance on the multidomain approach, suggesting that the two
inputs provide complementary information that the third, hybrid model
is able to correlate and exploit.

Copy-move. Copy-move forgery is a very common and easy to
perform image manipulation technique. Because the cloned image patch
comes from the same photo, the image characteristics remain largely
consistent; this makes this forgery attack more difficult to detect. In this
respect, Wu et al., 2018 introduce a novel two-stream deep neural archi-
tecture called BusterNet. The first stream called Mani-Det is designed
to detect manipulated regions and the second branch, called Simi-Det, is
used to detect cloned regions. The Mani-Det network extracts features
from the input image using the first four blocks of the VGG16 archi-
tecture (Simonyan and Zisserman, 2014), then it uses deconvolution
similarly to Noh et al., 2015 so as to restore the original resolution
applying BN-Inception and BilinearUpPool2D (Wojna et al., 2017). The
output of this network is a pixel-level manipulation mask. The Simi-Det
network takes an input image, extracts features similarly to Mani-Net,
computes feature similarity via a self-correlation module based on Pear-
son correlation, and collects meaningful statistics to identify matched
patches via a percentile pooling layer. This layer standardizes and sorts
the similarity score vector by only picking those scores at percentile
ranks of interests. Then, Simi-Net performs up-sampling so as to restore
the original resolution and classification similarly to Mani-Net. Finally,
the Fusion classification-network combines the information coming from
those streams to predict pixel-level copy-move masks differentiating
pristine, source copy, and target copy classes. The authors evaluated
the performance of the proposed network architecture on the CASTA
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and CoMoFoD (Tralic et al., 2013) datasets, with the model achieving
75.98% F1-score.

In a similar fashion, Barni et al., 2019 propose a two-branch CNN
architecture, called DisTool. The first branch, named 4-Twins Net,
consists of two parallel Siamese networks and the second stream is still
another Siamese network. Initially, the authors cast the problem into
a hypothesis testing framework whose goal is to decide which region
between the two nearly duplicate regions detected by a generic copy-
move detector is the original one. Thus, they carry out a preliminary
step before running the two networks to identify the input copied and
the original regions. Next, the 4-Twins Net takes as input the two
candidate regions and is trained to exploit the noninvertibility of the
copy-move process caused by the interpolation artefacts often associated
to the copy-move operation. The second Siamese-network branch is
designed to identify inconsistencies present at the boundary of the
input copy-moved region. The soft outputs of the two branches are
finally merged through a simple fusion module. DisTool achieves 75.86%
and 86.26% of accuracy on CASIA and Grip (Cozzolino et al., 2015b)
datasets.

Splicing. Salloum et al., 2018 propose a solution to detect splic-
ing manipulations. They implement a VGG16 architecture with skip
connections based on the work by Long et al., 2014 and train it in a
multitask fashion. The network takes in input spliced RGB images and
then it separates into two branches: one branch learns how to perform
classification and the other branch learns the edge or boundary of the
spliced region.

Video double compression. Multi-stream networks are also em-
ployed for video-forgery detection. Double compression is a possible
signal of a video alteration. Nam et al., 2019 propose an I-frame based
network (IF-N), which performs double compression detection start-
ing from decompressed input intra-coded frames (I-frames). They also
describe a two-stream network (TS-N), which learns inter-modal rela-
tions between features extracted by the P-frame based network (PF-N)
presented in He et al., 2017 and IF-N. Randomly generated pairs of
P-frames and I-frames from a given video clip are fed into two streams.
The features learned from the two streams are combined to form a joint
feature, which is subsequently fed into a fully connected network for
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classification. The network achieves an average accuracy of 93.24% on
several datasets generated by the authors.

Video splicing detection. Verde et al., 2018 employ a two-stream
architecture to detect video temporal splicing leveraging video codec
traces as an asset for forensic purposes. Specifically, they focus on the
detection of video temporal splicing. Each video frame is split into
nonoverlapping color patches and fed into a CNN tailored to detect
whether each patch comes from a video encoded using MPEG2, MPEG4,
H264, or H265. One CNN is trained to extract codec-related information
and a second one to infer the compression quality level. Finally, the
architecture concatenates the features produced by the two CNNs into a
vector for each frame and analyzes the inconsistencies between adjacent
feature vectors in a temporal domain to detect and localize attacks. The
authors tested their model on a dataset composed by 100 spliced and
100 original videos, providing an AUC score of 96.0%.

Multi-stream architectures can analyze the input image or video
extracting several features maps, thus allowing for a more sophisticated
analysis of the input. Until now, we have discussed architectures de-
tecting specific attacks. However, multistream detectors can be used to
spot multiple manipulations at the same time, and have been applied to
both recognize and distinguish between them. We present these models
in the next section.

3.2 Multimanipulation Multistream Architectures

The goal of generic multistream architectures is to detect every kind
of manipulated content without focusing on specific manipulation tech-
niques. In this respect, different features are usually extracted in parallel
and combined to increase detection performance. A common choice is
to use a stream that analyzes the input in the spatial domain while the
other looks for forgeries in the frequency domain. Hence, the general
pipeline for detecting different manipulation classes involves two or
more streams that analyze the input in different ways; subsequently the
output of these streams is combined and fed to a classifier or subjected
some other convolution or deconvolution operations. Figure 3.5 shows
an example of these architectures.
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Figure 3.5: Multimanipulation multistream architectures. Multiple features are
extracted and combined to increase the detection performance. Differently from
multistream manipulation-specific architectures, the network learns to predict several
manipulation classes.
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The manipulation of an image could leave different types of traces in
the form of low-level features, such as noise imperfections, and high-level
features, such as pixel imperfections between tampered and authentic
regions. A number of solutions combine both these features in a two-
stream neural network to find tampering artifacts.

Zhou et al., 2018a propose a two-stream Faster R-CNN architecture
based on the Faster R-CNN (as introduced by Ren et al., 2015 to detect
manipulated regions in an image. The model consists of an RGB channel
that extracts tampering artifacts such as strong-contrast difference or
unnatural boundaries between the authentic and manipulated region,
and an SRM noise stream (inspired by Fridrich and Kodovsky, 2012)
that detects the inconsistency between authentic and tampered regions.
A Dbilinear pooling layer takes as input the features coming from the
two streams to further incorporate spatial co-occurrence of these two
streams. Experimental results on several datasets such as NIST 2016,
CASIA, Cover (see Section 7.1), and Columbia show the robustness
of this solution to JPEG compression and resizing attacks. The model
achieves 93.4% AP on NIST 2016 (96.0% on splicing, 93.9% on removal,
and 90.3% on copy-move). Still a two-stream architecture is perfected by
Zhou et al., 2018b to detect face tampered pictures. The first stream, a
face classification stream, is a CNN based on GoogleNet (Szegedy et al.,
2015) trained to classify whether a face image is tampered or authentic.
The second stream is a patch triplet stream trained on steganalysis
features of the image patches. This stream uses a triplet loss to model the
traces left by in-camera processing and local noise characteristics. The
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triplet loss function helps the network to learn to reduce the distance
between patches from the same image in the learned embedding space
and increase the distance between two patches from different images. A
support vector machine (SVM), according to the framework introduced
by Cortes and Vapnik, 1995, is trained to classify the learned features
on each patch. Finally, the scores of two streams are fused to recognize
a tampered face. The method achieves 92.7% AUC on the test dataset
introduced by the authors.

Some multistream architectures analyze low-level features in image
patches to find discrepancies in the content. Bappy et al., 2017 present
an architecture that extracts patches by sliding windows and then feeds
them to two convolutional layers, which extract low-level features. A
long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997)
examines the correlation between the blocks in the 2D map and learns
the boundary transformation between blocks. A fully connected layer
reconstructs the segmented area of the manipulation. Stemming from
this work, Bappy et al., 2019 introduce an encoder—decoder architecture,
which allows to understand the appearance, shape and spatial relation-
ship (context) between manipulated and authentic regions. When the
network receives as input a new RGB image, it first extracts resampling
features from patches. These features pass through an LSTM stream,
which learns the fingerprints of a manipulation in the frequency domain.
In parallel, an encoder extracts low-level features from the input image
in the RGB-domain. Finally, by combining the two streams, the decoder
learns the finer details of authentic and manipulated classes. Mazaheri et
al., 2019 improve this framework by introduction skip connections, that
is, reformulate the layers as learning residual functions with reference
to the layer inputs like He et al., 2015. Unlike the work by Bappy et al.,
2019, a U-Net architecture (inspired by Ronneberger et al., 2015) is used
for the encoder—decoder network, showing the effect of layer fusion. Skip
connections help traverse information in deep neural networks. Usually,
manipulated regions in an image have smooth boundaries. In this re-
spect, skip connections take advantage of early layers in CNN which are
rich in spatial details and help to find the layers which are rich in features
for forgery detection. The authors tested the model tested on NIST 2016
and CASTA datasets, achieving 85.7% and 81.4% AUC, respectively.
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Even though these solutions achieve state-of-the-art performance,
an intrinsic limitation of this approach is the high number of samples
needed to train such models. Unfortunately, although researchers in the
last years have created different multimedia forensic datasets, none of
these datasets is still big enough to be compared with the ones typically
used for object detection challenges. An additional intrinsic limitation
of these models is the required coherence between training and testing
set is almost impossible to reproduce for real-world applications due to
the infinite number of variables that can be encountered.

3.3 Anomaly-Based Architectures

Usually, multimedia forensic approaches focus on identifying or classify-
ing a particular forensic trace. The main drawback of this approach is
that it required training samples from a particular trace. Editing tools
and techniques have been evolving continually during the last years,
making it even harder to consider every possible manipulation. There-
fore, training learning models can be a challenging problem because
of the lack of sufficient amounts of manipulated training samples. An
alternative approach to training models on data samples is to consider
tampered contents as anomalies, which can be recognized by comparing
them with authentic images or videos.

3.3.1 One-Class Siamese-Based Architectures

Siamese networks (as introduced by Bromley et al., 1993) have been
widely adopted in the past few years showing really promising results.
These networks, sometimes also called twin neural networks, share the
same weights while working in parallel on two different input vectors
to compute comparable output vectors. An efficient anomaly-detection
pipeline can be constructed by feeding Siamese networks with images,
frames, or patches from authentic images. The network learns how to
distinguish inputs coming from the same or different camera models,
image or video, thus allowing to recognize forgeries as anomalies. The
strength of such an approach is that it is possible to build a model
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that does not require forged samples at training time, thus allowing
for simple training datasets without loss of fake detection. Figure 3.6
shows an example pipeline.
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Figure 3.6: An example pipeline for one-class Siamese-based architectures. Two
or more convolutional neural networks are used in a Siamese configuration (i.e.,
sharing weights and biases) to detect inconsistencies between two inputs. Typically,
the inputs are real image or frame patches. The output vectors predicted by the
CNNs are compared to estimate their similarity. In this configuration, forgeries are
detected as anomalies with respect to real samples.

Low-level feature similarity can be used on pristine image patches to
train neural networks capable of capturing strange anomalies. Mayer and
Stamm, 2020 propose a two-part deep-learning system called forensic
similarity. A Siamese feature extractor grasps low-level features from
image patches and subsequently a 3-layer neural network estimates
the similarity between two patches. The authors evaluate the system
accuracy of determining whether two image patches are: (1) captured by
the same camera model, (2) manipulated by the same or different edit
operation, and (3) manipulated by the same or different manipulation
parameter. The system is accurate even on unknown forensic traces that
were not used to train the system. Mayer and Stamm, 2019 propose
a solution that can be used to spot localized image tampering such
as splicing and airbrushing. The authors propose a graph structure
where small image patches are represented by graph vertices and edges
connecting pairs of vertices are assigned according to their forensic
similarity. Communities in the forensic similarity graph correspond to
the tampered and unaltered regions in the image. Forgery detection
is performed by identifying whether multiple communities exist, and
forgery localization is performed by partitioning the communities. The



342 Forgery Detection on Images and Videos

results on Columbia (see Section 7.1), Carvalho, and Korus (Korus and
Huang, 2017) datasets show that the proposed technique exceeds prior-
art forgery detection and localization performance on the benchmark
datasets.

Other works, such as Cozzolino and Verdoliva, 2020; Cozzolino
Giovanni Poggi Luisa Verdoliva, 2019; Cozzolino and Verdoliva, 2018a,
use Siamese networks to suppress the content of an image and extract
a camera-model fingerprint called Noiseprint, which is a fingerprint
that identifies the camera model technology that captured a content;
for example, Olympus TG-6 or Canon EOS 6D Mark II. At training
time, the Siamese network needs to know only whether two patches
come from the same camera and position or not; in this way they take
advantage of hidden spatial dependencies to associate a Noiseprint
to each image. Being a fingerprint of the camera model (such as the
PRNU model), the Noiseprints can be used for a large variety of forensic
tasks, such as source identification or forgery detection. As an example,
other papers, including Cozzolino et al., 2015a and Réssler et al., 2019,
use Noiseprint features in combination with other learning models to
detect image manipulations. Experiments in these works show that
the Noiseprint-based methods outperform most of the PRNU-based
techniques, providing good results even when the fingerprint is estimated
on a very small number of images.

Inconsistency can also be observed in the metadata of a manipulated
image. Exploring this information, Huh et al., 2018 propose to use EXIF
metadata for training a Siamese model to predict whether a pair of
image patches are consistent with each other, i.e., they share the same
value for each of n metadata attributes. The Siamese network uses two
shared ResNet 50 each producing a 4096 dimensional feature vector.
These vectors are concatenated and passed through a four-layer fully
connected network with 4096, 2048, 1024 units, followed by the final
output layer. The network is trained on 128 x 128 real image patches
randomly sampled from 400,000 Flickr photos. Although the consistency
score can be noisy for any single pair of patches, aggregating many
observations leads to a stable estimate of overall image consistency. Even
though state-of-the-art performance is achieved on several datasets —
Columbia, Carvalho and Korus —, two drawbacks should be considered:
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(1) the model is not easily interpretable, i.e., it is not clear which visual
clues the model uses to solve the task, and (2) it is still affected by
design decisions that went into the self-supervised task, such as the
ways that EXIF tags were balanced during training time.

Siamese architectures have shown a high level of flexibility, making
it possible to apply these networks to various problems related to the
evaluation of the authenticity of an image or video. These models have
been successfully used with different methodologies and demonstrated
their effectiveness in defining a similarity measure between input patches,
as well as in the ability to automatically extract a fingerprint, which
proves or refutes the authenticity of multimedia content and in the
analysis of metadata. As such, Siamese networks could be a powerful
method to help multimedia forensics researchers to develop general
forgery detectors, independently from specific manipulation techniques.

3.3.2 Autoencoder-Based and Recurrent-Neural-Network—Based
Architectures

Like Siamese architectures, autoencoders, and recurrent neural networks
(RNNs), such as LSTMs, are often used for the recognition of anomalies
with respect to a single training class. Autoencoders can effectively
learn a latent space representation, which can be forced to separate
authentic images for anomalous, fake ones. The idea is that inliers (real
examples) tend to share similar statistics, while outliers (fake images)
have a much more widespread distribution. If trained on real examples,
the autoencoder will learn the inlier dominant distribution. Therefore,
in the testing phase, the positive examples are reproduced with good
accuracy, while the anomalies give rise to big errors, allowing a reliable
detection. RNNs can be successfully applied as well, to capture the
inconsistency of different input images, frames, or patches. Figure 3.7
shows an example pipeline of these architectures.

Cozzolino and Verdoliva, 2016 propose an image splicing localization
method based on an autoencoder. Using the same local features adopted
in their previous work (Cozzolino et al., 2015a) they remodel the problem
in terms of anomaly detection, adopting the approach proposed by Xia
et al., 2015. The proposed method involves a feature extraction step
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Figure 3.7: An example pipeline for one-class autoencoder-based and recurrent-
neural-network-based architectures. An CNN is usually fed with an input image. The
CNN encodes the input in a latent representation that can than be used to detect
an anomaly. The encoder can be followed by a decoder CNN or a recurrent neural
network that eventually predicts inconsistencies.

to preprocess the input image before applying it to the autoencoder.
Initially their approach computes image residuals through high-pass
filtering (third order derivative). The residual (i.e. the noise extracted
by the image content through the previous operation) is split into K
patches of w x w pixels with stride s and a histogram of co-occurrence,
that is, the histogram describing the distribution of pixel values, is
computed on each patch. The histogram of co-occurrences is processed
through a square-root nonlinearity (Cozzolino et al., 2015a) and in the
end normalized to zero mean and unit norm. These histograms are
used as input to the network. The autoencoder has a single hidden
layer followed by hyperbolic tangent. The hidden layer has H > K
hidden neurons, in fact by decreasing H in such a way that H < K
the authors observed a large number of false alarms, which can be
explained by the fact that the characteristics associated with splicing
are not scattered and a bottleneck autoencoder would devote some of
its scarce resources to encode negative samples and cannot improve the
representation of good characteristics initially classified as splicing. The
network is trained only authentic inputs so as to reinforce learning for
pristine class only, and increase the separation between errors of the
two classes.

Wu et al., 2019 treat the forgery localization problem as a local
anomaly detection problem. They propose an architecture, which they
call ManTra-Net, composed of two subnetworks: and image-manipulation—
trace feature extractor, which creates a unified feature representation,
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and a local anomaly detection network, which directly localizes forgery
regions without postprocessing. The first subnetwork begins with a
stack of three layers in parallel: (1) a simple convolutional layer, (2)
an SRM convolutional layer (as done by Zhou et al., 2018a, see Sec-
tion 3.2), and (3) a constrained convolutional layer (as introduced by
Bayar and Stamm, 2018, see Section 3.1.1). The features extracted from
the previous layers are concatenated and passed through a VGG network
(Simonyan and Zisserman, 2014). The output features (also known as
feature maps) are then passed through the local anomaly detection
network, which is characterized by two novel designs: a ZPool2D DNN
layer, which standardizes the difference between a local feature and
its reference in the Z-score manner, and a far-to-near analysis, which
performs the Conv2DLSTM sequential analysis on ZPool2D feature
maps pooled from different resolutions. The network performed well
on four benchmark datasets, namely NIST 2016, CASIA, Cover, and
Columbia (see Section 7.1 for detailed description of these datasets),
reaching 79.5% AUC on NIST.

Yarlagadda et al., 2018 propose an autoencoder architecture com-
posed of five convolutional layers and five symmetric deconvolutional
layers, which are trained on pristine satellite image data. The output
goes thorough a one-class SVM classifier that detects forged patches as
anomalies with respect to feature distribution learned from the autoen-
coder. Next, the authors compare the performance of their classifier
by introducing a GAN model where the discriminator is aimed at ac-
curately distinguishing between patches from real satellite images and
patches created by the generator.

Regarding videos, some researchers have proposed architectures
based on deep learning for video forgery detection and localization
techniques. However, a lot of works concentrate their attention on
specific tampering artifacts. Therefore, it becomes important to develop
new solutions that are capable to detect different types of video forgery
attacks. In this direction, D’Avino et al., 2017 use an anomaly-detection
tool that makes use of an architecture based on autoencoders and RNNs;
these allow to take into consideration the temporal dependencies of the
different frames of the video. By passing a 2D sliding window over the
input, using image patches of 128 x 128 pixels taken with stride 8 (i.e.
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each 128 x 128 patch volume is shifted across the input 8 units at a
time), the network computes residuals using a third-order derivative,
quantization, and truncation, following previous works, such as those of
Verdoliva et al., 2014; Cozzolino et al., 2015a; Cozzolino and Verdoliva,
2016. A recurrent autoencoder anomaly detector receives each residual
and computes an anomaly score. All the scores calculated are then
projected back onto the image domain and aggregated to produce a
global heat map, which can be used as the basis to detect spliced
regions. Therefore, at test time, whenever a pristine feature vector is
presented in input, the network succeeds in reproducing it with a small
error, as opposed to the feature vector of spliced content, which is not
well captured by the learned network parameters, and is reproduced
with a larger error. The proposed method performs quite well on both
compressed and uncompressed videos (the ROC curve has just 10%
false positive rate when the true positive rate is around 90%) and it
provides a large improvement with respect to PRNU-based methods.

The anomaly-based detectors have been applied with excellent results
on several forgery detection tasks. These models can be strongly robust
to new manipulations, supporting the design of general-purpose forgery
detectors. Autoencoders can be designed to learn a forensic embedding
space that correctly separates authentic contents from fake ones. RNNs
can be similarly used to distinguish between authentic and anomalous
content as well, due to their ability to notice the difference between
local features in image patches or video sequences. Overall, anomaly
detectors could be the secret to detect any kind of manipulations and
has been an increasing trend in the last few years.

3.4 Challenges and Best Practices for Forgery Detection

The methodologies examined in this section highlight three main ap-
proaches: (1) manipulation specific, (2) multimanipulation, and (3)
anomaly-based methods. There are some pros and cons to consider in
all of these cases, as well as many similarities and common choices. In
the next paragraphs we comment on them.

A common thread that unites many of the methods described con-
cerns the backbones chosen to design the different deep-learning so-
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lutions. Variations of the ResNet, Xception, and VGG networks are
very common. Also, a common choice is to preprocess the input with
some form of high-pass filter or some other noise fingerprint extraction
such as Noiseprint. Another common choice is the use of hyperbolic
tangent activation function and average pooling layers. Finally, it is
very common to measure the performance of these models against the
AUC, AP, or Fl-score. Some researchers prefer the accuracy; however,
this metric is not very robust with respect to unbalanced datasets.

Manipulation-specific solution approaches are typically based on
single-task or multi-task architectures. These often use an attention
mechanism to detect manipulated regions by discarding unaltered re-
gions of the input. The constrained layer introduced by Bayar et al., 2017
has been very effective, as well as the use of 1 x 1 convolutional filters
after the highest-level feature maps followed by an average-pooling layer
to retain the most representative features from the deepest convolu-
tional layers in the network. Scaling, is also used quite commonly, which
risks destroying valuable high-level information that is very useful for
identifying manipulation. We find two possible solutions for addressing
this issue: the addition of skip connections (Bi et al., 2019; Salloum
et al., 2018; Mazaheri et al., 2019) within the architecture and the use
of a patch-level feature extractor followed by an aggregation layer, as
suggested by Marra et al., 2019b. The first approach, similar the one
introduced by the ResNet architecture, is very fast, and it is designed
to propagate low-level features extracted by shallow layers to deeper
layers of a convolutional neural network. The second one was explicitly
designed to cope with manipulation detection. In fact, the network is
trained with no information on what to look for to find a manipulation.
In particular, the model is trained to classify all patches of an image
as manipulated if at least one of them has been tampered. In this way
the network receives conflicting information between authentic patches
of an entirely authentic image and authentic patches that are part of
an image that has been manipulated. Consequently, the network must
learn to make a high-level decision on the whole image to decide if it
has been forged.

Because the traces left by a manipulation can be very faint and
difficult to recognize, a more robust approach is to analyze the input in
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different ways. This is an approach that we find in both manipulation-
specific and multimanipulation architectures. A common choice is to
analyze spatial and frequency features across multiple streams. These
multiple streams can analyze RGB, noise or DCT features (Amerini
et al., 2017b; Zhou et al., 2018a; Bappy et al., 2017; Zhou et al., 2018b;
Mazaheri et al., 2019). Moreover, multiple streams can be used to
analyze different tasks in parallel such as the case of copy and move
in which very often one stream deals with looking for the manipulated
areas and another for the cloned areas within the image (Wu et al.,
2018).

Over time, manipulations have become more sophisticated and the
emergence of new techniques makes increasingly difficult the develop-
ment of detection solutions for specific manipulation techniques. This
is particularly important in practical applications where the variety of
manipulations cannot be controlled and in cases that are not limited to
a specific attack. Although multimanipulation techniques offer a useful
first defense against these cases, the approaches based on anomaly de-
tection seek to offer a robust solution to any type of manipulation. This
is possible through two approaches: Siamese networks and autoencoders.
These approaches are very recent but have shown great potential: they
can be trained on unmanipulated image datasets. Inconsistencies can be
found in the noise of the image, on the spatial domain, or in metadata.
Thanks to these characteristics, methods based on anomaly detection
are attracting a lot of interest from researchers and could become the
key to bringing forgery detection into practical applications.

Tables B.1 and B.2 summarize some of the most interesting archi-
tectures discussed in this section.



4

Assessing the Origin of Multimedia Content

Source identification is another fundamental forensic problem. Some-
times, we are not only interested in addressing the authenticity of
multimedia content, but we also need to reconstruct the source that
originated that image or video. Source identification can tell us whether
two pictures or videos come from the same camera, or even from the
same smartphone device. This could be important to reconstruct facts
from crime scenes, to check the truthfulness of news, or demonstrate
that a multimedia file has been downloaded from a social-media plat-
form. Figure 4.1 shows an example of the typical image acquisition
pipeline that is common for most of the commercially available devices.
There are three main categories of source-identification problems:

e The identification of the camera model or brand identification,
which can tell us if an image or video has been compared with a
specific camera set

e The identification of the specific device that has captured the
content.

o The identification of the social network and messaging app, which
tells us whether a picture or video comes from a social media
platform.

349
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Figure 4.1: The image acquisition pipeline is common for most of the commercially
available devices. Each phase leaves distinctive traces. When light passes the camera
lens and the optical filter, the scene captured by the camera can be distorted. The
color filter array (CFA) is a thin film that selectively permits a certain component of
light to pass towards the sensor. In practice, for each pixel only one primary color is
gathered. The sensor output is successively interpolated to obtain all the 3 colors for
each pixel (demosaicking). Different CFA patterns and demosaicking algorithms can
be used in this process. The CCD or CMOS sensor, that is the image sensor where
each pixel sensor unit cell has a photodetector, captures photons until a certain level
(pixel intensity) is reached. Practically, small variations in cell size and substrate
material result in slightly different output values, introducing some noise into the
image. Finally, the image is encoded in digital files according to a file format defined
by a compression standard. Sometimes, out-camera processing steps can be carried
out, like, for example, image re-compression when it is shared across social media
platforms.

Designing deep-learning solutions to answer these challenges is not
trivial, and requires new techniques to be developed. The next parts of
this section discuss the design choices and works that have been proposed
to address these challenges with deep learning. Table B.3 summarizes
the main architectures. Figure 4.2 summarizes the approaches described
in this section.

4.1 Camera-Model Identification

Digital cameras carry out a sequence of processes to convert an input
light coming into the lens into an output image. While some of these
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Figure 4.2: An overview of source identification approaches.

processes like interpolation, gamma correction or data compression
are common to every camera model, all of these functionalities have
different implementations that can vary from model to model. Due to
all these internal processing steps, each camera model leaves important
traces on acquired pictures that can be used for forensic purposes.

We open this section by presenting the works that proposed method-
ological approaches for camera model identification in general, tracing
some of the key guidelines that one could keep for the designing of
camera-model-identification systems. These papers can be very useful
in recognizing the most common mistakes and most valuable choices to
reinforce the subtle traces left by cameras.

4.1.1 Quality-Selection Procedure for Patch-Based CNNs for Ca-
mera-Model ldentification

Deep-learning models that are successful for other computer-vision
tasks, can be used to spot camera model fingerprint traces. However,
they often need to be adapted to embrace to satisfy forensic needs.
As suggested by Bondi et al., 2017b, particular attention must be
paid to the process of selecting the patches that are provided as input
to the models: indeed, not all patches contain enough statistical infor-
mation about the used camera model. As an example, saturated and
homogeneous areas with low-texture and low-frequency components
do not contain significant statistical information about the used cam-
era model. Therefore, Bondi et al., 2017b introduce a patch selection
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procedure based on a quality value selection. This quality measure
gives lower scores for overly saturated or flat patches, and higher for
textured patches showing some statistical variance. Then, following to
the architecture design guidelines proposed by Szegedy et al., 2015, the
authors propose a base-model CNN (Bondi et al., 2017a) made of a
stack of four convolutional layers and a final inner product layer. Each
of the first three convolutional blocks are made of a convolutional layer
followed by a max-pooling layer. The last convolutional block gives as
outputs a 128-dimensional vector and is followed by an inner product
layer, a ReLlU layer, and a soft-max operation. As shown by Simonyan
and Zisserman, 2014 and by Szegedy et al., 2014, the representational
capacity of a network is largely determined by its depth. Thus, the base
model is compared with four network variations in which varies only
the depth of the three convolutional blocks. The results on the Dresden
dataset (described in Section 7.2) suggest that higher classification
accuracy (up to 94.93%) can be obtained as the network depth increases
until an optimal value. Therefore, deeper CNNs might be beneficial for
larger datasets with a higher number of classes and training images.

The process described by Bondi et al., 2017b has inspired several
researchers, who have proposed deep-learning-based camera-model iden-
tification pipelines using the same patch selection process. Even though
the works in this section are not the only ones to adopt patches as input
for their models, they are all based on the selection process by Bondi
et al., 2017b.

A lot of papers incorporate the process of selecting patches from the
same or similar patch quality, by Bondi et al., 2017b, into their pipeline.
The selected patches are analyzed by a CNN that can be made of any
number of streams of well-known architectures.

Ferreira et al., 2018 propose a solution that consists in the processing
of the output of two CNNs, based on the Inception networks (Szegedy
et al., 2014). First, patches are extracted and selected based on quality
measures similarly to the approach of Bondi et al., 2017b; then, the
image patches are preprocessed by two pretrained streams based on
Inception v4 (Szegedy et al., 2016) and Xception (Chollet, 2016). The
256-dimensional feature vector outputs of the inception-based CNNs
are merged creating a 512-dimensional input to be processed by a final
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CNN. This CNN is composed of a flattening layer, a batch normalization
layer, a fully connected layer with 256 neurons, a 10% dropout layer,
and a final fully connected layer. Test results on original full-resolution
images and 512 x 512 blocks from the IEEE Signal Processing Challenge
on camera model identification (see Section 7.2) show that the model
achieves an accuracy of 89.83% for the classification of blocks and
92.51% for the classification of images.

Still using the same patch selection procedure presented in Bondi
et al., 2017b, Rafi et al., 2018 propose a solution based on the dense
convolutional networks (DenseNets) of Huang et al., 2016 and on squeeze-
and-excitation (SE) as introduced by Hu et al., 2017. In the DenseNet,
the output of a certain layer is propagated to all the layers in front of it.
As a result, if any of the input patches features are lost during forward
propagation, they are spread at the input of later layers through the
dense connections, making this architecture suitable for detecting weak
statistical features such as those related to camera identification. First,
patches of size 256 x 256 are selected to train the DenseNet-201 (Huang
et al., 2016). Then, using this model trained on 256 x 256 patches
only, they extract features from the second to the last layer for patches
of size 256 x 256 and nonoverlapping patches of size 128 x 128 and
64 x 64 from each training sample, thus producing three feature vectors
for three different patch sizes. Next, the feature vectors extracted by
the network on those inputs are concatenated and used to train an
SE block and a classification block. The output of the SE block is
passed through a dropout layer and a global average pooling layer,
a layer that reduce each h x w x ¢ feature map to a single vector of
size 1 x 1 x ¢ by simply taking the average of all hw values. Finally, a
softmax layer generates a probability distribution on the output classes.
The authors evaluate their solution on a dataset of 2640 images of size
512 x 512 from the IEEE Signal Processing Challenge on camera model
identification dataset (see Section 7.2), achieving 98.37% accuracy, and
on the Dresden database with an overall accuracy of over 99%. Similarly,
the DenseNet-161 (Huang et al., 2016) architecture is used by Kuzin
et al., 2018, where the input images are randomly cropped to generate
patches and augmented with a set of transformations (Dihedral Group
D4, gamma, JPEG compression, and scale transformations).
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As shown by Bondi et al., 2017b, not all input patches contribute
equally to the camera model classification. A preprocessing quality-
selection step can bring about important performance enhancement, and
it is extremely easy to introduce in every camera-model identification
pipeline.

4.1.2 Filter-Based CNNs for Camera-Model ldentification

Filters have been largely adopted to extract latent camera model fin-
gerprints. Traditionally, these transformations have been used in com-
bination with forensic techniques mostly related to machine learning.
However, deep-learning models can be successfully applied to analyze
these preprocessed inputs and extract the most relevant characteristics
that can be used to classify different camera models. In general, the
overall architecture that uses static filters provides a preprocessing
module that applies static filters on an image or patch. Then, this input
is analyzed through a CNN module and a classifier.

Tuama et al., 2016 use a high-pass filter layer followed by three
convolutional layers and three fully connected layers. For each input
image, the residual noise on each color channel is extracted by subtract-
ing the denoised version of the image from the image itself. Then, a
static denoising high-pass filter (Qian et al., 2015) is used on the input
image to suppress the interference caused by image edges and textures
so as to obtain the image residual. AlexNet CNN (Krizhevsky et al.,
2012) is adapted and modified to fit the model requirements. First,
three convolutional layers, each one followed by ReLUs, extract feature
maps. Then, a max-pooling operation is applied to decrease the spatial
resolution. At the end there are two fully connected layers followed
by ReLU activations and a final fully connected layer followed by a
softmax function. For the evaluation, the authors used a dataset made
of 27 camera models from the Dresden dataset, and 6 personal camera
models, reaching 98.0% accuracy.

Bayar and Stamm, 2017a propose a novel approach for low-level
residual feature extraction called augmented convolutional feature maps.
The input layer of the network is a two-channel image obtained com-
bining the output of two parallel operations. In the first operation, a
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256 x 256 green layer central patch of the input image gets processed
by a constrained convolutional layer where the central weight of the
convolutional filter is constrained to be —1 and the rest of the weights
sum to 1. The second operation computes the median filter residual
(MFR, Kang et al., 2013) features of the input image. In order to con-
catenate the features extracted with both operations and to obtain the
augmented feature maps, the outputs of the constrained convolutional
layer and the MFR features should have same dimension, thus, the MFR
channel of the input layer is first convolved with a fixed 5 x 5 identity
filter with a stride of 1. To learn higher-level classification features, the
low-level augmented feature maps obtained from the previous steps
are directly passed to a sequence of three regular convolutional layers
followed by one 1 x 1 convolutional layer. Every convolutional layer is
followed by a batch normalization layer, a hyperbolic tangent activation
function and a pooling layer. The pooling layer is a max-pooling layer
after all the regular convolutional layers, whereas, an average-pooling
layer is used after the 1 x 1 convolutional layer to preserve the most rep-
resentative features. The output of the hierarchical convolutional layers
is fed to a regular neural network which consists of three fully-connected
layers to perform classification. The two first layers are followed by
a hyperbolic tangent activation function, whereas the output layer is
followed by a softmax activation function. The experimental results on
the Dresden dataset show that augmenting feature maps produced by
the constrained convolutional layer with MFR features improve with
50% downscaling; more in detail, this can improve the camera model
identification rate over an architecture which did not use nonlinear
MFR features by 3.69% with JPEG post-compression and by 2.59%
without JPEG post-compression.

Pengpeng et al., 2017 propose a generalized model called Laplacian
CNNs. The architecture is composed of two parts: the signal enhance-
ment layer and a general CNN structure. Initially, the Laplacian filter
is used to amplify the difference between the original images and the re-
capture images highlighting the regions of rapid intensity change. Then,
convolutional blocks extract relevant features that are then classified
by a fully connected layer followed by a softmax layer. Inspired by the
Laplacian CNN;, the same research group (Yang et al., 2017) introduce
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a content-adaptive fusion network. The network is built by applying
in parallel three convolutional neural networks to capture more com-
prehensive information. The input image is divided in 64 x 64 patches
and processed in the preprocessing layer by three kinds of convolutional
kernel sizes 3 x 3, 5 x 5, and 7 x 7. Tested on the Dresden dataset, the
method achieves average 94.17% accuracy for camera brand detection
and 84.7% accuracy for camera model identification, and up to 70.19%
for device identification.

Filters have long been used to suppress the content of an image
or video and extract the latent features left by the camera model.
Multimedia forensic researchers have developed or adopted several
filters, proven to be effective in extracting camera fingerprints. The
power of deep-learning models, however, comes from the ability of deep
neural networks to learn both low- and high-level latent features without
any guidance. This capability can be exploited to develop new models
that learn the best filter extractors for every training dataset. The next
section discusses this new trend.

4.1.3 Learned-Filter-Based CNNs for Camera-Model Identification

As we mentioned in the previous section, static filters have been suc-
cessfully used to extract camera model fingerprints. However, the most
interesting feature that distinguishes deep neural networks is the ability
to automatically learn nonlinear transformations that effectively map
input images or videos to latent feature maps that can be used for
classification. Thus, deep neural networks can be used to automatically
learn how to obtain a camera model representation.

The common idea in implementing dynamic filters is to train a
network on different input patches obtained from images or videos
captured by the same or different camera models. The best model to
use in such cases is the Siamese architecture, which could be trained
as a camera-model fingerprint-extractor network to identify a set of
camera models. Then, the extracted representation can be used in any
way for classification tasks or similarity measures.

The first step in this direction comes by Bayar et al., 2017. They
present a sequence of experiments to define some of the design choices
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that one required to develop a camera-model identification CNN-based
system. First, the authors show the benefits of using dynamic-learned
layers instead of fixed filters to extract lowest-level features. The perfor-
mance comparison of a high-pass filter and constrained convolutional
layer (Bayar and Stamm, 2016; Bayar and Stamm, 2017b) suggests a
possible improvement brought by learned descriptors. Then, the intro-
duction of 1 x 1 convolutional filters after the highest-level feature maps
(Xu et al., 2016) force the network to learn the association between the
highest-level feature maps in the network before the fully connected
layers perform classification. Finally, an average-pooling layer after the
1 x 1 filter should be preferred over max pooling, because the most-
representative features from the deepest convolutional feature map in
the network could be destroyed by means of max pooling. Bayar et al.,
2017 built an experimental dataset by manually capturing images using
34 different camera models containing at least 300 images captured by
each camera with its default settings. The proposed method achieves
an accuracy higher than 97% for each model. Similarly, Freire-Obregén
et al., 2019 argue about the different elements that support the selection
of the proposed CNN architecture comparing the performance of the
network varying the number of convolutional layers, dropout rate, and
activation function.

Cozzolino and Verdoliva, 2020 train a Siamese network with pairs
of image patches coming from the same or different cameras. They
train the to reduce output distance of input patches coming from the
same camera model and to maximize this distance for inputs coming
from different models. Training the architecture with both positives and
negatives forces the network to discard irrelevant information common to
all models and keep only the most relevant features. More importantly,
during the training of their system, they consider two patches as a
positive example only if the patches come from the same camera model
and from the same position in the image. Generally, artifacts generated
by in-camera processes are not spatially stationary and depend strictly
on the acquisition and processing phase. As a result of the training
choices mentioned above, the network suppresses the scene contents
and improve the model-related artifacts that are useful for extracting a
camera model fingerprint. The authors call this model “Noiseprint,”. The
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authors tested their approach on various datasets (the Dresden dataset,
the Socrates dataset (Galdi et al., 2018), the Vision dataset (introduced
in Section 7.2), and a private dataset with 17 devices), and various
forensics tasks (camera model and device identification, identification
of JPEG quality factor, identification of demosaicing algorithm, image
manipulation detection and splicing in remote sensing images). The
model identification accuracy is 100%, both with 1024 x 1024 and
128 x 128 crops. Moreover, the method also ensures a modest device
identification, with accuracy between 61.7% and 75.3%, even though the
PRNU-based (see Section 4.3) method provides much higher accuracy,
91.3% and 69.7%, respectively.

In another work, Cozzolino and Verdoliva, 2018b consider a su-
pervised setting, assuming the reference Noiseprint is available. The
residuals of pristine images taken by the same camera of the image under
analysis are averaged to obtain an estimate of the camera Noiseprint
where high-level scene leakages, as well as traces of the PRNU, are
mostly removed. Next, this reference is compared using a sliding window
with the residual of the test image using the Euclidean distance as a
measure of similarity. The idea to use Noiseprint-based model-related
information to support PRNU-based device identification is also applied
in a later work by Cozzolino et al., 2020.

Cozzolino Giovanni Poggi Luisa Verdoliva, 2019 show the effective-
ness of Noiseprint for video-source identification. They consider two
different training ways for extracting the Noiseprint model: (1) Us-
ing only the I-frames of the videos and (2) using both I-frames and
P-frames. Initially, for each camera model, their system extracts a
reference fingerprint averaging the Noiseprints distilled from several
frames. Subsequently it extracts a new fingerprint from the video under
test; this fingerprint is compared with the reference fingerprint. To
train the model, they treat all frames as independent images and they
split them in patches as in the previous work by Cozzolino and Verdo-
liva, 2020. They evaluate the similarity of two Noiseprint fingerprints
with normalized correlation coefficient (NCC) and mean squared error
(MSE — see Section 6). They measure the performance considering as a
base model the PRNU-based procedure with peak-to-correlation energy
(PCE) Goljan et al., 2009 as a similarity measure. The method using
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only I-frames on the Socrates dataset (Galdi et al., 2018) achieves 83.2%
AUC for source identification and an average accuracy of 92.14% on
FaceForensics++ (see Section 7.3) for video manipulation detection.

Mayer and Stamm, 2018 define a system that determines whether
two input image patches are captured by different camera models.
Initially, the feature-extractor network is trained to identify a set of
camera models; Next, a similarity network is trained to learn similarity
between pairs of high-level features extracted from a second set of
camera models. The model is evaluated on the Dresden dataset (Gloe
and Bohme, 2010), where the proposed approach detects correctly the
camera models as different at a rate of 98%. Similarly, in another work by
Mayer and Stamm, 2020, the authors propose a CNN feature extractor
grasping low-level features from input image patches and a 3-layer neural
network that estimates the similarity of two input patches. Still in the
same direction, Mayer and Stamm, 2019 introduce a similarity-graph
structure, in which communities in the graph correspond to separate
camera models. Building on the same similarity network, Mayer et al.,
2020 propose a technique for open set camera model verification of
videos.

Taking advantage of deep-learning architectures in all their ability to
learn latent camera fingerprints has been the most relevant innovation
with respect to previous techniques. In this way, the network is forced to
automatically discard irrelevant information and reinforce the precious
characteristics left by cameras. This direction could bring new interesting
solutions with respect to preprocessing filtering operations usually
adopted until know.

4.2 Device ldentification

Device identification is an emerging research area from a deep-learning
perspective. Through the analysis of multiple fingerprints left by de-
vice sensors, device identification systems try to identify every single
device for both identification and authentication tasks. Compared to
the camera-model identification task, it becomes more meaningful to
identify the camera device as it can provide more accurate traceability.
However, it becomes more challenging to identify the cameras at the de-
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vice level, as device fingerprints are much weaker and difficult to collect
than the camera ones. These problems have been widely addressed by
the forensic community (Lukas et al., 2006; Chen et al., 2008; Fridrich,
2009; Li, 2010; Li and Li, 2012), but recent works propose new solutions
based on the most recent advancements of deep neural networks.

Pipelines can vary a lot depending on the feature set they consider.
Indeed, particular attention is given to feature selection, which most of
the time includes a preprocessing step in which a static filter is applied
to the input content. Sometimes, more than one source of information
is used to increase the number of subtle traces left from the devices. As
an example, the PRNU and Noiseprint or median filter residual (MFR)
and constrained convolutional layers can be combined to provide the
model with a richer representation. These features can then be analyzed
by a deep neural network. A common choice is to test the system on a
closed-set and an open-set scenario. In the closed-set scenario a set of
candidate sources is predefined and the system is required to associate
the test image with one of the devices in the set; thus, the task can be
regarded as a multi-class classification problem. In the open-set scenario,
the set of candidate sources is not given a priori and the task is treated
as a binary classification problem.

Ding et al. (2019) propose a solution that takes advantage of both
hand-crafted and learned features, which consists of two main parts, i.e.,
a domain knowledge-driven preprocessing module and a hierarchical
multi-task learning method based on ResNet. The input image is ini-
tially fed into a preprocessing module to generate intermediate features.
Inspired by the widely adopted multi-scale idea (as proposed in Bayar
and Stamm, 2017a; He et al., 2014; Burt and Adelson, 1983), the authors
use a sequential multi-scale high-pass filter (HPF) for extracting the
residual image. Three HPFs are obtained by subtracting the output of
three Gaussian filters of sizes 3 x 3, 5 x 5, and 7 x 7. Next, the HPF
outputs and the original image are fed to a ResNet (He et al., 2015) to
extract their feature maps. Considering that the correlation among cam-
era brand, model, and device forms a hierarchical structure, the authors
propose a cascaded multi-task learning method for camera identifica-
tion. The proposed method first addresses the brand classification and
model classification, and then identifies the individual device as the final



4.2. Device Identification 361

classification. Before sending feature maps to the final fully connected
layer and softmax layer to compute the loss function, a global average
pooling layer is used over all feature maps instead of one more fully
connected layer. On the Dresden dataset, the proposed method achieves
99.6% accuracy on camera-brand identification, 97.1% on camera-model
classification, and 52.4% accuracy on device identification. The authors
also collect a second database for cell-phone identification, containing 51
cell-phone devices from 10 brands. On this dataset, the model achieves
92.1% accuracy on camera-brand identification, 89.3% on camera-model
classification, and 84.3% accuracy on device identification.

Mandelli et al. (2020b) propose a solution for fast source-device
identification. As the authors outline, the typical workflow depends
on the PRNU estimation obtained from several images coming from
the same device; then, at test time, an image can be compared with
the sensor fingerprint through denoising and peak-to-correlation energy
(PCE) computation (Chen et al., 2007), which might be computationally
expensive. Thus, inspired by the work of Zagoruyko and Komodakis,
2015, Mandelli et al. introduce a 2-channel-based CNN that learns to
compare patches for device identification. Initially, the device PRNU
estimate is obtained from a set of images, and then, for every query
image, the noise residual can be extracted using a denoising procedure
(Chen et al., 2008). The pair constituted by the noise residual and
the PRNU estimator is used as input for the network. The network is
structured in three layers: a 2D convolution layer, a leaky ReLU layer,
and a max-pooling layer. Then, the network ends with a pairwise pooling
layer and a fully connected layer. The pairwise pooling layer ensures
faster computations compared to the evaluation of the complete cross
correlation between all the characteristic maps. The network is trained
by concurrently feeding it with both PRNU and residual extracted using
the denoising procedure introduced in Chen et al., 2008 of the same or
different devices. Experimental results show that this method is faster
than PCE on Dresden and Vision datasets, requiring much less query
image content to obtain enhanced attribution accuracy.

Cozzolino et al. (2020) use Noiseprint-based model-related informa-
tion (according to the approach proposed by Cozzolino and Verdoliva
(2020)) to support PRNU-based device identification. As the authors
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suggest, if we could know the camera model of the device that we
want to identify, the search for the source device could be restricted
only to devices of the same model, thereby reducing the risk of wrong
identification. However, most of the time the camera models are not
known in advance, thus requiring a preliminary model identification
phase, which is itself prone to errors. Therefore, they suggest combining
these two pieces of information. The PRNU and the Noiseprint are
independently estimated from the available images of a given camera
and the testing image. Then, the PRNU-based and the Noiseprint-based
pseudo-distances between the test sample and the references are sep-
arately computed and eventually combined to obtain the final score.
Finally, the authors propose three different strategies to combine the two
distances (SVM, likelihood-ratio test, and Fisher’s linear discriminant)
and evaluate the performance of all such variants. The evaluation on
Dresden and Vision (Shullani et al., 2017) datasets for the closed-set
scenario suggest that the Noiseprint-based model classification remains
largely successful in most conditions and helps to improve the overall
performance, whereas for the various versions of the proposed approach,
there seems to be no absolute winner. This is actually the case for the
proposed method. Considering again the FLD column, the AUC is never
less than 93.5%.

Camera sensor fingerprints may not be the only ones used to identify
the device. Other works take into account information from other elec-
tronic sensors built in the device, such as an accelerometer, gyroscopes,
magnetometer (Baldini et al., 2017), or microphone. Consequently, it
is possible to identify the device by exploiting any of the small but
significant differences in the physical components of the sensors. As
with cameras, these physical differences are mainly generated during the
manufacturing process, which leaves small but reproducible variations
in the digital output generated by the integrated sensors.

Baldini and Amerini (2019) developed a methodology to identify mo-
bile phones through the analysis of the microphone. First, they prepared
a dataset by collecting recordings from 32 different devices and then
preprocessing them. They stored audio recordings for each smartphone
in pulse-code-modulation format (PCM) at 44100 Hz. Next, the audio
records are power normalized and synchronized to avoid the presence
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of bias related to test bed configuration (e.g., the distance from the
loudspeaker or the time shift among sound recordings). They added
different types of noise to the sound recordings to simulate the presence
of background noise or attenuation in practical environments. Finally,
they applied the fast Fourier transform (FFT) to the digital represen-
tation of the sound recordings to obtain a frequency representation,
which then used later as input for the classification model. They used a
CNN for the classification task and they compared it with an SVM and
an k-nearest neighbor (as introduced by Altman, 1992) baselines classi-
fiers. The CNN is made by two convolutional layers each followed by a
max-pooling layer and a third and final convolutional layer extracting
feature maps, which are then classified by a fully connected network.
The evaluation of the model demonstrated that the introduced CNN
achieves a good accuracy on both identification and authentication.

Device identification is clearly a very complicated task compared to
camera model identification. The difficulty comes from the fact that the
traces to be identified are much more subtle and difficult to find. Even
more, data suitable for device identification are much more difficult to
find compared to camera-model identification. Hence, most of the time,
camera fingerprints do not suffice, and researchers need to integrate the
information coming from different built-in sensors. These data, however,
are difficult and sometimes impossible to find. In this respect, a lot of
work has to be done to introduce stronger and easier methods to solve
these problems.

4.3 Social Network and Messaging App ldentification

Social network and messaging app identification is an emerging task
in multimedia forensics. Recently, a high number of researchers have
focused their attention on applying forensics techniques to detect the
fingerprints left by these platforms. Solutions can be categorized into
two representations: DCT-based and PRNU-based.

A discrete cosine transform (DCT) represents a finite sequence of
data points in terms of a sum of cosine functions oscillating at different
frequencies. DCT is surely one of the most widely used transformation
techniques in signal processing, especially for lossy compression, and
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is successfully used in many forensic applications. This feature can be
particularly useful for social-media identification and is usually adopted
in combination with other information for achieving better classification
accuracies.

Amerini et al. (2019a) use DCT-based features and image noise
residuals to capture the signatures of different traces left by social
network operations during downloading and uploading. They introduce
a novel CNN architecture, which they call FusionNET, to combine
the learning power of the inter-layer activation of two single-feature—
based CNNs. The first stream, called 1D-CNN (Amerini et al., 2017c),
consists of two convolutional and max-pooling layers followed by a fully
connected layer. The second one, called 2D-CNN Caldelli et al., 2018a,
is composed of two blocks, each one made of two convolutional layers, a
max-pooling layer, and a dropout layer. The last convolutional block is
connected to a dense layer. The two 256-unit vectors coming from the
last layers of the 1D-CNN and the 2D-CNN are concatenated and fed
to two fully connected layers. Their output enters a softmax layer with
as many units as the number of classes k, a value to be identified. It is
desirable for the output to be independent of the input image resolution.
However, The DCT is highly affected by the content and size of the
considered image. For this reason, the authors divide each picture in
nonoverlapping patches. For each 8 x 8 block in a patch, the system
selects the first 9 spatial frequencies in zig-zag scan order besides the DC
coefficient. Then, for each spatial frequency it constructs the histogram
representing the occurrences of the quantized DCT coefficients. The
input to the first CNN is the resulting vector of 909 elements (101
histogram bins for each of the 9 DCT frequencies). the second network
takes as input a 64 x 64 bidimensional matrix. The proposed system
reaches a high accuracy both at the patch and image levels on several
datasets, namely the UCID dataset (introduced in Section 7.2), the
Image Ballistic and Social Network dataset (see Section 7.2), and the
Vision one.

Phan et al. (2019) exploit traces left in DCT coefficient maps, and
information from JPEG images metadata. They propose two CNN archi-
tectures. A patch-based CNN composed by 3 consecutive convolutional
layers takes histograms of DCT coefficients and incorporate a statistical-
moments layer introduced in Fuji Tsang and Fridrich, 2018 to extract 4
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statistical values (min, max, mean and variance) of each feature map.
These values are concatenated in a vector and fed to multilayer per-
ceptron (MLP) classifier. A variant of this architecture concatenates
DCT and metadata features used in Phan et al., 2018. The obtained
results show the improvements introduced from the features fusion to
distinguish among different social platforms and the exact sequence of
social-media platforms in which the image was posted. The authors test
their solution on RAISE (see Section 7.2) and Vision datasets. They
evaluate the accuracy of their method on the following three scenarios:

e Input images have have been shared, once, via Facebook, Flicker,
or Twitter, and the goal is to identify the platform. This problem
gives rise to a 3-class classification problem. The accuracy of their
approach is 99.87%.

e Input images have been shared either in one platform, as in the
first case, or in two platforms. This problem gives rise to a 12-class
classification problem The accuracy of their approach is 65.91%.

e Input images have been share up to three times. This problem
gives rise to a 12-class classification problem The accuracy of their
approach is 36.18%.

Photo response non-uniformity (PRNU) is another common feature
used to train convolutional neural networks. When uniform light falls
on a camera sensor, each pixel should output the same value. However,
small variations in cell size and substrate material may result in slightly
different output values. These imperfections are intrinsically related to
the physical properties of the sensor itself; as a result, it is practically
impossible to eliminate them and so they are typically considered to be
a normal characteristic of the sensor. As such, the processing operations
led by social network platforms can leave precious traces in the PRNU,
which can be used for social-media identification.

Caldelli et al. (2018b) exploit the alterations introduced by social
networks on the PRNU noise embedded in images by source devices
during the acquisition process. For each image, they compute the noise
residual, representing the image from which its denoised version has
been subtracted, and extract non-overlapping N x N patches. The
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patches extracted from each image are fed to a convolutional neural
network. The network is made of two blocks, each one composed of two
convolutional layers followed by a pooling layer. Then, two fully con-
nected layers classify the features extracted from the second block. The
method achieves high accuracy (above 87%) on IPLAB (see Section 7.2),
UCID, and Vision. Similarly, Amerini et al. (2017a) use a PRNU-based
methodology to identify videos coming from social networks. Typically,
a video is split in individual frames and then a wavelet denoising filter
filters out the scene content for each RGB color channel. Then, by
averaging on a specified number of filtered frames for each color channel
and converting them to gray levels it is possible to obtain a fingerprint
of the source of the video. Finally, by estimating the fingerprint for
each class (source device, Twitter and Facebook), a new video can be
classified by comparing its denoised version with the estimated finger-
prints. However, Amerini et al. introduce an approach called composite
fingerprint, obtained extracting and concatenating the PRNU noise
from chunks of frames respectively taken from the original video and the
videos downloaded from Facebook and Twitter. A composite fingerprint
permits to take into account some changes on the PRNU noise intro-
duced by the processing performed by the social network onto the video.
At test time, only the original video need to be available to compute
the composite fingerprint because it can be uploaded on the various
social networks and then downloaded to compute the fingerprint.
Quan et al. (2019) investigate the effects of the predefined Instagram
image filters on the sensor pattern noise (SPN, Lukas et al., 2006)
based image provenance analysis, whose dominant component is PRNU.
Initially, the authors study how different filters affect the SPN pattern
and whether it would be possible to identify the applied filter such that
it would allow them to conduct a more reliable provenance analysis.
Next, they propose a modified VGG network. Taking inspiration from
Gatys et al., 2015, Quan et al. claim that the visual clues added by
Instagram filters can be mostly represented by the lower layers in a
neural network, and use a network with seven convolutional layers
followed by three fully connected layers, which is more compact than
the shallowest VGG architecture (11 layer VGG-net) in Simonyan and
Zisserman, 2014. They train their system using three different inputs:
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the unprocessed images (I-net), the denoised images (I-net), and the
image noise residuals (n-net). On average, the I-net, I-net, and n-net
achieve an accuracy of 79.91%, 86.93% and 88.38%, respectively on the
Vision dataset (Shullani et al., 2017).

The identification of the fingerprint left on videos by social media
platforms has been quite limited for now. In fact, the lack of public
datasets on this problem makes hard to propose new methods. However,
Amerini et al., 2021 have recently proposed a method that is capable
to distinguish native videos from Facebook and WhatsApp videos on
the Vision dataset. The authors propose a multistream network called
MultiFrame-Net. The first stream, is a convolutional network called
Ind-Net, which analyzes input I-frames extracted from an input video.
This network is made of six convolutional blocks. The first three blocks
are three stacks of a convolutional layer, a batch normalization layer,
and a ReLU layer, followed by a final max pooling layer; the last three
blocks add one more stack of convolutional, batch normalization, and
ReLU layers. The second stream is based on another convolutional
network, called Pred-Net, which analyzes a stack of three consecutive
P-frames. This network is made of five convolutional blocks. The first
two blocks are two stacks of a convolutional layer, a batch normalization
layer, and a ReLU layer, followed by a final average-pooling layer. The
last three blocks are similar to the first two blocks but add one more
block of a convolutional, a batch normalization, and a ReLU layers. In
the last block the average pooling layer is substituted with a global
average pooling layer to preserve the statistical properties of feature
maps. The output vectors of the two streams are concatenated and
fed to a two convolutional layers. The input frames are preprocessed
as done in Nam et al., 2019 before being fed to the network. The
experiments on the Vision dataset show that the proposed method
classifies the frames of a video with 95.51% accuracy. Moreover, Amerini
et al., 2021 report the results of a preliminary experiment, where they
measure the ability of the Ind-Net to transfer features from the video
domain to the image domain. By freezing the CNN parameters learned
on the video domain and retraining the fully connected network on
images from WhatsApp, the network classifies the images with 86.63%
accuracy.
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Being able to detect whether an image or video comes from a social
media platform or a messaging app is a hot problem nowadays. The
solutions reviewed in this section are mainly based on PRNU or DCT
coefficients and lead to satisfactory results. In this respect, a possible
future direction to explore could be the analysis of learned based models
that learn to automatically extract the most relevant fingerprints, thus
avoiding the preprocessing steps of extracting PRNU or DCT.

4.4 Best Practices for Source ldentification

Source identification is one of the fundamental problems of media
forensics. It contains multiple challenges: camera model, device and
social-media—platform identification. Most of the approaches to address
these challenges are commonly evaluated for accuracy and can be
addressed in a closed-set (all possible classes of provenance are known
in advance) or open-set context.

Many works highlight the importance of choosing patches of suffi-
cient quality to rebuild the source. In fact, not all patches contribute in
the same way with information that is sufficiently complete and rich
to be used for this purpose. Saturated patches typically contain less
statistical information than textured and mixed patches. Thus, apply-
ing a quality selection procedure for patch-based CNN can improve
detection performances in all the problems described in this chapter
(see Section 4.1.1). A good selection process (reused in many works) is
the one described by Bondi et al., 2017b.

Another very important design choice is that of filters. The choice
can range from static filters (high pass-filters, MFR, and Laplacian
are the most common) to filters learned dynamically from a neural
network. The latter category has proven to be very effective in source-
identification applications, but as with most deep-learning solutions
they are dependent on training data. An open challenge is how to apply
these techniques on unknown datasets. The most promising approaches
are those based on similarity networks such as the methods described
in Cozzolino and Verdoliva, 2020, Mayer and Stamm, 2018, and Mayer
et al., 2020.
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Even though almost all of the solutions described in this section do
not require deep-learning architectures that are too deep or complex, the
complexity of networks nevertheless increases for social-media platform
identification solutions. In this case, the network is designed to detect
features left by social networks and messaging apps during the upload
phase, which typically can involve recompression, resizing, and other
operations aimed at improving the display quality of these contents on
the platform. To capture all these subtle traces, very commonly the
proposed solutions are based on multistream networks that analyze in-
formation such as PRNU, DCT, or noise residual features in parallel and
then make a common decision based on all the extracted information.

Table B.3 summarizes some of the most interesting architectures
described in this section.
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Deepfakes: Strategies to Detect Artificially
Generated Content

The progress of artificial intelligence has brought new threats related
to manipulation or generation of visual and audio content with a high
potential to deceive, making the creation of fake content very easy.
Deepfakes have attracted widespread attention for their potential abuse
in fake celebrity videos, fake news, hoaxes, and financial fraud. Most of
the techniques applied to create deepfakes are based on deep learning
and involve training generative neural network architectures, such as
autoencoders, or generative adversarial networks (GANs, Goodfellow
et al., 2014). Even though these emerging methods have shown some
incredible realistic achievements, artificially generated content has been
used for a long time now, so many of the issues we discuss in this
chapters are not new. Computer-generated imagery (CGI) and deep-
learning generated fakes have something in common: the lack of some
characteristic features that are present in images and videos captured
through real cameras. These, for the time being, give the possibility to
differentiate between real and fake images.

All such technologies are mostly used to generate fake human faces.
In fact, it is very common in forensics to use the term deepfake to refer
to fake (not just deep-learning—based) human faces. Deepfakes have
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Figure 5.1: An overview of Deepfake detection approaches.

proven really good at creating synthetic faces of persons that do not
exist, or to realistically reproduce faces of public figures. Therefore, in
the next section, we discuss some of the recent works involving deep
learning to spot fake human faces. after that, we review the works that
use all the forensic tools developed to detect such contents in a general
manner. Figure 5.1 summarizes the research problems reviewed in this
section.
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(a) Deepfake example. (b) Deepfake example. (c) Deepfake example.

Figure 5.2: On top we show some real actors and on the bottom the corresponding
deepfake (Nick Dufour, 2019).

5.1 Deepfake Human Face Detection with Deep Learning

The most widely adopted application of deepfakes has probably been
in the production of fake human faces. The impressive level of realism
reached by deepfakes exposes public figures and society in general to
new threats (see Figure 5.2). With the spread of social media, fake
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images or videos can easily go viral, facilitating the spread of fake news.
As such, being able to distinguish whether a human face is real or fake
becomes a need to which the forensic community is responding very
quickly. Even though, as said before, computer-generated content has
been used for a long time now, the recent development of deep-learning
techniques has attracted a lot of attention from the forensic community.
Hence, in this section, we review all recent methods embracing this
technology. Matern et al. (2019) reviewed current facial editing methods
and several characteristic artifacts. Similarly, Nguyen et al. (2019b)
presented a survey of algorithms used to create and detect deepfakes.

A common approach is to try to identify some anomalies in the
typical movements of human faces, or inconsistent configurations of
facial parts caused by weak global constraints. Hence, as a general
pipeline, the works in this section usually work by detecting a specific
inconsistency in the human face. Most of the time, this procedure could
include a preprocessing step of landmarks extraction. A CNN can then
be used to extract latent feature maps. Finally, the selected features
can be classified by a fully connected network or other classifiers such
as SVM.

Li et al. (2018) expose deepfakes by detecting anomalies in eye
blinking in fake videos, taking advantage of the fact that generally
they tend appear unnatural. The detector is designed by relying on
a long-term recurrent convolutional network (LRCN, Donahue et al.,
2016) to capture the temporal regularities that characterize the eye
blinking process, accurately distinguishing between the open and closed
eye state for each video frame. Initially, a face detector extracts face
areas and facial landmarks from each frame. The detected faces are then
aligned into the same coordinate system to discount head movements
and orientation changes. From the aligned face areas, bounding boxes
of each eye’s landmark points are extracted and the cropped eye area
sequences are passed into the LRCN for dynamic state prediction. The
evaluation of the AUC suggest that LRCN show improved performance
(99%) compared to CNN (98%).

Yang et al. (2019b) expose GAN-generated faces using the vector of
landmark locations as a feature vector to build a classification system
for differentiating GAN-synthesized and real faces. An SVM or a neural
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network classifier is trained to compare facial landmark locations de-
tected on GAN-synthesized and real faces. The proposed method takes
advantage of the following observation: current GAN-based algorithms
use random noises as input; this approach works well in depicting the de-
tails of different face parts, but it lacks constraints on the configuration
of different face components, leading to the introduction of errors in the
locations of facial parts. The SVM classifier achieves an AUC of 94.13%
and outperforms several methods based on deep neural networks (e.g.,
VGG19 and XceptionNet) with respect to the CelebFaces Attributes
Dataset (CelebA, Liu et al., 2014) and PGGAN datasets (Karras et al.,
2017). In another work, Yang et al. (2019a) propose an SVM-based
classifier to detect deepfakes against real face images. This is done by
detecting relevant errors that arise when comparing deepfake with real
3D head poses estimated from the face images. Initially, a deepfake
generation pipeline is introduced. A real cropped face is warped to a
standardized face using an affine transformation, and it is fed to a GAN
deep neural network to produce a synthetic face. Then, the authors
compare the head poses estimated using 68 facial landmarks from the
whole face or only from the central face region. The alignment error
between real and fake face is revealed as the differences in the head
poses shown as their projections on the image plane. The difference
of the head poses is then flattened into a vector and fed into an SVM
classifier to differentiate the original image from the deepfake.

Do Nhu et al. (2018) use the feature extractor in the VGGFace
(Parkhi et al., 2015) to distinguish between input fake and real images
or video frames.

Agarwal et al. (2019) use 16 facial action units (AU, according
to the definition given by Ekman and Friesen, 1976) to represent the
person’s face. They notice that facial expressions and head movements
are strongly correlated and that changing the former without modifying
the latter may expose a synthetic face. These AUs are augmented, that
is randomly transformed, with the following four features: (1) head
rotation about the x-axis (horizontal); (2) head rotation about the
depth-axis (depth); (3) the 3-D horizontal distance between the corners
of the mouth; and (4) the 3-D vertical distance between the lower and
upper lip. The first pair of features captures general head motion and the
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second pair of these features captures mouth stretch and lip suck. Next,
they use the Pearson correlation to measure the linearity between these
features in order to characterize an individual’s motion signature. Each
10-second video clip is then reduced to a feature vector of dimension 190
and used to classify a video as real or fake. A SVM is used to distinguish
between real and fake contents. The authors evaluated the robustness
of this technique against compression, variation of video clip length,
and the context in which the person is talking (e.g., formal prepared
remarks looking directly into the camera versus a live interview looking
off-camera). They show that their method is robust against compression,
but vulnerable to different contexts in which the person is talking, and
accuracy drops for shorter clips, but is largely unaffected by clip lengths
between 10 and 20 seconds. Thus, this technique can be used just in
limited contexts, requiring a large number of videos for every single
person.

Similar to external face characteristics, biological signals (e.g.,heart
rate or eye blinking) can be used to identify synthetic faces. Ciftci
and Demir (2019) extract biological signals from facial regions on
authentic and fake portrait video pairs and analyze the spatial coherence
and temporal consistency of such features. The authors compare the
performances with various neural networks. The method outperforms
the best baseline architecture (i.e., the one proposed by Tariq et al.,
2018) by 8.85%. In the same direction, other works, such as Fernandes
et al., 2019; Maras and Alexandrou, 2018 extract the heart rate from
facial videos and use this information to train a classifier.

Although deep-learning models are usually characterized by a high
number of deep layers, Afchar et al. (2018) propose two simple architec-
tures with a small number of layers and parameters that make use of
mesoscopic features. The networks are trained on 256 x 256 images or
I-frames. The first network (Meso-4) is made of a sequence of four con-
volutional and pooling layers, and is followed by a dense network with
one hidden layer. The second (Mesolnception-4), is based on replacing
the first two convolutional layers of Meso4 by a variant of the inception
module introduced by Szegedy et al., 2016. As for the original Inception
network, each layer is made of a stack of several convolutional layers
with different kernel shapes. However, instead of 5 x 5 convolutions,
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Afchar et al. use 3 x 3 dilated convolutions (Yu and Koltun, 2015) to
avoid high semantic. In order to reduce the dimension of the feature
maps extracted by the convolutional layers, the authors add 1 x 1 con-
volutions before and in parallel to the dilated convolutions. Replacing
more than two layers with inception modules did not offer better results
for the classification. The authors test the two architectures and the
show that they obtain an accurate detection rate with more than 98%
on a deepfake dataset and 95% on the FaceForensics dataset (Rossler
et al., 2018a). Another simple lightweight approach is introduced by He
et al. (2019), who employed residual signals of chrominance components
from multi color spaces to train shallow CNNs: First the image is con-
verted in YCbCr, HSV and Labs color spaces and preprocessed with a
high-pass filter to reduce the influence of different image contents. The
shallow networks are trained as feature extractors on the preprocessed
images. Finally, the feature maps extracted by the shallow networks are
classified by means of a random-forest classifier.

Looking at face inconsistencies is not the only way to reveal fake
human faces. Li and Lyu (2018) made the following observation: current
deepfake algorithms can only generate images of limited resolutions,
so the images need to be further warped to match the original faces
in the source video. Taking advantage of it, they trained a deep CNN
classifier to capture distinctive artifacts in deepfake videos, relying on
several alternative backbones (e.g., VGG-16, ResNet50, ResNet101 and
ResNet152). To generate negative examples for training the model,
they proposed a simple preprocessing pipeline: a detector extracts the
face regions, then faces are aligned into multiple scales, and they are
randomly selected and smoothed by a Gaussian blur with a 5 x 5 kernel.
This process aims to recreate more resolution cases in warped faces that
imitate better different kinds of resolution inconsistencies introduced in
face warping. The smoothed face undergoes a warp back to the same
sizes of original face to simulate the artifacts in a deepfake production
pipeline. Finally, faces are resized to 224 x 224 and fed to the CNN
models for training. The authors validate their method on the UADFV
Yang et al., 2019a and Deepfake TIMIT (Korshunov and Marcel, 2018)
datasets. The VGG-16, ResNet50, ResNet101, and ResNet152 models
achieve an AUC performance of 84.5%, 98.7%, 99.1%, 97.8%, on UADFV
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respectively, and of 57.4%, 93.2%, 86.9%, 91.2% on Deepfake TIMIT.
The method also outperforms some state-of-the-art methods the face
tampering detection method, such as the Two-stream NN (Zhou et al.,
2018b), and the two deepfake detection methods MesoNet (Afchar et al.,
2018) and HeadPose (Yang et al., 2019a). However, although Li et al.
designed their method for images of limited resolutions, Karras et al.
(2019) proved that it is possible to detect that an image was generated
artificially even if it is of very high quality. The authors identified
and fixed several image quality issues in StyleGAN, improving the
quality further with the additional benefit that the generator becomes
significantly easier to invert.

Li et al. (2019) analyze the problem from a pixel-level perspective by
using segmentation methods and comparing the performance of several
network architectures. As the authors suggest, most works cast the prob-
lem as a classification task that can only produce a global scalar value
representing the confidence that the image is fake but cannot reflect the
extent to which it has been manipulated. Initially, they show that any
classification network can be easily converted to a fully convolutional
network (Long et al., 2014) by replacing the fully connected layers with
convolutional layers. A Binary Cross Entropy loss can be used to mea-
sure the classification error on each pixel. Then, they compare several
architectures (Xception, Mesolnception-4, UNet, VGG-16 and a simple
3-layer convolutional network introduced by the authors) to evaluate
their effectiveness on the problem of face forensics. First, they notice
that a deep network, such as Xception with 36 layers, does not reach a
high score, whereas the shallow models present better abilities, revealing
that face forensics is supposed to be defined as a low-level vision problem
than a high-level perception problem. Then, they notice that there is lit-
tle difference between the pretrained model and the trained-from-scratch
model. According to the experimental results, the features learned in a
general vision recognition task such as ImageNet did not help quickly find
better local optima. Finally, in order to have a better understanding of
the features learned by the VGG-5 (i.e., a shallow versions of the VGG-16
containing the first 4 feature layers of VGG respectively and a classifier),
they analyze the kernels by visualizing them using the technique in Sprin-
genberg et al., 2015. The results show that apart from the features in the
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first convolutional layer, which are mostly low-level edges and corners,
the kernels in following layers do not make much sense to us humans.

Videos have recently gained more interest than still images have.
Moreover, several state-of-the-art face recognition systems can be vul-
nerable to deepfake videos (Korshunov and Marcel, 2019). The recurring
convolutional models adapt perfectly to the problem of detecting video
manipulation, bringing a spatio—temporal dimension to the analysis.

Sabir et al. (2019) introduce a two-step method based on cropping
and alignment of faces from video frames, followed by manipulation
detection over the preprocessed facial region. For the preprocessing step,
the authors experiment with two different techniques: (1) explicit crop-
ping and alignment through landmarks and (2) an implicit alignment
that uses a spatial transformer network (Jaderberg et al., 2015), which
is trained to predict the alignment parameters on each input image, thus
learning to zoom on particular parts of the face. Then they incorporate
the idea of using features at a mesoscopic level (Afchar et al., 2018),
attempting to learn multiple recurrent networks at different levels of
the hierarchy. In this way, the model uses micro, meso, and macroscopic
features for manipulation detection. The evaluation of the model on
FaceForensics++ (Rossler et al., 2019) using ResNet and DenseNet
as the CNN component of the model show that DenseNet with align-
ment and bidirectional recurrent network is the best performing model
compared to the baselines in Rossler et al., 2019.

Guera and Delp (2018) adopt a CNN to extract frame-level features
from a video sequence and an LSTM to produce a temporal sequence
descriptor for image manipulation of the shot frame. The CNN is trained
to extract 2048-dimensional feature vectors after the last pooling layer
that are then fed in the sequential LSTM. The LSTM is followed by
a 512 fully connected layer with 0.5 chance of dropout, and a softmax
layer to compute the probabilities of the frame sequence being either
authentic or deepfake. The authors collected 300 deepfake videos from
multiple video-hosting websites for training, validation, and testing.
The models achieve high-accuracy results (more than 96% accuracy) on
their evaluation.

Amerini et al. (2019b) and Caldelli et al., 2021 introduce a new
technique able to detect deepfakes from original videos. They use a
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sequence-based approach based on optical flow to analyze possible
dissimilarities in the temporal structure of a video. The approach treats
the optical flow is a vector-field computed on two consecutive frame to
extract apparent motion between the observer and the scene itself. The
forward flow is extracted using a PWC-Net (Sun et al., 2017) and fed to
a semi-trainable CNN named Flow-CNN, based on a pretrained network.
The authors experiment with a VGG-16 and a ResNet50. Preliminary
results on FaceForensic++ dataset (Rossler et al., 2019) on that the
ability of this approach to identify some existing dishomogeneities in a
video, show a 81.61% and 75.46% binary detection accuracy for VGG-16
and ResNet50 respectively.

The architectures in this section are united by the choice of a specific
feature to work on. However, along with the forensic tools, deepfake
generation techniques improve as well, making these traces more and
more difficult to recognize. As a result, we expect to see more complex
and sophisticated detectors being designed in the future. As for forgery
detection problems, the development of cross-manipulation detectors
able to recognize any kind of attack remains an open challenge. The
first steps in this direction have been done and will be discussed in
Section 5.3. But first, we discuss the research on a more elementary
topic.

5.2 Do GANs Leave Artificial Fingerprints?

Generative Adversarial Networks (GANs, Goodfellow et al., 2014) have
received a lot of attention in the last few years because of the high level
of accuracy reached by these architectures. These results have led to a
massive spread of deepfakes, which are now mainly generated by GANSs.
Being a recently emerged problem, it is important to understand how
to face the spread of GAN generated content. So the first question that
many researchers try to answer is: Do GANs leave artificial fingerprints?
And if so, how can we detect them? In this section, we review recent
publications working in this direction.

Marra et al. (2018b) show that each GAN leaves its specific finger-
print in the images it generates: this implies that source identification
can be a relevant tool for image forensics purposes. Such fingerprints



5.2. Do GANSs Leave Artificial Fingerprints? 379

depend on the GAN itself, both on its architecture (number and type
of layers) and its specific parameters (filter weights). However, this also
implies that the attacker can remove the fingerprint from the generated
images as a counter-forensic measure. The authors consider three al-
ternative GAN architectures: the Cycle-GAN (Zhu et al., 2017), the
ProGAN (Karras et al., 2017), and the Star-GAN (Choi et al., 2017) to
perform image-to-image translation (e.g., the generator takes an input
image of the source domain and transforms it into a new image of the
target domain) and compare the related fingerprints with those of a
set of images acquired by real cameras and belonging to the RAISE
dataset. Eventually the authors used a deep neural network to differen-
tiate between real and GAN-generated images. Initially, they show that,
similarly to PRNU, an image residual can be calculated by processing
the image with a denoising filter and then, by subtracting the filtered
image from the original. Then, the fingerprint of the GAN is estimated
by a simple average over the available residuals. Finally, they calculate
the correlation between and fingerprints. They verified out in several
models that the histogram of correlations are well separated across
different GANs, allowing reliable discrimination. As an example, AUC
score for Cycle-GAN and Pro-GAN are nearly perfect with values 99%
and 99.8%, respectively. They carried out similar experiments for many
other GANs. These results provide evidence that each GAN leaves a
distinctive mark on each image generated by it, which can act as a
fingerprint.

Different GAN models have been proposed, each one introducing
its own training dataset distribution, loss, optimization strategy and
hyperparameter settings. Both nonconvexity of the objective function
and instability of adversarial equilibrium in GANs lead those models to
be extremely sensitive to random initializations, therefore converging to
different values during each training. As suggested by Yu et al. (2018),
this indicates that, even though two different models may perform
equivalently, they generate high-quality images differently, suggesting
the uniqueness of GAN fingerprints. The authors replace the hand-
crafted fingerprints proposed by Marra et al. (2018b) with a learning-
based formulation. They introduce three different attribution networks:
(1) a pre-downsampling network that extracts low-frequency bands, (2) a
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pre-downsampling residual network that extracts high-frequency bands
between one resolution and its factor-2 sampled resolution, and (3) a
post-pooling network that test whether fingerprints and attribution can
be derived locally based on patch statistics. Experiments suggest that
fingerprints persist across different image frequencies and patch sizes,
and are not biased by GAN artifacts. Even more, the proposed model
can be effectively tuned to overcome several perturbations attacks. Even
though fingerprints can be deteriorated by several image perturbation
attacks, they are effectively immunizable by simple fine-tuning. The
fingerprints learned by the proposed method are consistently superior
to the work by Marra et al. (2018b).

Nataraj et al. (2019) propose an approach to detect GAN-generated
fake images using a combination of co-occurrence matrices and deep
learning. They extract co-occurrence matrices on three color channels in
the pixel domain and they use them to train a model using a deep CNN
framework consisting of several suitably dimensioned alternate couples
of convolutional and ReLu layers. Experimental results on two diverse
and challenging GAN datasets comprising more than 56,000 images
based on unpaired image-to-image translations (cycleGAN) and facial
attributes/expressions (StarGAN) show that the approach is promising
and yields high classification accuracy on both datasets. The authors
test the model accuracy on the cycleGAN and the StarGAN dataset,
obtaining a testing accuracy of 99.71% on the cycleGAN dataset and
of 99.37% on the StarGAN dataset. Next, they evaluate the capability
of the method to generalize by training it on one dataset and testing
it on the other. The model trained on cycleGAN dataset has a higher
accuracy of 99.45%. In comparison, the model trained on StarGAN
dataset achieve an accuracy of 93.42%.

Social networks can be the first diffusion medium for GAN-generated
fake images. Marra et al. (2018a) show that high detection accuracy
can be achieved by both conventional and deep-learning detectors;
yet conventional detectors show dramatic impairments on Twitter-like
compressed images. Instead, they show that deep CNNs (e.g., DenseNet,
InceptionNet and XceptionNet) are robust, yielding high accuracy
on compressed data and it the presence of training-test mismatching.
According to the evaluation results, several detectors perform very well
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on the original images, but some of them show dramatic impairments
on Twitter-like compressed images. Moreover, deeper networks, and
especially XceptionNet, turn out to be more robust even in the presence
of training-test mismatching.

Even though various papers have promising results, it is still not clear
how these systems will evolve in the future, thus it becomes important to
keep studying the limits of deepfake detection. In this respect, Agarwal
and Varshney (2019) pose the problem of deepfake detection—namely
for classifying genuine against GAN-generated images—as a hypothesis-
testing problem, and they derive statistical error bounds on the detection
of deepfakes.

As we have seen in this section, GANs tend to leave their own
fingerprint, therefore making it possible to detect if they have been used
for the generation of the content under study. Even more, it different
GAN architectures leave different fingerprints, thus enabling the design
of fine grained detectors.

5.3 Towards the Generalization of GAN-Generated Content Detec-
tion

Most of the time, GANs are used to generate fake human faces; yet,
these technologies can be used for many other applications. This means,
even more robust forensic tools are needed to detect every kind of
fake synthetic content. As new and more powerful GAN architectures
develop rapidly, the generalization ability of forensics method to unseen
types of generated fake images becomes increasingly important for the
forensic analysis.

Cozzolino et al. (2018) propose an autoencoder-based neural network
architecture that learns a latent space called forensic embedding. To
prevent the net from discarding precious information during training,
the latent space is constrained to preserve all the data necessary to
reconstruct the image in compact form. The input images are high-pass
filtered by means of third-order derivative so as to obtain the residual
image. Next, the autoencoder detector is trained to disentangle encoding
and decoding. Specifically, the latent vector is split into two disjoint
parts, each associated with a class, “real” or “fake.” Thus, the network is
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trained to activate only the part of the latent vector that belongs to the
input sample class. The learned embedding acts as a form of anomaly
detector; that is, an image manipulated from an unseen method will
be detected as fake provided it maps sufficiently far away from the
cluster of real images. Compared to other reference methods, most of
which provide accuracies close to 50% on unseen datasets, the proposed
method maintains good performance, e.g., 90% accuracy from Cycle to
Style-GAN. Similarly, Nguyen et al. (2019a) use the same approach with
a deeper network adding a segmentation task, e.g. the reconstruction
of an output mask. Again in this way, Du et al. (2019) introduce a
locality-aware autoencoder that is enforced to capture discriminative
representations from the manipulated regions by forcing the encoder to
output a heatmap (or attention map) for each input and regularizing the
attention map with pixelwise forgery ground truth (i.e. the segmentation
mask). The goal of local interpretation is to identify the contributions
of each pixel in the input image towards a specific model prediction.
To obtain the attention map, the authors use global average pooling
layer on the last conventional layer of the encoder and upsample the
attention map to the same dimension as the input image using bilinear
interpolation as in Zhou et al., 2015. Then, to enforce the network to
focus on the correct forgery region to make detection, the network is
regularized by minimizing the distance between the predicted attention
map and the ground truth. Compared to other methods (Cozzolino
et al. (2018), Afchar et al. (2018) and Chollet (2016)) the proposed
technique allows for better interpretation and stronger generalization.

Wang et al. (2019b) prove that a standard image classifier trained
only on one specific CNN generator (Pro-GAN) is able to generalize well
to unseen architectures, datasets, and training methods if trained with
accurate data augmentation. At training time, the dataset is enriched
with Gaussian blur, or JPEG compression, or combinations of them.
Instead, at test time the input is not enriched. Xuan et al. (2019) propose
a preprocessing step that involves random extent Gaussian blur (i.e. the
result of blurring an image by a Gaussian function) and Gaussian noise;
this preprocessing aims at destroying low-level clues. The preprocessed
input enters a deep convolutional GAN with four convolutional layers
(Radford et al., 2015), which is trained to distinguish between real and
fake images.
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Marra et al. (2019a) address the detection of GAN-generated images
by means of an incremental learning strategy. Specifically, they make
use of of the incremental classifier and representation learning (iCaRL)
method (Rebuffi et al., 2016) to update the classifier as new GAN
architectures appear over time. The authors compare two multitask
versions of the original iCaRL: (1) a new separate binary classifier (called
Multi-Task MultiClassifier) trained jointly with the original one, and
(2) another (Multi-Task Single Classifier) in which the iCaRL detector
structure is left unchanged and a binary cross entropy loss term is added
to the original iCaRL loss. The proposed method ensures a detection
accuracy over 90% even when more than one single GAN has to be
detected.

As we have seen in the previous section, the artificial generation
of human faces has attracted a lot of attention. Khodabakhsh et al.
(2018) evaluate the generalizability of fake face detection methods
through a series of experiments. This work, emphasizes the importance
of validation of detectors across multiple datasets for wider applicability
of these solutions to real-world scenarios.

Bondi et al., 2020 analyze (1) how different training strategies and
(2) data augmentation techniques affect CNN-based deepfake detec-
tors when training and testing on the same dataset or across different
datasets. They begin by comparing two training strategies to measure
the intra-dataset and cross-dataset detection performances. Moving
from their previous work (Bonettini et al., 2020), they initially extract
the faces in the video sequences through the BlazeFace (Bazarevsky
et al., 2019) network. Then, they train an EfficientNetB4 (Tan and Le,
2020) architecture on four datasets (FaceForensics, FaceForensics++,
The Deepfake Detection Challenge—DFDC, and CelebDF—see Sec-
tion 7.3) to predict whether a face is fake or real. Finally, they compare
the performance of a baseline EfficientNetB4 trained using the binary
cross entropy loss, and the same CNN trained with a triplet loss (Wang
et al., 2014). The results show that the triplet loss seems to offer a bit
more separation between the two classes, despite the feature extractor
being trained on a different dataset. The second batch of experiments
evaluate the effect of different data augmentation techniques (horizontal
flip, brightness and contrast changes, hue, saturation and value changes,
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addition of ISO noise, Gaussian noise, downscaling and JPEG compres-
sion). They test all the augmentations independently one from each
other, training with binary cross entropy loss on the DFDC dataset. The
augmentations do not seem to help much increasing intra-dataset detec-
tion, maybe due to the cross-contamination between train, validation,
and test set in terms of video settings and scenarios. However, some
augmentations (horizontal flip, brightness and contrast changes, hue,
saturation and value changes and JPEG compression) are beneficial in
terms of cross-dataset generalization. The combination of augmenta-
tions brings up to +9% AUC improvements in terms of cross-dataset
detection. Augmentations are not beneficial when applied to the CNN
trained with triplet loss.

Designing a general-purpose classifier is one of them main goal of the
forensic community. This would allow the user to detect any deepfake
content regardless of how it has been generated. The development of
models granting forensic transferability is surely the first step in this
direction, making it possible to transfer the detection capability of a
model to different but similar problems.

5.4 Detecting Other Computer Graphics Through CNNs

GANSs and deepfakes are just the latest artificial content generation
techniques. However, computer-generated imagery (CGI) has seen an
enormous application of computer graphics in several industries, allow-
ing for the creation of printed media, video games, movies, commercials,
videos, and animated content. Realistic achievements of these technolo-
gies could still require forensic tools that allow to distinguish between
real and fakes. In fact, CGI can be used to produce highly realistic
content that can be sometimes hard to distinguish with respect to real
ones, for this reason, it is important to pay attention to this type of
content as well as done for deepfakes.

The general approach adopted in the recognition of CGI may in-
volve preprocessing steps, such as the application of a filter, a feature
extraction through a CNN architecture, and a final classification step.

Rahmouni et al. (2017) conducted a series of experiments with
different CNN configurations and statistical feature extraction methods.
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They used a boosting method to aggregate local estimations of the
output class. Yao et al. (2018) use a high-pass filter layer made of
three high-pass filters to remove low-frequency signals and to reveal the
residual signal as well as sensor pattern noise introduced by the digital-
camera device. The proposed method uses a five-layer CNN based on
the work of Xu et al. (2016) to classify the input image patches. Then
a majority vote scheme is used to obtain the classification results for
the full-size images. Even though the compression with different quality
factors has an effect on the classification accuracy of image patches, the
classification accuracy for all different quality factors of the authentic
images are 100%. Similarly, Qi Cui (2018) gray out each input image and
they subject it to high-pass filtering to add high-frequency components.
de Rezende et al. (2017) propose a method that is able to classify
computer generated images. Initially, the input images are preprocessed
by subtracting the mean RGB value of each pixel computed on the
ImageNet dataset as in Krizhevsky et al., 2012. Then, the authors
initialize a ResNet-50 pretrained on ImageNet dataset and freeze all the
network parameters except for the last fully connected layer, which is
replaced by a new classifier. The authors propose two distinct classifiers
that are trained on the 2048 dimension feature vectors extracted from
the pretrained ResNet-50: the first one with two fully connected layers
followed by a softmax layer, and the second one with an SVM classifier.
Experiments on a public dataset (Tokuda et al., 2013) show an accuracy
higher than 94% when using an SVM and 92% with a fully connected
network. Similarly, Yu et al. (2017b) propose a simple neural-network
architecture to train a binary CNN classifier that distinguishes between
photorealistic computer graphics and real images. Randomly selected
patches of an input image are fed to a VGG network with the dropout
layer replaced by batch normalization and removed pooling layers.

He et al. (2018) introduce a methodology based on the combination
of a CNN and an RNN architecture. Initially, they preprocess each
input image by transforming it from the RGB color space to the YCbCr
color space and then applying the Schmid filter (Schmid, 2001) to the
luminance component (Y), so as to suppress the irrelevant information.
Next, they split the preprocessed image into nonoverlapping patches
and they analyze color and texture characteristics by using two parallel
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streams composed of a stack of four convolutional layers and average-
pooling layers. They apply batch normalization after each convolutional
layer. The feature maps coming from these two streams are concatenated
and fed into a two-layers fully connected network. The vector represented
by the first fully connected layer from the trained CNN is used as a
representation for local image patches. Finally, an RNN is applied on the
representation vector to model the spatial dependency of local patterns
and the output score of RNN is used to classify the input patch. The
proposed pipeline achieves 93.87% accuracy.

The generation of content through computer graphics techniques
has been refined for many years thanks to the adoption of these tech-
nologies in large industries such as computer games and cinema. These
technologies have reached a high level of realism, thus requiring the
development of forensic tools if the goal is to distinguish the photos
or videos created with these technologies from real-life content. The
forensic community has responded very quickly to this need, and most
recently it has developed new deep-learning methods to address this
challenge. We expect of course this arms race to continue in the future.

5.5 Challenges and Best Practices for Deepfake Detection

Recognizing deepfakes is the latest big challenge in forensics. Despite be-
ing a new application area, it has generated multiple research directions
and multiple questions to be answered. Research activities have focused
not only on trying to recognize fake content, but also on proving the
existence of fingerprints left by GANs and trying to find a solution for
the generalization of recognition techniques to new deepfake techniques
never seen before.

As generation techniques become more and more realistic, deepfakes
become more and more difficult to recognize. From the research reviewed
in this section we can find two main approaches: (1) methods based on
video or image semantics, such as those based on biological signals or
facial landmarks and (2) methods based on statistical inconsistencies.
Both approaches have proved successful, however, both have limitations.

The problem of generalization has attracted a lot of attention in this
area. The advancement in the generation of very realistic images and
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videos is proceeding at a very rapid pace, which makes it impossible
to rely solely on methods for recognizing the fingerprints left by the
various GANs or other generative methods. The methods that seem to
be the most promising today are based on autoencoder or incremental
learning. For autoencoders, the key idea is to disentangle the latent space
vectors learned by the network to split into real and fake components
(Cozzolino et al. (2018), Nguyen et al. (2019a), and Du et al. (2019)). The
incremental learning strategy could be useful to retrain a network on a
new type of technology without having to retrain it also on the previously
seen classes (Marra et al., 2019a). As the accuracy of generalization
techniques also increases, many techniques based on face inconsistencies
or facial movement in video sequences may soon become ineffective.

Most current research, both on creation and detection has focused
on human faces; in the future generation may no longer be limited to
just faces but to the entire human body.
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Evaluation Metrics for Multimedia Forensics

There are some standard evaluation measures used by the designers
of forensic systems when they evaluate them on validation and testing
datasets. In the main areas that we consider in this survey, forgery
detection source identification, and deepfake detection, the main learning
task can be cast as a classification problem. As such, we present the
most common measures for assessing the performance of classifiers, as
well as some less known ones, used in the works that we describe in this
survey.

o Confusion matrix. This matrix is the well-known table that
shows the number of detection instances divided among four
categories: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN); see Table 6.1.

Table 6.1: An example confusion matrix.

Actual
Positive | Negative
Positive TP FP
Predicted
redicte Negative FN TN
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e Accuracy. This metric is defined as the ratio between the correct
predictions and all the predictions made:

TP + TN
TP+ FP+ FN + TN’

It is the most classical measure of how much the classifier is able

accuracy =

to correctly classify the input data. However, when the positive
and the negative classes are heavily unbalanced it is usually better
to use other measures.

e Precision and recall. Based on the information provided by
the confusion matrix, it is also possible to measure the degree
of precision and recall, which provide further insight into the
flexibility of the adopted detector for the considered application
scenario. Namely, precision indicates what proportion of the posi-
tive identifications is actually correct and it is computed as the
number of correct detections out of all positive predictions. Recall,
instead, also known as sensitivity or true positive rate, indicates
what proportion of the actual positives is correctly detected with
respect to the ground truth, and it is computed as the number of
items that are correctly detected out of all the ground truth ones:

P
precision = m

recall = L
TP+ FN

e F1 Score. This evaluation metric is frequently used for comparing
different classifiers, as it conveys in a single score the information
coming from both precision and recall for a specific forgery or
deepfake detection task: it is computed as the harmonic mean
between precision and recall for the chosen detection task:

recision - recall
F=2.2

precision + recall’

e Precision—recall curve. Many families of classifiers offer the ca-
pability to control the recall thus affecting the precision; typically,
increasing the recall will lead to a decrease in the precision, and
vice versa. This allows the user to make the appropriate tradeoff
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for her application. The precision-recall curve shows this tradeoff:
it is a plot in which the the x axis corresponds to the recall,
ranging from 0 to 1, and the y axis to the precision, ranging from
0 to 1. The graph displays the precision of the classifier for each
value of recall.

Intersection over Union (IoU). This metric is the allows to
assess the effectiveness of any segmentation or object detection
task carried out in the considered problem. Given two, typically
orthogonally shaped, segments (bounding boxes or segmentation
mask) of a picture, it measures the extent to which they match.
More precisely, given the ground truth bounding box and the
predicted one, the IoU is defined as:

Area of overlap

IoU =

Area of union
The numerator is the area of overlap between the predicted and
the ground-truth bounding box. The denominator is the area
of the union, that is, the area comprised of both the predicted
and the ground-truth bounding box/segmentation mask. It is,
therefore, a score between 0 and 1, with 0 meaning no overlap
and 1 meaning complete match. A common way to evaluate the
ToU score, that is, to identify whether the detection is correct or
not, is to fix a threshold. Typically, if the IoU is higher than 0.5,
it is considered a positive, else it is considered a negative.
Average Precision (AP). Average precision is a measure that
attempts to summarize the precision—recall curve. It is defined as
the mean precision over a set of eleven equally spaced recall levels
L =10,0.1,...,1} (Everingham et al., 2010; Davis and Goadrich,
2006):
AP= 3 ().
11 reL
The interpolated precision p(r) is defined as the maximum preci-
sion over all recall levels greater than or equal to r:

p(r) = max{p(r)},

where p(r) is the precision at recall level r. AP is typically calcu-
lated for each class and averaged to get the mean average precision
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(MAP). The mean MAP over a set of C' classes is the mean of the
AP scores for each class:

1 C
MAP= =" AP,
=

The AP can also be computed and averaged over multiple IoU
values. Moreover, in some computer vision applications, as well as
multimedia forensic applications, the MAP could be referred to
as AP. For example, for COCO challenge evaluation (Davis and
Goadrich, 2006), there is no difference between AP and MAP.
ROC curve and area under the curve. Similarly to the
precision—recall curve, the receiving operating characteristic (ROC)
curve summarizes the tradeoff between the true positive rate and
false positive rate for a predictive model, using different probability
thresholds. It is a plot of the false positive rate (z-axis) versus
the true positive rate (y-axis) for a number of different candidate
threshold values between 0 and 1. Given a ROC curve, the area
under the curve (AUC), provides a summary of the effectiveness of
the classifier over the entire range of the classifier. It is a value that
ranges from 0 to 1, and can be interpreted as the the probability
that the result of applying the detector to some content randomly
extracted from the set of pristine ones is higher than the result
obtained by applying the detector to some content randomly
extracted from the set of fake ones (Powers, 2008). The trivial
classifier that just selects randomly with probability 0.5 that the
image is forged and 0.5 that it is not has an expected AUC score
of 0.5.

Mean square Error (MSE). This measure is used in statistics
to evaluate the performance of an estimator of some unknown
values, and it measures the average of the squares of the errors of
the test set. Assume that the value estimated for the ith input is
7J; and the actual value is ;. Then the MSE is the average squared
difference between §; and y;. Assume that we the test set contains
n values y; to be predicted:

1 & .
MSE= > (v —0)*
=1
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e Cross correlation. Cross correlation measures the correlation

between the entries of two random vectors. For image processing
applications it is used to compare the similarity between local
parts (like for example, a vertical edge or a color variation) of an
image (I) and a kernel (k), as follows:

W—1H-1
I(z,y)ok(z,y) = > > I, )k(z+i,y+ ),

=0 j5=0
where W and H are the the width and height of the image. If
I =k, then it is called auto-correlation.
As image characteristic like brightness may vary because of lighting
and exposure conditions, images are often normalized first. This
is typically done at each stage by subtracting the average value
among all the pixels of the images of the dataset and dividing by
the standard deviation of the, that is, for each of the IV pixels of
an image:

10, 5) = 1(i,j) —p

Y

o
where i € [0,..., W —1],5 € [0,...,H —1],
1 W-1H-1
DI
i=0 j=0
and

N

Sometimes the normalized cross-correlation (NCC) can be used

“:VZW o 1) — )

to compare the cross correlation between an image and a filter k.
It can be formally defined as:
1H-
NCC(1,k) Z k(z +i,y+7),
where I(i,7) and k(i, j) are the normalized image and filter, re-
spectively.
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Multimedia Forensic Datasets

As we saw in the previous chapters, multimedia forensics has an impor-
tant number of open challenges to deal with, each one requiring to deal
with different data samples. Despite the fact that computer forensic in-
volves the performance of computer-vision tasks, most of the time, open
datasets that are used in other computer-vision applications cannot be
(directly) used without the effort of introducing diverse forensic traces.
In particular, training for forgery detection often involves the active
introduction of image or video manipulations that, depending on what
kind of manipulation one is interested to reproduce, can be extremely
time consuming and difficult to perform. Nevertheless, there are no
shortcuts and thus the forensic community has been quite active during
the last years, by creating a reasonable number of datasets that can be
used for every single task. In this chapter, we review the most adopted
datasets from researchers, exposing the advantages and limitations of
these resources. In Appendix B we present some statistics about each
of these datasets, as well as from where it can be downloaded.

393
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7.1 Forgery Detection

This is probably the most difficult family of forensic problems to repro-
duce, both because of the large range and number of possible manipula-
tions and of the time necessary to generate a satisfactory size data set.

A first step in the direction of image-forgery detection is the devel-
opment of datasets containing specific types of manipulations. Splicing
is probably the most widespread image forgery, with a portion of an
image copied and pasted into another image. Columbia gray (Ng and
Chang, 2004) and Columbia color (Hsu and Chang, 2006) contain both
authentic and spliced images of different size and format. Some of the
works we present in this survey report results on the Columbia color
dataset (see Table 7.1). Among these, the RR-Unet from Bi et al., 2019
is the best performing model followed by the siamese network from Huh
et al., 2018.

Copy-move is another common manipulation in which a portion of
an image is copied and reproduced into the same image. For this specific
manipulation there are three different datasets: MICC F2000 (Amerini
et al., 2011), Erlangen (Christlein et al., 2012), and COVERAGE (Wen
et al., 2016), with both authentic and manipulated samples. On this
last dataset, the two-stream architecture from Zhou et al., 2018a and
ManTra-Net from Wu et al., 2019 report comparable performance of
81.7% and 81.9% AUC respectively.

As we have seen in the previous chapters, face manipulation is
another remarkable type of attack, which has attracted a lot of at-
tention from the forensic community. Zhou et al., 2018b introduced
the FaceSwap dataset containing 1,927 face swapping examples. Their
method reaches 92.7% AUC on this dataset.

Collecting heterogeneous manipulation classes, however, is much
more valuable for the design of real-world forgery detectors; it includes
a possibly infinite number of cases. CASIA 1 (Dong et al., 2013) and
CASIA 2 (Dong et al., 2013) gather copy-move and splicing samples
having more than 900 and 5,000 manipulated images, respectively. On
thsee datasets, the RR-Unet by Bi et al., 2019 reaches 84.1% F1-score,
whereas the encoder-decoder architecture from Mazaheri et al., 2019
reaches the highest score in terms of AUC (85.7%); see Table 7.1. Bappy
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et al., 2019 introduce a synthetic dataset of 170,000 automatically
generated samples of splicing, removal, and copy-move. Although large
datasets are extremely important for deep-learning applications, the
quality of counterfeiting cannot be underestimated. Therefore, the
annual NIST-NC challenge, has proposed an increasing number of
various manipulations of different quality levels, format, and sizes (Guan
et al., 2019) over time. Figure 7.1 shows some examples. Similarly, the PS
Battles dataset (Heller et al., 2018) stores 102,028 manipulated images
of various sizes and formats. On these challenging datasets, multistream
architectures typically perform better than other architectures (see
Table 7.1).

(c) Ground truth.

(d) Copy-move. (e) Mask. (f) Ground truth.

(g) Removal. (h) Mask. (i) Ground truth.

Figure 7.1: Image samples with corresponding ground truth masks from NIST 2016
Guan et al., 2019.

Table 7.1 summarizes the performance of several methods on CASIA,
Columbia color, and NIST datasets.
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Table 7.1: Forgery detection experiments on Casia, Columbia color, and NIST

datasets.
CASIA
Citation | Methodology Acc. AUC | F1
Bi et al., | U-Net + residuals — — 84.1%
2019
Wu et al., | Similarity net + Manipula- | — — 75.98%
2018 tion det. net
Barni Siamese nets 75.86% | — —
et al., 2019
Zhou et al., | RGB + noise streams — 79.5% | 40.8%
2018a
Mazaheri | Encoder—decoder + LSTM | — 85.7% | —
et al., 2019
Wu et al., | Feature extraction + | — 81.7% | —
2019 anomaly detection
Columbia color
Citation | Methodology Acc AUC F1
Bi et al., | U-Net + residuals — — 91.5%
2019
Zhou et al., | RGB + noise streams — 69.7% | 69.7%
2018a
Wu et al., | Feature extraction +| — 824% | —
2019 anomaly detection
Mayer and | Siamese network — — 86.0%
Stamm,
2019
Huh et al., | Siamese network + meta- | — — 88.0%
2018 data
NIST 2016
Citation | Methodology Acc. AUC F1
Zhou et al., | RGB + noise streams — 93.7% | 72.2%
2018a (NC16) | (NC16)
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Citation | Methodology Acc. AUC | F1
Mazaheri | Encoder—decoder + LSTM | — 81.4% | -
et al., 2019 (NC16)
Wu et al., | Feature extraction + | — 79.5% | —
2019 anomaly detection (NC16)
NIST 2017/2018
Citation | Methodology Acc. AUC F1
Marra et | Patch features extraction | — 93.2% | —
al., 2019b | + aggregation (NC17)
90.2%
(NC18)
Cozzolino | Siamese net — — 39.5%
and  Ver- (NC16)
doliva, 38.0%
2020 (NC17)
38.0%
(NC18)

7.2 Source ldentification

Source identification opens the doors to two main challenges: social
network and messaging app identification, and camera or device identi-
fication.

A well-made social-network—identification dataset should have a
sufficiently high number of multimedia files, both directly from the
camera and from social platforms. The larger the number of social
platforms from which photos are taken the better for the design of
a robust classifier. The Image Ballistic and Social Networks dataset
(Giudice et al., 2016) is surely the most heterogeneous dataset with
respect to the number of platforms, with samples coming from Facebook,
Google+, Twitter, Flickr, Instagram, Tumblr, Imgur, Tinypic, What-
sApp, and Telegram. The UCID (Caldelli et al., 2017) and PUBLIC
(Shullani et al., 2017) datasets contain 30,000 and 3,000 JPEG images,
respectively, from Flickr, Facebook, and Twitter. On the UCID dataset,
the PRNU-based method from Caldelli et al., 2018b reaches 90.83%
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average precision, whereas the FusionNET from Amerini et al., 2019a
reaches 98.94% accuracy. Amerini et al., 2019a also performed another
experiment in which each image in the UCID dataset was uploaded
and downloaded twice from Facebook, Flickr and Twitter, obtaining
86.49% accuracy on the classification of images shared across multi-
ple social media. Hadwiger and Riess, 2020 have recently introduced
a new dataset for camera identification with 27 smartphone devices,
consisting of 25 different models from 9 brands. The dataset contains
23,000 images capturing 143 different scenes. Each image has exists in
its original format and after it has been posted and processed by each
of the Facebook, Instagram, Telegram, Twitter and WhatsApp.
During the years, researchers have created datasets containing ad-
dressing the source-identification problems on video content as well.
The VISION dataset (Society, 2018) collects 34,427 JPEG images, and
1,914 mp4 videos from Facebook, YouTube and WhatsApp. The images
and videos in this dataset were captured by 35 unique camera and
device models. Starting from the VISION dataset, Yang et al., 2020a
introduced a new dataset for video-source identification called EVA-T7k.
The dataset contains 7,000 videos from 35 smartphones of 10 different
brands. In particular, for each of the 35 smartphones it contains 4 videos
from the VISION dataset, for a total of 140 videos. These 140 videos
went under manipulation, both automatic using ffmpeg and Exiftool,
and manual using Kdenlive, Avidemux, and Exiftool, resulting 1,260
additional videos. Each of these 1,400 videos is included in the dataset
both intact as well as after having been shared through each of four
social platforms—YouTube, Facebook, Tiktok and Weibo—for a total
of 7,000 videos. Because of to the availability of images and videos
captured by different devices and then uploaded to social networks,
the VISION has been used by many works. Among these, Amerini
et al., 2019a; Phan et al., 2019, and Quan et al., 2019 have provided
methods arriving at and accuracy above 77% for social media platform
identification of images, whereas Amerini et al., 2021 report 95.51%
accuracy on the classification of videos shared across WhatsApp and
YouTube. Cozzolino and Verdoliva, 2020 test the accuracy of their
Noiseprint method on various forensics tasks (camera model and device
identification, identification of JPEG quality factor, identification of
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demosaicing algorithm, image manipulation detection and, splicing in
remote sensing images). The model identification accuracy is 100%,
both with 1024 x 1024 and 128 x 128 crops. Moreover, the method also
ensures a modest device identification, with accuracy between 61.7%
and 75.3%, even though the PRNU-based (see Section 4.3) method
provides much higher accuracy, 91.3% and 69.7%, respectively.

A dataset for camera identification requires the collection of images
and videos captures from different cameras and devices. To meet this
need, several datasets have been released. Dresden (Gloe and Bohme,
2010) is the largest one, with 14,000 JPEG images captured by 25 differ-
ent cameras and 73 unique devices. RAISE (Dang-Nguyen et al., 2015)
contains more than 8,000 raw images collected by 4 different cameras.
In 2018, Kaggle launched the IEEE SPS Camera Model Identification
challenge (Society, 2018), Bestagini, 2018) with 3,025 JPEG images
captured by 10 different cameras and 20 unique devices.

Table 7.2 summarizes the performance of several methods on the
Dresden and the VISION datasets.

Table 7.2: Source-identification experiments on Dresden and the VISION datasets.

Dresden

Citation | Methodology Acc.

Bondi et | Quality-based patch selection + | 94.93%

al., 2017b | CNN

Rafi et al., | DenseNet + SE 99.00%

2018

Tuama et | HPF + CNN 91.9%

al., 2016 98.0%

Bayar and | Constrained layer + MFR 98.52%

Stamm,

2017a

Pengpeng | Laplacian filter + multi-steam CNN | 70.19%

et al., 2017 84.7%
94.17%
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Citation | Methodology Acc.
Mayer and | Siamese net 98.0%
Stamm,
2018
Ding et al. | Hierarchical multi-task learning + | 52.4%
(2019) multi-scale HPF 97.1%
Mandelli Noise residual and PRNU-based | 52.4%
et al. | CNN 97.1%
(2020Db)

VISION
Citation | Methodology Acc.

Amerini et | DCT + sensor-related noise residual | 99.47%
al. (2019a) | CNN

Phan et al. | DCT + metadata 100.00%
(2019) 77.12%
Quan et al. | PRNU + CNN 79.91%
(2019)

Amerini et | I-frames + P-frames CNN 95.51%
al., 2021

7.3 Deepfake Detection

In recent times, artificially generated content has attracted a lot of
interest from researchers thanks to the incredible achievements of gen-
erative adversarial models. As a consequence, there has been an active
production of new deepfakes datasets in the last few years.

The Fake Video Corpus dataset (Papadopoulou et al., 2018) contains
various types of forgery; it consists of 2,458 authentic videos and 3,957
forged videos.

Fake Faces in the Wild (FFW) by Khodabakhsh et al., 2018 and
FaceForensics++ by Rossler et al., 2019 have been explicitly designed
to allow for the evaluation of face-manipulation detectors. Both of
them contain deepfakes and CGI, and FFW also has splicing samples.
Similarly, the CelebDF dataset (Li et al., 2020) includes 590 original
videos collected from YouTube depicting people of different ages, ethic
groups, and genders, and 5,639 corresponding deepfake videos. Bondi
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et al., 2020 report 99.5% AUC when training and testing their model on
the CelebDF dataset, and 71.71% when they train it on FaceForensics
dataset and test it on CelebDF.

DeepfakeTIMIT (Korshunov and Marcel, 2018) has 620 JPEG fake
images. The DeepFake Detection Dataset by Nick Dufour, 2019 collects
more than 3,000 deepfakes in the H.264 encoding and different CRF
values. Li and Lyu, 2018 measure the performance of their method
with different backbones (namely VGG-16, ResNet50, ResNet101, and
ResNet152) achieving up to 91.2% AUC on this dataset. DeeperForensics-
1.0 (Jiang et al., 2020) and the Deepfake Detection Challenge (AWS,
Facebook, Microsoft, Partnership on AI’s Media Integrity Steering
Committee, 2020 - Dolhansky et al., 2020) contain 10,000 and 100,000
artificial contents, respectively.

Table 7.3 summarizes the performance of several methods on the
FaceForensics++ dataset.

Table 7.3: Forgery-detection experiments on the FaceForensics++ dataset.

FaceForensics+-+
Method Methodology Acc. AUC
Afchar Mesoscopic features + In-| 95.00% | —

et al., 2018 | ception

Sabir et al., | Cropping + alignment of | 94.35% | —

2019 faces + manipulation detec- | 96.9%

tion
Bondi et al., | EfficientNetB4 + triplet loss | — 55.7%
2020 96.0%
Caldelli et | RGB + optical flow 80.56% | —

al., 2021 95.75%
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Discussion and Conclusions

With the significant diffusion of fake multimedia content, research in
computer vision and its applications in multimedia forensics (especially
the deep learning based ones) have become a hot topic and received
a great deal of attention. Meanwhile, the enormous amount of data
we daily have access to has allowed us to generate highly realistic
forged multimedia contents as well as to devise successful methods for
automatically spotting such fakes.

This survey provides a comprehensive outlook on the literature on
forgery detection to anomaly-based architectures, from source identifi-
cation to deepfake detection, especially with respect to GAN-generated
content. It is clear that deep-learning methods are progressively bridging
the long-standing semantic gap between computable low-level visual
features and high-level image features. Despite recent progress on punc-
tual tasks, investigating and modeling complex real-world problems still
remains challenging.

Given the necessity to tackle these issues for forensic purposes as well
as the enormous profit potential relative to such applications, the studies
on multimedia forensic tasks will continue to grow and expand: in this
respect, the survey highlights the most promising directions for future
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research. First, as new and more complex generative manipulations
and techniques emerge, simpler tools will become less effective. To
address this problem, more complex multistream architectures have
shown their potential. Therefore, more complex structures, tools, and
data must be integrated to take advantage of all subtle information
available to address multimedia-forensics problems. Along with the
increasing complexity of media manipulation and generation techniques,
the number of new tools and techniques being introduced makes it
even more difficult to design deep-learning forgery-detection models
that are robust to new attacks never seen before. In fact, despite
the promising results, the main limitation of deep-neural networks
originates from their high dependency on training data. The high
number of operations (malevolent and innocent) that can be performed
on an input, makes it practically impossible to reproduce all possible
examples at training time. Consequently, higher robustness should be
pursued by other means. Furthermore, to cope with rapid advances
in manipulation technology, deep networks should be able to adapt to
new manipulations, without complete retraining, which may simply
be impossible because of lack of training data or lead to catastrophic
forgetfulness. Still in this direction, the works reviewed in this survey,
have been mostly applied in controlled settings. Thus, new techniques
are needed to apply multimedia forensics in the wild. One attempt to
cope with the complexity of the real world is to take into consideration
multiple media at a time. For example, to decide on the authenticity of
the news, we can rely not just on an image or video content, but also
on the text or audio attached to it. In this direction, DARPA recently
launched a new initiative on semantic forensics." The challenge is not
just to decide on the authenticity of an image or video, but to capture
all semantic inconsistencies that can be discovered in a multimodal
media asset. A multimodal approach can be particularly useful to detect
deepfakes, where a video and an audio track are typically available. Also,
semantic inconsistencies can be used in the future to detect anomalies
on deepfakes of the entire human body, without examining only the
human face.

"https://www.darpa.mil /program/semantic-forensics
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One of the major current limitations of deep learning is their lack
of interpretability. The complexity of deep learning-models makes it
difficult to understand why they produce an output value. This problem
is particularly relevant in multimedia forensics given the fact that they
are often used for law-related applications. This means that it is often
not sufficient that a classifier reports an image as fake or that a video
is from a certain social network but to also report the features and
the procedures that led to such an output. Furthermore, being able to
interpret the logic of a deep neural network would allow to improve its
design and training phase, and provide higher robustness with respect to
malicious attacks. On a related issue, deep neural networks open up new
vulnerabilities that can be exploited by an attacker. Despite the neural
networks’ ability to learn forensic features directly from data, intelligent
attackers can use this to their advantage. Because the space of possible
inputs to a neural network is substantially larger than the set of images
used to train it, an attacker can create modified images that fall into an
unseen space and force the neural network to misclassify. One method
of accomplishing this involves introducing adversarial perturbations
into an image (see Goodfellow et al., 2015). With respect to this, GANs
can become a new threat not just by generating very realistic images
or videos, but also as counter forensics tools (see Barni et al., 2018 for
more details). They have already been used to remove forensic traces
left by median filtering Kim et al., 2018, and it is very likely that
more GAN-based counter-forensic attacks will be developed in the near
future.



Appendices



A

Computer Vision and Signal Processing for Media
Forensics

Multimedia forensic is a research area that requires a basic understand-
ing of computer-vision and signal-processing techniques. To facilitate
the understanding of readers new to these two fields, in this section
we want to introduce some basic background. Obviously, this section
is not intended as an exhaustive treatment of these two disciplines,
see the relevant books for more details (e.g., Goodfellow et al., 2016).
Specifically, in the next pages, we cover basic deep-learning topics for
computer-vision applications and some basic signal-processing concepts
that we refer to in the main text.

A.1 Deep-Learning Architectures for Computer Vision

Deep learning solves the fundamental problem in representation learning
by learning representations that are expressed in terms of other, simpler
forms. From a mathematical point of view, an artificial neural network
is a mathematical function mapping some set of input values to output
values. The function is constructed by composing many simpler functions.
We can think of each application of a different mathematical function
as providing a new representation of the input.

406
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Feedforward neural networks are typically constructed by composing
together many different functions, also informally called neurons. The
model is associated with a directed acyclic graph describing how the
functions are composed together. The network can be structured in
several layers of neurons. The overall length of the chain gives the depth
of the model. The first layer of a feedforward network is called the input
layer and the last one the output layer. The layers in between the input
and the output layers are called hidden layers. Each neuron in a layer
typically performs two basic operations, a linear transformation and a
nonlinear transformation. For example, given an input x, the output of
a layer will be ) = o(W7'x +b), where z = W'z +b is a linear function
and o(z) is a nonlinear function also called activation function.

In this section, we discuss different architecture choices and explain
how each of these configurations can be most useful in solving a specific
problem.

A.1.1 Fully Connected Networks

Fully connected networks (FCNs) are an essential method of deep learn-
ing. The main advantage of FCNs is that they are independent of the
structure, that is, there is no need to make special assumptions about
the input (for example, that the input consists of images or videos).
They owe their name to the fact that each neuron in a certain layer is
connected with all the neurons of the layer that precedes it and each
neuron of the layer that follows it. As a result, these networks are fully
connected. Figure A.1 shows an example of an FCN.

Although being independent of structure makes FCNs widely appli-
cable, they tend to have lower performance than special networks tuned
to the structure of a specific problem space. In fact, because of their
structure, these networks are not robust to input data for which there
is a two-dimensional or three-dimensional relationship such as images
and videos. Furthermore, these networks do not take into account the
dependence of input sequences such as text or video sequences. For
these reasons, in computer-vision applications these networks are not
commonly used to classify input features. Usually, these networks are
used after a convolutional neural network or a recurrent neural network
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that work as feature extractors, that is, they learn how to extract rele-
vant features that are useful to classify the input. Then, the FCN takes
the feature vector as input and predicts the corresponding class.

Even if the FNCs are very often used as classifiers, it is still possible
to apply them for regression problems or to train a network to project
inputs into a latent space as happens, for example, in some applications
that use Siamese networks.

Output layer

Hidden layer

Input layer

Figure A.1: An example of an FCN with a hidden layer of five hidden units (Zhang
et al., 2020).

A.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific kind of neural
network for processing data that has a known grid-like structure. The
most representative class of this family is image data, which can be
thought of as a two-dimensional grid of pixels. These networks use a
mathematical operation called convolution in place of a general matrix
multiplication in at least one of their layers. Given a two-dimensional
image I and a kernel K the convolution between I and K is defined as
follows:

(I xK)(i,7) :ZZI(m,n)K(i—m,j—n)
:ZZI(i—m,j—n)K(m,n).

Convolution leverages three important ideas that can help improve a
computer-vision system: (1) sparse interactions, (2) parameter sharing,
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and (3) equivariant representations. Traditional neural-network layers
use matrix multiplication by a matrix of parameters with a separate
parameter describing the interaction between each input unit and each
output unit, meaning that every output unit interacts with every input
unit. CNNs, however, typically have sparse interactions (also referred
to as sparse connectivity or sparse weights), which is accomplished
by making the kernel size smaller than the input size. Thanks to this
strategy, we can use the same parameters for more than one input
unit in a model (also referred as parameter sharing). In a traditional
neural network, each element of the weight matrix is used exactly once
when computing the output of a layer. It is multiplied by one element
of the input and then never reused. For CNNs, the particular form of
parameter sharing causes the layer to have a property called equivariance
to translation. To say a function is equivariant means that if the input
changes, the output changes in the same way. Figure A.2 shows an
example of a CNN.

convolution pooling dense
convolution

dense

dense
=
o}
g =

Figure A.2: Example of a CNN consisting of two convolutional layers; and a dense
block consisting of three fully-connected layers (Zhang et al., 2020; Lecun et al.,
1998).
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A.1.3 Recurrent Neural Networks

Similarly to CNNs, recurrent neural networks (RNNs) are specialized
neural networks for processing sequential data of the form 2™, ... 2®.
At each time step t, the state of a hidden unit 2 depends on its state at
time ¢t — 1, that is:

h(t) = O'h(Whh . h(tfl) + Whe - a:(t) + bh)
= on([WinWha! - [hD20] + by)



410 Computer Vision and Signal Processing for Media Forensics

where oy, is a nonlinear (activation) function, 2 represents the input
at time t, Wy, Wp, are the weight matrices associated to the actual
hidden state At~V and input z® respectively, and by, a parameter
vector. Forward propagation typically begins with a specification of the
initial state h(©).

Depending on the problems on which they are applied, RNNs can
be structured in different ways: (1) RNNs that generate an output at
each time step and have recurrent connections between hidden units,
(2) RNNs that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units at
the next time step, and (3) RNNs with recurrent connections between
hidden units, that read an entire sequence and then produce a single
output. Figure A.3 shows an example of an RNN applied to character-
level language processing.

Time step 1 2 3 4 5 6

Label a c h i n e

Output
layer

Hidden
layer

Input m

Figure A.3: Example character-level language RNN. The input and label sequences
are machin and achine, respectively (Zhang et al., 2020).

A.2 Common Deep Learning Backbones

Neural networks are often combined into complex design schemes that
help them learn better the task they are solving. Every year, new
architectures are published for solving new problems or achieving higher
performance than previous models. In this section, we present some of
the most common architectures used in the architectures of the survey.
Obviously, our goal is not to provide an exhaustive discussion of all the
backbones that can be used in computer vision or multimedia forensics,
but to offer a quick guide to learn about the most used architectures in
the works that we survey.
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A.2.1 VGG

The VGG network (see Figure A.4) was designed by Simonyan and Zis-
serman, 2014. The input image passes through a stack of convolutional
layers that use 3 x 3 filters, which is the smallest size to capture the
notion of left/right, up/down, center. The convolution stride is fixed to
1 pixel and the padding is 1 pixel.! Each of the convolutional blocks is
followed by a max-pooling layer which is performed over a 2 x 2 pixel
window, with stride 2. The stack of convolutional layers (which can be
constructed with different depths) is followed by three fully connected
layers: the first two have 4096 channels each and the third has 1000
neurons corresponding to the output number of classes of the ImageNet
dataset. The final layer is the softmax layer. In one of the configurations
(VGG16), the network also uses 1 x 1 convolution filters, which can
be seen as a linear transformation of the input channels (followed by
nonlinearity). All hidden layers are followed by ReLU activations. This
network can be configured with different depths varying from 11 weight
layers to 19 weight layers. The width of the convolutional layers (the
number of channels) is rather small, starting from 64 in the first layer
and then increasing by a factor of 2 after each max-pooling layer, until
it reaches 512. Depending on the number of layers N, this network is
typically referred to as VGGN. The most common configurations are
VGG16 and VGG19.

VGG

1
| ——
VGG block I—;I
[
————
2 x 2 MaxPool, stride 2
t
e i
| E——
—
3 3 Gonv, pad 1 —t

Figure A.4: Example of the VGG architecture from building blocks to the entire
model (Zhang et al., 2020).

1 Stride and padding are parameters of CNNs; see Goodfellow et al., 2016.
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A.2.2 ResNet

He et al., 2015 introduced ResNets (see Figure A.5) to solve the
vanishing-gradient problem: When a neural network is too deep, the
gradients are easily reduced to zero for the early layers of the network,
with the result that the weights no longer update their values and,
therefore, the model stops learning. The key idea is to use shortcut
connections from early layers up to deeper (later) layers. Formally,
denoting the desired underlying mapping as H(z), we let the stacked
nonlinear layers fit another mapping of F/(z) = H(z) — x. The original
mapping is recast into F'(x) 4+ x. The dimensions of z and F(z) must be
equal, thus the ResNet performs a linear projection Wy by the shortcut
connections to match the dimensions:

y=F(z,{W;}) + W - x.

where F'(z,{W;}) represents the residual mapping to be learned. For
example, it may represent two layers of the form F' = Wy - o(W; - x), in
which o denotes the ReLu function.

Skip connections between layers add the outputs from previous
layers to the outputs of stacked layers. This allows information to be
propagated to later levels without running into the problem of vanishing
gradients thus allowing us to train deeper networks than was previously
possible. He et al., 2015 designed a plain network with 3 x 3 filters by
following two simple design rules: (1) for the same output feature map
size, the layers have the same number of filters and (2) if the feature
map size is halved, the number of filters is doubled so as to preserve the
time complexity per layer. The network performs downsampling directly
by convolutional layers that have a stride of 2. The network ends with a
global average pooling layer and a 1000-dimensional fully connected layer
with softmax. Shortcut connections between layers increase the depth
of the network. The ResNet network can be configured with different
depths varying from 18 to 152 layers. Depending on the number of layers
N, the network is typically referred to as ResNet-IN. Very commonly,
the network is used as ResNet-18, ResNet-50, or ResNet-100.

Figure A.5 shows two examples of residual blocks. ResNet follows
VGG’s convolutional layer design. The residual block has two 3 x 3
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convolutional layers with the same number of output channels. Each
convolutional layer is followed by a batch normalization layer and a
ReLU activation function. Then, a residual connection propagates the
input of these two convolution operations directly before the final ReLLU
activation function. This kind of design requires that the output of the
two convolutional layers has to be of the same shape as the input, so that
they can be added together. To change the number of output channels,
an additional 1 x 1 convolutional layer can be used to transform the
input into the desired shape for the addition operation.

! |
! |
! |
| |
! |
! |
! |
! |
! |
L ReLU | [ 1x1cow
- |
! |
! |
! |
| |
! |
! |
! |

Figure A.5: Example ResNet blocks. A regular block (left) and a residual block
(right) (Zhang et al., 2020).

A.2.3 Inception

Parts of interest in an image can have extremely large variations in
their size. This variety in the area of interest can make difficult the
determination of the right kernel size for the convolution operation.
A larger kernel is preferred for information that is distributed more
globally, whereas a smaller kernel is preferred for information that is dis-
tributed more locally. The idea of the inception network (also known as
GoogLeNet; see Szegedy et al., 2014) is to have filters with multiple sizes
operating on the same layer, called the inception layer. An inception
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layer performs a convolution on the input with three different kernel
sizes: 1 x 1, 3 x 3, and 5 x 5. Additionally, max pooling is also performed
in parallel to the filters. However, CNNs are computationally expensive.
In GoogLeNet, 1 x 1 convolution is used as a dimensionality-reduction
module to reduce the computation. By reducing the computation bot-
tleneck, depth and width can be increased. Thus, Szegedy et al., 2014
limit the number of input channels by adding an extra 1 X 1 convolution
before the 3 x 3 and 5 x 5 convolutions. The 1 x 1 convolutions require
much less computation than 5 x 5 convolutions, and applying them
before the other filters reduces the size of input channels. The 1 x 1
convolution is also applied after the max-pooling layer. After that, all
feature maps at different paths are concatenated together as the input
of the next module. Figure A.6 shows an example of the inception block.

]

Concatenation

|3><3Conv,pad1 | |5x500nv,pad2| | 1x 1 Conv |
1x 1 Conv 1 T 1
| 1x 1 Conv | | 1x 1 Conv | | 3 x 3 MaxPool, pad 1 |

] J

Figure A.6: Example of the structure of the inception block (Zhang et al., 2020).

In GoogLeNet (Figure A.7), global average pooling is used at the
end of network by averaging each feature map from 7 x 7 to 1 x 1.

The Inception network described so far is also known as Inception-
v1. Subsequently, several enhancements of this version were introduced
also known as Inception-v2 and Inception-v3 (Szegedy et al., 2015),
Inception-v4 and Inception-ResNet (Szegedy et al., 2016).

A frequently used variation of Inception is called Xception (Chol-
let, 2016), which stands for extreme inception. In a traditional CNNs,
convolutional layers seek out correlations across both space and depth.
In Inception, 1 x 1 convolutions project the original input onto several
separate, smaller input spaces, and from each of these input spaces
some other type of filter transforms those smaller 3D blocks of data.
Xception takes this one step further. Instead of partitioning input data
into multiple compressed chunks, it maps the spatial correlations for
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Global AvgPool

3 x 3 MaxPool

Figure A.7: The GoogLeNet architecture (Zhang et al., 2020).

each output channel separately, and then performs a 1 x 1 depthwise
convolution to capture cross-channel correlation. This is equivalent to
an existing operation known as a depthwise separable convolution, which
consists of a depthwise convolution (a spatial convolution performed
independently for each channel) followed by a pointwise convolution
(a 1 x 1 convolution across channels). See Chollet, 2016 for further
information.

A.2.4 Long Short-Term Memory Networks

Long short-term memory networks (LSTMs) Hochreiter and Schmid-
huber, 1997 are a special kind of RNN, capable of learning long-term
dependencies. Typical RNNs suffer from short-term memory. If a se-
quence is long enough, they will have a hard time carrying information
from earlier time steps to later ones. LSTMs are designed to avoid
the long-term dependency problem. They have internal mechanisms
called gates that can regulate the flow of information. These gates can
learn what data in a sequence are important to keep or throw away. By
doing that, they can pass relevant information down the long chain of
sequences to make predictions.
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The LSTM has four types of gates (see Figure A.8):

o Forget gate (F;). This gate decides what information should be
thrown away or kept. Information from the previous hidden state
and information from the current input is passed through a sigmoid
function.

Fy = o(XiWap+ Hi1Why + by)

o Input gate (I;). It decides what values will be updated. The
previous hidden state and current input are passed into a sigmoid
function. This decides what values will be updated by transforming
them to be between 0 and 1.

I; = o(XyWyi + Hi—1 W, + b;)

o Cell state or long-term memory (Cy). The cell state is pointwise
multiplied by the forget vector. This has the possibility of dropping
values in the cell state if it is multiplied by values close to 0. Then
it takes the output from the input gate and computes a pointwise
addition with the candidate memory cell C; = tanh (X Wy +
H; W+ b.) , which updates the cell state to new values that
the neural network finds relevant.

Ci=FoC_1+1; @ét

o Output gate (Oy). It decides what the next hidden state should
be. It passes the previous hidden state and the current input into
a sigmoid function. Then it passes the newly modified cell state
to the tanh function. The output of the tanh is multiplied with
the sigmoid output to decide what information the hidden state
should carry. The output is the hidden state. The new cell state
and the new hidden state are then carried over to the next time
step.

Or = 0(XiWao + Hi—1Who + bo)

Finally, the output hidden state can be simply calculated as Hy =
O; ® tanh(C}). If the output gate approximates 1 then it passes all
memory information through to the predictor, whereas if the output
gate is close to 0, it retains all the information only within the memory
cell and performs no further processing.
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Memory 4 I
c,, ¢
Cenn>
Forgt oD
F, i gate
Lo] , oo ]
Hidden state
H,_, H,
N If y
Input X,

FC layer with Elementwise
El activation fuction operator J > Copy Concatenate

Figure A.8: Example of a hidden state in an LSTM model (Zhang et al., 2020).

A.3 Signal Processing for Multimedia Forensics

Signal processing is an important part of multimedia forensics. Indeed,
image data can be represented as a signal that can be modeled by waves.
For grayscale images, we can model them as a matrix of values, where
the element at position (4,7) in the matrix corresponds to the pixel at
position (7, j) in the image, and the value of that matrix element is the
pixel’s intensity. For example, 0 may correspond to black pixels, and 255
to white pixels. Pixel intensities between 0 and 255 are interpreted as
colors between black and white. Figure A.9 shows an example applied
on a grayscale image.

A similar approach can be used for color images modelling colors
as separate signals or as a three-dimensional signal (one dimension for
each color channel).

For most concepts (discrete Fourier transform, filters, etc.) consult
textbooks on signal and image processing Vetterli et al., 2018; Szeliski,
2011. Here we present some more specific concepts that may help in
reading this survey.

A.3.1 Discrete Cosine Transform

Discrete cosine transform (DCT) is a signal-processing operation that
expresses a finite sequence of data points in terms of a sum of cosine
functions oscillating at different frequencies. The DCT is a type of
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(b) Signal representation.

(c) Row of pixels from image A.9a.

(a) Greyscale image (Shanker, 2021).

Figure A.9: An example (Shanker, 2021) grayscale image (A.9a). Given a pixel’s
row of pixels extracted from the image ((A.9c)), it can be represented as a signal
(A.9D).

Fourier-related transformation and is commonly used as a lossy com-
pression technique. A Fourier transform is the process of decomposing
a digital signal into the sum of some trigonometric functions. A Fourier
transform is called a transform because it transforms the data from one
form (the amplitude or pixel intensity over time) into a list of frequency
coefficients controlling their contribution. The DCT has the property
that most of the visually significant information about the image is
concentrated in just a few coefficients of the DCT. For this reason, in
image processing applications, DCT is very often used as a form of lossy
compression technique. As an example, the DCT is at the heart of the
international standard JPEG and MPEG algorithms. In the frequency
representation of an image, some of the higher frequency components,
such as the smaller changes in amplitude leading up to peaks, are less
important, and could be removed without losing visual components
that are needed to understand the image content. Once that the image
has been decomposed into a collection of trigonometric functions, it
becomes easy to remove less important frequency functions that don’t
contribute as much to the core structures of the image.

The DCT is a linear transformation that transforms a vector of
length n of pixel intensities (a row of pixels of an image), and returns
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a different vector of length n containing the coeflicients for n different
cosine functions. Thus, the vector is encoded by an n X n matrix, in
which each row corresponds to a cosine function of a different frequency.
Using n cosine functions is the key to being able to get our data back
in terms of amplitudes after converting it to cosine coefficients. To
represent each cosine wave as a row in the n X n matrix X, we compute

T 1
X, = il =
j = cos (nz (]-i— 2))

where ¢ and j indicate rows and columns of the matrix respectively. In

it as:

the equation above, each row corresponds to a different cosine function
and the higher values of ¢ correspond to cosine waves of higher frequency.

The last step, after calculating the DCT matrix, is to calculate the
decomposition and the correct coefficients for each of the component
waves. The decomposition can be easily computed by taking the dot
product of the input vector of pixel intensities and X;. The dot product
of these two components can be interpreted as a measure of similarity
between the two vectors, that is, if the pixel data is coincident with the
values in one particular wave, it will be 0. Therefore, by computing this
dot product, we can figure out what coefficient to use for that particular
wave. This technique, can be similarly applied on two-dimensional
matrices (i.e., two-dimensional image signals) by performing the DCT
twice, once along the rows, and once along the columns.

To compress the image, we take the K most significant cosine waves
in X;, and save the coefficients. To get the compressed image back, we
pad the matrix with Os to get an n x n matrix (the original image’s
size), and then apply on it the inverse DCT transform to obtain the
compressed image.

A.3.2 PRNU

When an photograph is taken by a camera, it is processed through
a sequence of operations illustrated in Section 4. These operations
may introduce noise and various imperfections to the image. Even if
the imaging sensor takes a picture of an absolutely evenly lit scene,
the resulting digital image will typically still exhibit small changes in
intensity between individual pixels. This is partly because of the shot
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noise created by the electronic circuits, which is a random component,
and partly because of the pattern noise created by the image sensors,
a fixed component that remains approximately the same if multiple
pictures of the exact same scene are taken. This implies that the pattern
noise is impressed in every image the sensor takes and, thus, can be
used for camera identification. Averaging over multiple images reduces
the random components and enhances the pattern noise.

The two main ingredients of pattern noise are fized pattern noise
(FPN) and photo-response nonuniformity (PRNU). The FPN is caused
by dark currents, that is, by pixel-to-pixel differences when the sensor
array is not exposed to light. As it is an additive noise, very commonly,
consumer cameras suppress it automatically by subtracting a dark
frame from every image they take. Therefore, the dominant part of the
pattern noise of an image is the PRNU. It is caused primarily by pixel
nonuniformity (PNU), which is the different sensitivity of pixels to light
caused by the inhomogeneity of silicon wafers and imperfections during
the sensor manufacturing process. Because of its origin, it is unlikely that
even sensors coming from the same wafer would exhibit correlated PNU
patterns. So, the PNU noise is not affected by ambient temperature or
humidity, but light refraction on dust particles and optical surfaces and
zoom settings contribute to the PRNU noise. Since these low-frequency
components are not a characteristic of the sensor, if we capture this noise
pattern, we can create a distinctive link between a camera and its photos.

Formally, given a digital image I taken from camera a C', it can be
modeled as:

I:Iden+ldenK+9

where I it the acquired image, I%" is the denoised image, K is the
PRNU and 6 represents other noise terms (e.g., shot noise). PRNU is
usually estimated from N images captured with the same camera. The
estimate can be computed with two simple steps: (1) the application of
high-pass filtering W; = I; — I#" on each image i, followed by (2) an
estimate operation:

Wi

K=
N(I)?
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The PRNU fingerprint K is obtained through a minimum variance
estimator as indicated in the equation above, where N is the number of
images used for the estimation.

A.3.3 JPEG Compression

JPEG is an acronym for joint photographic experts group and it refers
to the JPEG file interchange format (JFIF). Usually, the files with the
. jpg extension are JFIF files. It was created as a standard for digital
image compression. JPEG is lossy compression technique, meaning that
the image changes and loses some detail as a result of the compression.
JPEG compression is actually composed of three different compression
techniques, which are applied in successive layers: (1) chrominance
subsampling, (2) DCT and quantization, and (3) delta, run-length,
and Huffman encoding. Chrominance subsampling is the process of
representing an image’s color components at a lower resolution than its
actual luminance components. This step is used to reduce the file size of
colored images. For grayscale images, this step can be skipped. This step
begins by converting the image from RGB to YUV color space. Because
the human eye is more sensitive to luminance than to chrominance,
typically JPEGs discard most of the chrominance information before
any other compression takes place, so the image contains only half
as much color information as it originally did. This first step already
reduces the amount of information of the image to be stored. Next, the
image is partitioned into 8 x 8 nonoverlapping pixel blocks and the DCT
of each block is computed, resulting into a set of 64 subbands of DCT
coefficients. The DCT coefficients are then quantized by dividing them
by the entry in a quantization matrix that corresponds to the coefficient’s
subband and then rounding the resulting value to the nearest integer.
Because the human visual system has different sensitivities to luminance
and color distortions, different quantization tables are generally used to
quantize the luminance and chrominance layers. Finally, each quantized
DCT coeflicient is converted to binary and then reordered into a single
bit stream using the zigzag scan order 2. The third and last compression

2See https://www.ece.ucdavis.edu/cerl/reliablejpeg/compression/ for further
details.
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layer is lossless. Initially, each DCT coefficient is converted from an
absolute value to a relative value: Adjacent blocks in an image tend
to have a high degree of correlation, so the protocol encodes the DCT
term of a given block as a difference from the previous DCT term; the
difference is typically a very a very small number and can be stored
in a small number of bits—we call this encoding delta encoding. This
process will typically create a lot of differences of value equal to zero.
The next step encodes zeros into a run-length encoding, that is, it only
stores the count of consecutive (differences of) zero values. Finally, the
image is compressed with Huffman encoding, which is stored in the
JPEG header.

MPEG (moving picture experts group) is a standard for video coding.
It is used to compress video sequences and it is very similar to JPEG.
The main difference with videos is that it also performs block-based
motion compensation (see Sullivan et al., 2012): it encodes the difference
between each block and a predicted set of pixel values obtained from a
shifted block in the previous frame. In fact, the encoder splits the video
frame sequence into smaller segments called group of pictures (GOP).
Each GOP starts with an I-frame which is an image independently
encoded using a process similar to JPEG compression and continues with
the predicted frames (P-frames) and bidirectional frames (B-frames).
P-frames are predicted from preceding frames and B-frames can be
predicted from I-frames or P-frames preceding or following them in
the GOP. Check the MPEG official web page® of the MPEG group for
further details.

In Section 2.1 you will find more details on how compression can be
used in multimedia forensics applications.

3https://www.mpegstandards.org
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http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm
http://www.ee.columbia.edu/ln/dvmm/downloads/authsplcuncmp/
http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/
https://www5.cs.fau.de/research/data/image-manipulation/
https://github.com/wenbihan/coverage
https://www.nist.gov/itl/iad/mig/media-forensics-challenge
https://www.nist.gov/itl/iad/mig/media-forensics-challenge
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2018
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https://github.com/jawadbappy/forgery_localization_HLED/tree/master/synthetic_data
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2019-0
https://www.nist.gov/itl/iad/mig/media-forensics-challenge-2019-0
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http://forensics.inf.tu-dresden.de/ddimgdb/
http://loki.disi.unitn.it/RAISE/
https://iplab.dmi.unict.it/DigitalForensics/social_image_forensics/
http://lci.micc.unifi.it/labd/2015/01/trustworthiness-and-social-forensic/
http://lci.micc.unifi.it/labd/2015/01/trustworthiness-and-social-forensic/
https://lesc.dinfo.unifi.it/en/datasets
https://www.kaggle.com/c/sp-society-camera-model-identification
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https://www.idiap.ch/dataset/deepfaketimit
https://github.com/MKLab-ITI/fake-video-corpus
http://ali.khodabakhsh.org/research/ffw/
https://github.com/ondyari/FaceForensics
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
http://www.cs.albany.edu/~lsw/celeb-deepfakeforensics.html
https://www.kaggle.com/c/deepfake-detection-challenge/data
https://github.com/EndlessSora/DeeperForensics-1.0
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