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The goal of recommender systems is to provide to users suggestions that match their interests, with the eventual goal

of increasing their satisfaction, as measured by the number of transactions (clicks, purchases, etc.). Often, this leads to

providing recommendations that are of a particular type. For some contexts (e.g., browsing videos for information) this may

be undesirable, as it may enforce the creation of filter bubbles. This is because of the existence of underlying bias in the input

data of prior user actions.

Reducing hidden bias in the data and ensuring fairness in algorithmic data analysis has recently received significant

attention. In this paper, we consider both the densest subgraph and the 𝑘-clustering problem, two primitives that are being

used by some recommender systems. We are given a coloring on the nodes, respectively the points, and aim to compute a fair
solution 𝑆 , consisting of a subgraph or a clustering, such that none of the colors is disparately impacted by the solution.

Unfortunately, introducing fair solutions typically makes these problems substantially more difficult. Unlike the uncon-

strained densest subgraph problem, which is solvable in polynomial time, the fair densest subgraph problem is NP-hard even

to approximate. For 𝑘-clustering, the fairness constraints make the problem very similar to capacitated clustering, which is a

notoriously hard problem to even approximate.

Despite such negative premises, we are able to provide positive results in important use cases. In particular, we are able to

prove that a suitable spectral embedding allows recovery of an almost optimal, fair, dense subgraph hidden in the input data,

whenever one is present, a result that is further supported by experimental evidence.

We also show a polynomial-time, 2-approximation algorithm to the problem of fair densest subgraph, assuming that there

exist only two colors and both colors occur equally often in the graph. This result turns out to be optimal assuming the small

set expansion hypothesis. For fair 𝑘-clustering, we show that we can recover high quality fair clusterings effectively and

efficiently. For the special case of 𝑘-median and 𝑘-center, we offer additional, fast and simple approximation algorithms as

well as new hardness results.

The above theoretical findings drive the design of heuristics, which we experimentally evaluate on a scenario based on real

data, in which our aim is to strike a good balance between diversity and highly correlated items from Amazon co-purchasing

graphs and facebook contacts. We additionally evaluated our algorithmic solutions for the fair 𝑘-median problem through

experiments on various real-world datasets.
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1 INTRODUCTION

Recommender systems are prevalent in most content-providing online systems, as they increase the user satisfac-

tion and, as a result, the revenue of the online service. All of the classical approaches, either based on content or

on collaborative filtering, have the tendency to provide recommendations that are similar to the content that the

user has previously followed. Clearly, this is desired and what makes these systems work. Of course, variants

exist either to take care of new content or to allow exploration into the content space, with the hope that the

user will discover some unknown to her topics.

Whereas this approach is in general desirable, there exist scenarios where it can also have some negative

consequences. Consider a user browsing youtube and searching for content (talks, interviews, podcasts, etc.)

on some controversial topic. For instance, “does the gender-pay gap exist?” or “should citizens be allowed to

have guns?” There are arguments towards both sides of the spectrum. Yet, these are topics that are typically

polarized, usually based on the individuals’ prior beliefs. These beliefs typically get even more polarized as the

user is exposed to content that supports her opinion. Suggestions from recommender systems, naturally lead to

this, enforcing the creation of filter bubbles [37].

Diversity in recommender systems has been one of the design goals, as it leads to improved user experience [43,

44]. The survey by Kunaver and Požrl [43] describes various ways to define diversity (e.g., novelty, serendipity,

etc.) and approaches in achieving it. Yet, the implicit goal of these approaches is to increase the user experience,

eventually measured, for instance, by the number of completed transactions (clicks, purchases, etc.).

We want to propose a different objective. We propose balanced recommendations, which are recommendations

that cover all the spectrum of a controversial topic. We assume that the content is classified according to a given

dimension (e.g., conservative–liberal) and the goal is, when providing recommendations, to cover both sides. In

the previously mentioned youtube example, the goal would be for the user to be exposed to content also of the

opposite side. Such exposure has often the effect to increase critical thinking and moderate strong opinions [56].

This may be a tradeoff, as such an exposure may reduce the number of transactions. Other applications include

diversification in friendship suggestion, in product recommendation as a means towards serendipity, by allowing

to explore than to merely exploit. This holds true in product/information recommendations, but also in dating

applications, social recommendations, and so on. In the long run, it can mitigate the “rich-get-richer” effect, by

increasing the diversity in the recommendations provided.

Such a goal is complex: it requires the classification of content among various dimensions, the definition of a

desired output, and the incorporation of balancing into existing recommendation approaches. In this work we start

by defining the concept of balancing and showing how it can be achieved in some of the primitives that are being

used in some recommender systems: clustering (captured by the 𝑘-clustering problem) and graph community

detection (captured by the problem of maximum densest subgraph). Clustering in recommender systems has

multiple applications: It is being used for user segmentation, for item categorization, for dimensionality reduction,

and often to improve collaborative-filtering approaches by increasing the density of the user–item matrix.

Furthermore, it can be used to improve scalability, and is a nice solution for the cold-start problem. The densest-

subgraph primitive can also be a component in recommender systems based on graphs. As an example, we
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mention community-based recommendations, as it can allow to identify users with similar interests. In the same

lines, it can be used to provide recommendations in content-similarity graphs or in interest graphs. Similar to

clustering, it can also help for the cold-start problem.

1.1 Contributions

In this paper we define mathematically the concept of balancing that we use and we provide some theoretical

results towards what is achievable and what is not.

Densest Subgraph. As it turns out (see Section 3), the fair densest subgraph problem is intractable in general,

whereas its unconstrained counterpart can be solved optimally through network flow [31]. Nevertheless, we

have some quantifiable results regarding approximation algorithms in special cases. We can show that, if the

underlying graph itself is fair, there exists a 2-approximation algorithm. We further show that, assuming the

widely used small set expansion hypothesis [51], this is the best possible. We also consider the case where the

graph itself is not fair and we instead aim for a proportional representation. For this, in our opinion more flexible

variant of the problem, we show that the results for fair graphs can be extended.

Although this worst-case behavior is discouraging, the possibility of effective algorithms on practical instances

is not ruled out. To this end, we identify properties that, if satisfied by some subgraph of the network under

consideration, will afford recovery of an approximately fair, dense subgraph. More precisely, our goal in this

respect is to design a heuristic that

(a) has a quantifiable guarantee if the underlying graph is well-behaved and

(b) is practically viable.

Our main result is a spectral algorithm that satisfies both of these requirements. In particular, the practical

viability of our algorithm underscores that our notion of a well-behaved graph is a realistic one. As a candidate

application, we consider the scenario of providing diverse recommendations of high quality, using data from the

Amazon product co-purchasing graph. Our experiments not only confirm the quality of the output solutions, but

also the scalability of our approach, which may not be the case for a conventional combinatorial approximation

algorithm.

𝑘-Clustering. We also study fair clustering problems. First, we show that computing a 3-approximation to the

fair 𝑘-center clustering, which consists of minimizing the maximum distance in every cluster, is possible in fixed-
parameter tractable running time, where the parameter in question is the number of clusters 𝑘 . Similar results also

hold for fair 𝑘-median and fair 𝑘-means. Notably, these results do not require an exponential dependency on the

number of colors ℓ , which would happen with a naive application of coreset-based results. This is complemented

with the following hardness proof. Given three point sets consisting of exactly 𝑛 points, finding a fair 𝑛-median

or 𝑛-center clustering is APX hard. This already shows that considering fair clustering with at least 3 populations

is harder than the same problem with only 2 populations. In addition, approximating the fair 𝑘-center cost of a

given candidate set of 𝑘 points is similarly APX hard.

Overview of our approach. Our approach builds on the finding [36, 47] that the densest subgraph problem

admits a spectral formulation. Specifically, an approximate densest subgraph can be computed by selecting nodes

for inclusion according to the magnitudes of the corresponding entries in the main eigenvector of 𝐺 ’s adjacency

matrix. Unfortunately, this approach does not afford balanced solutions in general. In a nutshell, we sidestep this

issue by first projecting the adjacency matrix onto a suitable “fair” subspace, an operation that corresponds to

the enforcement of “soft” fairness constraints.
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To see why the conventional spectral approach of [36] may not work
1
and why our approach mitigates the

issue, Figure 1 presents plots obtained from Amazon books on US politics [41]. The books are labeled as either

conservative or liberal, which corresponds to the labels −1 or 1. As described above, a candidate application may

be to find a selection of books that are of interest to multiple readers, while mitigating potential polarization

along political lines.

On the left, we observe the books ordered according to their corresponding entries in the main eigenvector of

the adjacency matrix of the co-purchase graph. Books are also colored according to political orientation. We can

observe that, whereas liberal books are well distributed, conservative ones are clustered. On the right we observe

the results after application of our spectral embedding, which affords recovery of a subgraph of the co-purchase

graph that is both dense and approximately balanced. Note that now conservative books are also well distributed

along the principal component.
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Fig. 1. Projection of books (see Section 5) onto the first principal component. (Left) Original data. (Right) Data after spectral

embedding. Books are ordered on the 𝑥 axis according to their corresponding entries in the main eigenvector, whereas on the

𝑦 axis we have random noise for visualization.

1.2 Related Work

Apart from the vicinity of our work to the area of diversification in recommender systems that we discussed in

the beginning of the introduction, there are various other areas that touch our work. In this section we describe

some of them.

Densest Subgraph. Identifying dense subgraphs is a key primitive in a number of applications. Fratkin et al. [28],

use it to identify over-represented but imperfectly conserved motifs in genomic DNA data, with the eventual goal

of discovery of regulatory elements that determine the timing, location, and level of gene transcription. Gibson et

al. [29] find dense subgraphs, as a means for web spam detection. Gionis et al. [30] make use of them in a means

to improve efficiency in event sharing in social-networking sites. Some more applications, such as detection of

genes that are correlated in some biological sense, are studied by Tsourakakis et al. [60], who present various

variants of the densest subgraph problem. The standard problem can be solved optimally in polynomial time [31].

On the contrary, the fair densest subgraph problem is highly related to the densest subgraph problem limited

to at most 𝑘 nodes, which cannot be approximated up to a factor of 𝑛1/(log log𝑛)
𝑐

for some 𝑐 > 0 assuming the

exponential time hypothesis [46] and for which state-of-the-art methods yield an 𝑂 (𝑛1/4+𝜀) approximation [13].

1
In fact, this applies to any approach based on unconstrained maximization of the induced subgraph’s density.
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Algorithmic Fairness. Fairness in algorithms has received considerable attention in the recent past; see [34, 58, 61,

63] and references therein. The closely related notion of disparate impact was first proposed by Feldman et al. [27].

It has since been used by Zafar et al. [62] and Noriega-Campero et al. [50] for classification and Celis et al. [19, 20]

for voting and ranking problems. Another problem that has received considerable attention is fair clustering. This

was first proposed as a problem by Chierichetti et al. [22] in the case of a binary protected attribute. It was then

investigated for various objectives andmore color classes in theirs and subsequent work [5, 10, 11, 15, 18, 35, 52, 55].

Most closely related to our work are some recent works [40, 54, 57]. From those, the works of Samadi et al.[54]

and Tantipongpipat et al. [57]. Consider the problem of executing a principal component analysis in a fair manner.

Specifically, given a matrix 𝐴 where the rows are colored (e.g., every row corresponds to a man or a woman),

they ask for an algorithm that finds a rank-𝑘 matrix 𝐴′ whose residual error ∥𝐴 −𝐴′∥ is small for both types of

rows simultaneously. Whereas our method is similarly based on using the principal component in a fair manner,

the difference is that we may be forced to treat the classes differently, if we aim to uncover a dense subgraph as

illustrated in the example mentioned previously and illustrated in Figure 1.

The paper by Kleindessner et al. [40] considers spectral-clustering problems such as normalized cut. Like our

work, they project the Laplacian matrix of a graph 𝐺 onto a suitable “fair” subspace, and then run 𝑘-means on

the subspace spanned by the smallest resulting eigenvectors. Under a fair version of the stochastic block model,

they show that this algorithm recovers a planted fair partitions. Our work continues this idea by applying the

technique to the densest subgraph problem.

Algorithmic Fairness and Fair Clustering. The idea of clustering using balancing constraints is based on the

aforementioned notion of disparate impact [27]. Despite some impossibility results in certain settings [24, 38], it

has been used successfully for classification [33, 50, 62], ranking [19, 20], regression [2], graph embeddings [17],

team formation [8], and indeed clustering. Its application to clustering was initiated by Chierichetti et al. [22].

They showed that for two protected classes, fair clustering for various objectives such as 𝑘-median, 𝑘-center, and

(implicitly, though unstated) 𝑘-means can be approximated as well as the unconstrained variants of the problem

(up to constant factors). Building upon their work, [5, 18, 35, 55] considered this problem for large data sets.

Backurs et al. [5] apply a technique of metric embedding to trees, to provide a close-to-linear approximation

algorithm for the fair 𝑘-median problem. Huang et al. [35] construct carefully some coresets, which then combine

with the techniques of Backurs et al. to accelerate solving𝑘-median and𝑘-means. A coreset is a data summarization

technique, where a (weighted) point is a representative of part of the input. Coreset construction is also the

method of choice of Braverman et al. [18], who use them to solve 𝑘-median under different distance metrics, and

of Schmidt et al. [55] who compute them in a streaming computational model for 𝑘-means.

The main open problem left by Chierichetti et al. [22] is whether the approximability can be extended for

multiple color classes. Here, the 𝑘-center problem has received the most attention with the current state of the art

by Bercea et al. [12] being a 5-approximation algorithm, or a bicriteria 4-approximation algorithm that violates the

fairness constraint by a small amount. For the special case of having equally sized color classes, Böhm et al. [15]

gave a polynomial time constant factor approximation. Further results include a PTAS for constant 𝑘 [35, 55] in

Euclidean spaces of constant dimension and with 2 colors and bicriteria approximation algorithms [10, 12]. Other

variants introduce capacity constraints and outliers [52] and overlapping clusters [10].

We note that there exist other models combining fairness and clustering objectives. Disparity of impact

for spectral clustering has been studied by Kleindessner et al. [40]. Further spectral algorithms with fairness

considerations appear in various other works [48, 54, 57]. Kleindessner et al. [39] considered 𝑘-centers under the

fairness constraint that the set of centers, rather than the composition of the clusters.
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1.3 Preliminaries and Notation

We consider an undirected graph 𝐺 (𝑉 , 𝐸,𝑤), where 𝑉 is the set of 𝑛 nodes, 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges, and

𝑤 : 𝐸 → R≥0 is a weight function. We denote the (weighted) adjacency matrix of 𝐺 by 𝐴. For a subset 𝐸′ ⊂ 𝐸

of the edges, we let 𝑤 (𝐸′) = ∑
𝑒∈𝐸′ 𝑤 (𝑒). For unweighted graphs we have 𝑤 (𝑒) = 1 for each 𝑒 ∈ 𝐸. For a node

𝑢 ∈ 𝑉 , its (weighted) degree (often called volume) is 𝑑𝑢 =
∑

𝑒∩{𝑣}≠∅𝑤 (𝑒). We also let 𝑑max = max𝑢∈𝑉 𝑑𝑢 . For a

𝑆 ⊆ 𝑉 , we denote by 𝐺𝑆 the induced subgraph. The density 𝐷𝑆 (𝐺) of 𝑆 ⊆ 𝑉 is the average degree of 𝐺𝑆 , namely

𝐷𝑆 (𝐺) = 2·𝑤 (𝐸∩𝑆×𝑆 )
|𝑆 | . We omit 𝐺 from 𝐷𝑆 (𝐺), whenever it is clear from context.

A coloring of the vertices is a map 𝑐 : 𝑉 → [ℓ] of 𝑉 , where [ℓ] := {1, 2, . . . , ℓ}. A set 𝑆 ⊆ 𝑉 is called fair
or balanced if |𝑆 ∩ {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = 1}| = |𝑆 ∩ {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = 2}| = · · · = |𝑆 ∩ {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = ℓ}|. A graph is

called fair if 𝑉 is fair. In the remainder, we provide positive results for the important case ℓ = 2. In this case,

for simplicity of exposition, we denote the colors red and blue and we use Red := {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = red} and
Blue := {𝑣 ∈ 𝑉 : 𝑐 (𝑣) = blue} to refer to nodes of the respective color. To emphasize that the colors are disjoint,

we write 𝑉 =
⋃⊎ℓ𝑖=1𝑉𝑖 , where 𝑉𝑖 = {𝑣 ∈ 𝑉 | 𝑐 (𝑣) = 𝑖}

Definition 1.1 (Fair Densest Subgraph Problem). Given a (weighted) graph 𝐺 (𝑉 , 𝐸,𝑤) and a coloring 𝑐 of its

vertices, identify a fair subset 𝑆 ⊆ 𝑉 that maximizes 𝐷𝑆 .

The fair densest subgraph problem is obviously a constrained version of the densest subgraph problem. It

turns out to be considerably harder than its (polynomially solvable) unconstrained counterpart, as we show in

Section 3.

Linear algebra notation. We denote by 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛 the eigenvalues of 𝐴 and by 𝑣𝑖 𝐴’s 𝑖th eigenvector.

We also set 𝜆 = max{𝜆2, |𝜆𝑛 |}. Note that we always have 𝜆1 ≤ 𝑑max. For a subset 𝑆 ⊆ 𝑉 , we denote by 𝜒 its

normalized indicator vector, where 𝑆 is understood from context. Namely, 𝜒𝑖 = 1/
√︁
|𝑆 | if 𝑖 ∈ 𝑆 , 𝜒𝑖 = 0 otherwise.

Finally, for a vector 𝑥 ∈ R𝑛 , we let ∥𝑥 ∥ =
√︃∑𝑛

𝑖=1 𝑥
2

𝑖
, the 2-norm of 𝑥 .

Definition 1.2 (Clustering Problem). Given a set of 𝑛 points 𝑃 in some metric space and set of potential center

sites 𝐹 , the (𝑘, 𝑧) clustering problem consists of computing a set 𝐶 ⊂ 𝐹 of 𝑘 center points in the metric space

and an assignment 𝑐 : 𝑃 → 𝐶 such that
𝑧

√︃∑
𝑝∈𝑃 dist

𝑧 (𝑝, 𝑐 (𝑝)) is minimized. Special cases include 𝑧 = 1, which is

𝑘-median, and 𝑧 →∞, which is 𝑘-center.

We define a coloring of the points in 𝑃 similarly to the previous definition of a coloring of the vertices of a

graph. Analogously, we extend the balancedness or fairness definitions to subsets of points of 𝑃 . Now we can

define the fair version of the clustering problem.

Definition 1.3 (Fair Clustering Problem). The fair-(𝑘, 𝑧) clustering problem is the clustering problem that further

requires that the set of points assigned to every center is balanced.

Given two 𝑛-point sets 𝐴 (𝑖 ) and 𝐴 ( 𝑗 ) , a matching is a bijection 𝜋 : 𝐴 (𝑖 ) → 𝐴 ( 𝑗 ) . Given some matching 𝜋 ,

we say that the 𝑧-cost is 𝑧
√︁∑

𝑥∈𝐴(𝑖 ) dist
𝑧 (𝑥, 𝜋 (𝑥)). The optimal matching with respect to the 𝑧-cost is called the

min-cost perfect 𝑧-matching, or simply min-cost perfect matching if 𝑧 is clear from the context. In literature, this

is sometimes referred to as the Earth Mover’s distance between 𝐴 (𝑖 ) and 𝐴 ( 𝑗 ) , for which we use the shorthand

EMD(𝐴 (𝑖 ) , 𝐴 ( 𝑗 ) ). The time required to compute an optimal min-cost perfect matching on 𝑛-point sets is denoted

by𝑀𝐶𝑃𝑀 (𝑛)2.

2
There exist algorithms that run faster in special cases, such as (2)-matching in low-dimensional Euclidean space. For a single algorithm that

solves the problem for all 𝑧, we refer the reader as an example to the Hungarian algorithm [42].
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2 SPECTRAL RELAXATIONS FOR THE FAIR DENSEST SUBGRAPH

As observed by Kannan and Vinay [36], the densest subgraph problem admits a spectral formulation. In particular,

if we let 𝑥 be an indicator vector over the vertex set, then the indicator vector of the vertex subset maximizing

density is the maximizer of the following expression max𝑥∈{0,1}𝑛
2𝑥𝑇𝐴𝑥
𝑥𝑇 𝑥

.

Now, assume that each node is colored with one of two colors, red or blue. In the optimal solution 𝑥∗ one of
the colors might be overrepresented. To formulate the problem of computing a fair solution, we can add the

constraint ∑︁
node 𝑖 is red

𝑥𝑖 =
∑︁

node 𝑖 is blue

𝑥𝑖 ⇔
∑

node 𝑖 is red 𝑥𝑖 −
∑

node 𝑖 is blue 𝑥𝑖 = 0.

If we define the (unit 2-norm) vector 𝑓𝑖 =

{
1√
𝑛

if node 𝑖 is red

− 1√
𝑛

if node 𝑖 is blue,
the above constraint can be described as

𝑓 𝑇𝑥 = 0. We call such an 𝑥 fair. Conversely, very unbiased solutions will have high, in absolute value, inner

products with 𝑓 .

Fair Densest Subgraph: Spectral Relaxation. Based on the considerations above, our approach transforms the

input data (in this case the adjacency matrix 𝐴) by first projecting them onto the kernel of 𝑓 . Namely, we first

consider the following formulation of the fair densest subgraph problem: max𝑥∈{0,1}𝑛
2𝑥𝑇 (𝐼−𝑓 𝑓 𝑇 )𝐴(𝐼−𝑓 𝑓 𝑇 )𝑥

𝑥𝑇 𝑥
. Note

that, for any fair subset 𝑆 with indicator 𝑥 , we have 2𝑥𝑇𝐴𝑥
𝑥𝑇 𝑥

=
2𝑥𝑇 (𝐼−𝑓 𝑓 𝑇 )𝐴(𝐼−𝑓 𝑓 𝑇 )𝑥

𝑥𝑇 𝑥
. Conversely, for any indicator

vector 𝑥 ∉ 𝑠𝑝𝑎𝑛(𝐼 − 𝑓 𝑓 𝑇 ), the objective value can only decrease after we project to the kernel of 𝑓 .

We next note that, by the discussion in the beginning of the section, by relaxing 𝑥 to be an arbitrary vector, the

above expression is maximized by the main eigenvector of (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ). The above relaxation corresponds

to replacing hard fairness constraints with soft ones.

It is straightforward to encode more complicated fairness constraints using this technique. Suppose, for example,

that we are given ℓ colors, and wish to output a subgraph such that every color is featured equally often. This

induces a set of constraints

∑
node 𝑖 is red 𝑥𝑖 =

∑
node 𝑖 is blue 𝑥𝑖 ,

∑
node 𝑖 is red 𝑥𝑖 =

∑
node 𝑖 is green 𝑥𝑖 , . . . for all colors.

The vectors satisfying all of these constraints lie in the nullspace of some ℓ − 1 dimensional subspace 𝑆 . Assume

that 𝐹 is a matrix such that the columns of 𝐹 form an orthogonal basis of 𝑆 . Then the above technique leads to

the problem max𝑥∈{0,1}𝑛
2𝑥𝑇 (𝐼−𝐹𝐹𝑇 )𝐴(𝐼−𝐹𝐹𝑇 )𝑥

𝑥𝑇 𝑥
. More generally, this technique can be extended to any system of

linear constraints. One only has to merely find a suitable basis and project 𝐴 onto said basis.

We note that even though the technique can handle these more complicated constraints, leveraging this in an

algorithm with provable guarantees seems very difficult. Nevertheless, our experiments dealing with multiple

colors showcase that we can still tackle more complicated fairness constraints with success in practice; see

Section 5.1.

2.1 Recovery of Dense Fair Subgraphs in Almost Regular Graphs

In this section we provide some theoretical results, under some conditions on the input. Even though these

conditions may not always be satisfied in practice, nevertheless the results provide evidence of the soundness of

our modeling and solution approach.

We first need the following definition:

Definition 2.1. Graph 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) is (𝑑, 𝜖)-regular if a 𝑑 exists, such that (1 − 𝜖)𝑑 ≤ 𝑑𝑖 ≤ (1 + 𝜖)𝑑 , for every
𝑖 ∈ 𝑉𝐻 .
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Theorem 2.2. Assume we have a graph 𝐺 = (𝑉 , 𝐸,𝑤) with a 2-coloring of the nodes. Assume the spectrum
of 𝐴 satisfies 𝜆1 ≥ 4𝜆.3 Assume further that 𝐺 contains a fair subset 𝑆 such that: (1) 𝐺𝑆 is (𝑑, 𝜖)-regular and (2)
𝑑 ≥ (1 − 𝜃 )𝑑max, with 𝜖 + 𝜃 ≤ 1/4. In this case, it is possible to recover all but 32(𝜖 + 𝜃 ) |𝑆 | of the vertices in 𝑆 in
polynomial time.

Proof of Theorem 2.2. See Appendix A.1 for the proof. □

Intuitively, the result above states that, if the underlying network 𝐺 is an expander containing an almost-

regular, dense, and fair subgraph, we can approximately retrieve it in polynomial time. Succinctly, this follows

because, under these assumptions, the indicator vector of 𝑆 forms a small angle with the main eigenvector of

(𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ), which in turn has a large component on the main eigenvector of 𝐴. In particular, we run

Algorithm GSA (see Algorithm 1) with𝑀 = (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) and Δ = 16(𝜖 + 𝜃 ).

1 Algorithm: General Sweep Algorithm (GSA)

Data: Non-negative 𝑛 × 𝑛 matrix𝑀 , parameter Δ
Result: Subset 𝑆 ⊆ 𝑉

2 𝑆 = ∅; 𝐷̂ = 0;

3 Compute 𝑣1 = main eigenvector of𝑀 ;

4 Sort nodes 𝑖 ∈ 𝑉 in non increasing order of 𝑣1 (𝑖);
// Assume w.l.o.g. that {1, . . . , 𝑛} is resulting ordering of nodes in 𝑉 ;

5 for 𝑠 = 1 to 𝑛 do

6 𝑆 = {1, . . . , 𝑠}
7 Compute 𝐷𝑆 = density of the subgraph induced by 𝑆

8 if 𝐷𝑆 > 𝐷̂ AND | |𝑆 ∩ 𝑅𝑒𝑑 | − |𝑆 ∩ 𝐵𝑙𝑢𝑒 | | ≤ Δ|𝑆 | then
9 𝑆 = 𝑆 ; 𝐷̂ = 𝐷𝑆

10 end

11 end

12 return 𝑆

Algorithm 1: General Sweep Algorithm (non-increasing).

The running time of Algorithm 1 is dominated by computing the first eigenvector and the projecting of the

rows of the Laplacian onto said eigenvector. This can be done, up to (1 + 𝜀) precision, in linear time.

3 HARD CONSTRAINTS AND HARDNESS OF APPROXIMATION

In general, enforcing fairness can make an easy problem intractable and this is the case for the densest subgraph

problem. In this context, spectral relaxations can be regarded as a way to mitigate this issue, by enforcing soft

fairness constraints to virtually any problem that is amenable to an algebraic formulation.

Nevertheless, in some cases it might be important to assess the price of fairness, by comparing the achievable

quality of fair solutions to that of solutions for the original, unconstrained problem. In this section, we complement

our algorithmic treatment of fairness with hardness results and approximation algorithms for specific cases.

Some proofs are omitted for the sake of space, but they are available in the full version of the paper.
4
Some of our

hardness results are based on the small set expansion hypothesis, which we now describe.

3
That is,𝐺 is an expander.

4
https://arxiv.org/abs/1905.13651
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Consider a 𝑑-regular weighted graph𝐺 and, for every 𝑆 ⊂ 𝑉 , denote by Φ(𝑆) the expansion (or conductance)

of 𝑆 [51]: Φ(𝑆) = 𝑤 (𝐸∩(𝑆×𝑉 \𝑆 ) )
min{∑𝑣∈𝑆 𝑑𝑣 ,

∑
𝑣∈𝑉 \𝑆 𝑑𝑣} . Given two constants 𝛿, 𝜂 ∈ (0, 1), the small set expansion problem [51]

𝑆𝑆𝐸 (𝛿, 𝜂) asks to distinguish between the following two cases:

Completeness There exists a set of nodes 𝑆 ⊂ 𝑉 of size 𝛿 · |𝑉 | such that Φ(𝑆) ≤ 𝜂.

Soundness For every set of nodes 𝑆 ⊂ 𝑉 of size 𝛿 · |𝑉 |, Φ(𝑆) ≥ 1 − 𝜂.
Our hardness proofs are based on the small set expansion hypothesis defined as follows.

Conjecture 3.1 (SSEH). For every 𝜂 > 0 there exists a 𝛿 := 𝛿 (𝜂) > 0 such that 𝑆𝑆𝐸 (𝜂, 𝛿) is NP-hard.

Recall from Section 1.2 that, whereas the densest subgraph problem is polynomially solvable, the best ap-

proximation for the densest at-most-𝑘 subgraph problem is in 𝑂 (𝑛1/4) [14] and cannot be approximated up to a

factor of 𝑛1/(log log𝑛)
𝑐

for some 𝑐 > 0 assuming the exponential time hypothesis [46] . The next theorem implies

that these inapproximability results for the densest at-most-𝑘 subgraph problem hold also for the fair densest

subgraph problem, showing that fairness constraints can drastically affect hardness of this problem.

Theorem 3.2. The densest fair subgraph problem is at least as hard as the densest at most 𝑘 subgraph problem.
Moreover, any 𝛼-approximation to the densest at-most-𝑘 subgraph is a 2𝛼 approximation to densest fair subgraph.

Proof. Consider an arbitrary graph 𝐺 (𝑉 , 𝐸). We consider 𝑉 to be colored red. Add 𝑘 blue nodes with no

edges. Then the density of the fair densest subgraph is, up to a multiplicative factor of exactly
1

2
, equal to the

density of the densest-at-most-2𝑘 subgraph. Conversely, running an algorithm for densest 𝑘-subgraph with

𝑘 = min( |Blue |, |Red |), and balancing out the resulting subgraph in post processing decreases the density by at

most a factor 2. (This latter part is explained in more detail in the following theorem). □

When the input graph 𝐺 is itself fair, we can provide stronger bounds.

1 Input: Graph 𝐺 (𝑉 , 𝐸,𝑤)
2 Compute the densest subgraph 𝑆

3 W.l.o.g |𝑆 ∩ 𝐵𝑙𝑢𝑒 | ≥ |𝑆 ∩ 𝑅𝑒𝑑 |
4 While |𝑆 ∩ 𝐵𝑙𝑢𝑒 | > |𝑆 ∩ 𝑅𝑒𝑑 |, add an arbitrary node 𝑣 ∈ 𝑅𝑒𝑑 \ 𝑆 to 𝑆

5 Return 𝑆

Algorithm 2: Approximate Fair Densest Subgraph

Theorem 3.3. Given a fair graph 𝐺 (𝑉 , 𝐸,𝑤), Algorithm 2 computes a fair set 𝑆 ⊂ 𝑉 , such that 2𝐷𝑆 ≥ 𝑂𝑃𝑇 ,
where 𝑂𝑃𝑇 is the density of the fair densest subgraph.

Proof. We refer to the set 𝑆 computed after line 2, and 4 as 𝑆1 an 𝑆2, respectively. Because 𝑆1 is the unconstrained

densest subgraph, 𝐷𝑆1 > 𝑂𝑃𝑇 . For 𝑆2, we observe that |𝑆2 | = |𝑆1 | + |𝑆1 ∩ Blue| − |𝑆1 ∩ Red| ≤ 2 · |𝑆1 |, hence
𝐷𝑆2 =

𝑤 (𝐸𝑆
2
)

|𝑆2 | ≥
𝑤 (𝐸𝑆

1
)

2 |𝑆1 | ≥
𝑂𝑃𝑇
2

. □

The running times of both algorithms depend on the running time of the subroutines used to compute dense

subgraphs. Unconstrained dense subgraphs can be found by solving a linear program or by computing a max

flow [21, 31]. A faster (1 + 𝜀) approximation that runs in time 𝑂 (𝑛polylog(𝑛)) also exits [7, 25].

For the densest 𝑘-subgraph problem, the currently best algorithm that computes an 𝑂 (𝑛1/4+𝜀) approximation

runs in time 𝑛𝑂 (1/𝜀 ) [13].
We conclude this section by showing that approximating the fair densest subgraph problem beyond a factor of

2 is at least as hard as solving 𝑆𝑆𝐸 (𝜂, 𝛿). Therefore, barring a major algorithmic breakthrough, Algorithm 2 is
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optimal. The proof is based on the following idea: In regular graphs, for a given set of nodes 𝑆 , the expansion

Φ(𝑆) is related to the density of 𝑆 . We can use this, so that, given a graph 𝐺 , we can carefully construct a colored

graph 𝐺 ′ such that finding the optimal fair densest subgraph in 𝐺 ′ gives an estimate of the largest-expansion

node set in 𝐺 .

Theorem 3.4. If SSEH holds, computing a (2 − 𝜀) approximation of the fair densest subgraph problem in fair
graphs is 𝑁𝑃-hard for any 𝜀 > 0.

Proof. See Appendix A.2 for the proof. □

4 FASTER ALGORITHMS FOR FAIR 𝑘-MEDIAN AND 𝑘-CENTER

Fair 𝑘-Median. For fair 𝑘-median, we obtain an (𝛼 + 2)-approximation, albeit in a substantially faster running

time. As mentioned by Backurs et al. [5], computing a min-cost perfect matchings is expensive and tends to

dominate the running time of fair clustering. In their paper, they proposed an algorithm that computes an

𝑂 (𝑑 log𝑛)-approximate fairlet decomposition for fair 𝑘-median in nearly linear time
5
. We illustrate how to obtain

a linear time randomized algorithm (i.e running in time 𝑂̃ (ℓ · 𝑀𝐶𝑃𝑀 (𝑛))), assuming that every color has an

equal number of points.

Let us briefly recall some relevant definitions and results by Chierichetti et al. [22] A fairlet decomposition,
is a 𝑘 ′-clustering with typically 𝑘 ′ > 𝑘 centers, for which, for each cluster (fairlet), a single point is used as

a representative. Clustering the representatives and merging the fairlets then results in a fair clustering, for

any value of 𝑘 . Note that the existence of a fair 𝑘-clustering always implies the existence of a fair 𝑛-clustering,

for any number of colors. Chierichetti et al. show that computing an optimal fair 𝑛-median is possible if we

are given only two colors. Even though the same problem is APX-hard for three colors (see Proposition 4.2),

the following theorem establishes that a randomly sampled color is always a 2-approximate fair 𝑛-median in

expectation. Repeating the sampling process allows us to find a good 𝑛-median clustering with high probability.

The pseudocode is given in Algorithm 3.

1 Input: Balanced point set 𝐴 =
⊎ℓ

𝑖=1𝐴
(𝑖 )

with |𝐴 (𝑖 ) | = 𝑛

2 for 𝑖 ∈ {1, . . . , log 1/𝛿}
3 Sample 𝐴 (𝑡 ) ⊂ 𝐴 uniformly at random

4 𝑐𝑜𝑠𝑡 (𝑖) ← 0

5 for 𝑗 ∈ {1, . . . , log ℓ}
6 Compute (approximate) EMD(𝐴 (𝑡 ) , 𝐴 ( 𝑗 ) ) and add it to cost

7 Output 𝐴 (𝑡 ) with minimal cost

Algorithm 3: Fast randomized fair 𝑛-median clustering

Theorem 4.1. Let 𝐴 be an ℓ · 𝑛 × 𝑑 matrix, let 𝑐 : [ℓ · 𝑛] → [ℓ] be a balanced coloring of 𝐴. Given an algorithm
that computes a 𝛽-approximate fair 𝑛-median clustering with 2-colors in time 𝑇 (𝑛,𝑑), there exists a randomized
algorithm that computes a (2𝛽)-approximate fair 𝑛-median clustering with ℓ colors. The algorithm runs in time
𝑂 (ℓ ·𝑇 (𝑛,𝑑) log 1/𝛿) and succeeds with probability 1 − 𝛿 .

Proof. We will start by recalling the following fact that establishes the metric properties of the Earth Mover’s

distance.

5
The dependency on 𝑑 may be further reduced to𝑂 (log𝑘 ) using dimension reduction techniques by Makarychev et al. [45]
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Fact 1 (Rubner et al. [53], Appendix A). Let (𝑋,𝑑) be a metric space with points 𝑋 and distance function 𝑑 .
Then the Earth Mover’s distance on a (weighted) point sets of equal size (or total weight) using 𝑑 as a ground distance
is a metric.

Given ℓ 𝑛-point sets 𝐴 (1) , . . . , 𝐴 (ℓ ) lying on some metric space, the fair 𝑛-median problem consists in finding

an 𝑛-point set 𝐵 such that

∑ℓ
𝑖=1 EMD(𝐴 (𝑖 ) , 𝐵) = ∑ℓ

𝑖=1

∑𝑛
𝑗=1 min𝜋∈Π:𝐴(𝑖 )→𝐵 𝑑 (𝐴

(𝑖 )
𝑗
, 𝜋 (𝐴 (𝑖 )

𝑗
)) is minimized.

We now sample a point set 𝐴 (𝑡 ) uniformly at random. Then

E

[
ℓ∑︁

𝑖=1

EMD(𝐴 (𝑡 ) , 𝐴 (𝑖 ) )
]
≤ E

[
ℓ∑︁

𝑖=1

(
EMD(𝐴 (𝑡 ) , 𝐵) + EMD(𝐴 (𝑖 ) , 𝐵)

)]
=

ℓ∑︁
𝑖=1

EMD(𝐴 (𝑖 ) , 𝐵) +
ℓ∑︁

𝑖=1

E[EMD(𝐴 (𝑡 ) , 𝐵)]

=

ℓ∑︁
𝑖=1

EMD(𝐴 (𝑖 ) , 𝐵) +
ℓ∑︁

𝑖=1

ℓ∑︁
𝑗=1

EMD(𝐴 ( 𝑗 ) , 𝐵)
ℓ

= 2

ℓ∑︁
𝑖=1

EMD(𝐴 (𝑖 ) , 𝐵),

where the inequality follows from Fact 1. Hence, a random point set is always a good candidate solution for an

approximate fair 𝑛-median clustering, with probability at least 1/2. Repeating the sampling process log 1/𝛿 times

and picking the best one yields a 2-approximation with probability 1 − (1 − 1/2)log(1/𝛿 ) = 1 − 𝛿 .
We now run the 𝛽-approximate computation of fair 𝑛-median with respect to every sampled color 𝐴 (𝑡 ) . Let 𝜋𝑖,𝑡

be the matching computed by this algorithm, for every 𝑖 ∈ [ℓ]. We then have

ℓ∑︁
𝑖=1

𝑛∑︁
𝑝∈𝐴(𝑖 )

𝑑 (𝑝, 𝜋𝑖,𝑡 (𝑝)) ≤
ℓ∑︁

𝑖=1

𝛽 · EMD(𝐴 (𝑖 ) , 𝐴 (𝑡 ) ) ≤
ℓ∑︁

𝑖=1

2𝛽 · EMD(𝐴 (𝑖 ) , 𝐵).

□

We further complement these results by showing that a fairlet decomposition is APX-hard for ℓ ≥ 3, both

in the case of 𝑘-center and 𝑘-median. In particular, we also show that computing a better than 2-approximate

𝑛-center clustering decomposition is NP-hard for ℓ ≥ 3. Note that this stands in contrast to the computability of

an optimal fairlet decomposition for ℓ = 2 colors proposed by [22].

Proposition 4.2. Let 𝐴 be a set of ℓ · 𝑛 points in a finite metric, ℓ ≥ 3, let 𝑐 : [ℓ · 𝑛] → [ℓ] be a balanced coloring
of 𝐴. Then approximating fair 𝑛-center within a factor of 2 and approximation fair 𝑛-median within a factor of 96

95
is

𝑁𝑃-hard.

Proof. See Appendix A.3 for the proof. □

Fair 𝑘-Center. We show that for the special case of 𝑘-center in finite metrics, we can compute a set of 𝑘-centers

that induce a 3-approximate fair 𝑘-clustering. Moreover, this algorithm runs in nearly linear time. The algorithm is

essentially the farthest first traversal that is well known to produce an optimal 2-approximation for unconstrained

metric 𝑘-center [32].

Theorem 4.3. Let 𝐴 be a set of ℓ · 𝑛 points in a finite metric, let 𝑐 : [ℓ · 𝑛] → [ℓ] be a balanced coloring of 𝐴, and
let 𝑘 be an integer. There exists an 𝑂 (𝑛𝑑𝑘) time algorithm that computes a set of 𝑘 points 𝐶 ⊂ 𝐴 such that there
exists a 3-approximate fair 𝑘 clustering using 𝐶 as centers.

Proof. We argue why the final set of 𝑘 points 𝐶 computed by the farthest first heuristic fulfills the desired

criteria.

Let OPT be the cost of the optimal solution to the fair 𝑘-center problem. First, consider the case that every

point of 𝐶 is in a different optimal cluster. In this case, we may upper bound the cost of clustering to 𝐶 by 2OPT
via the triangle inequality. If 𝐶 does not intersect with all clusters of the optimal clustering, there must be some
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cluster that contains at least two points of 𝐶 . Let 𝑖 be the first iteration in which this occurs and denote by 𝐶𝑖−1
the points collected so far and by 𝑐𝑖 the added point. It then holds that 𝑑 (𝑐𝑖 ,𝐶𝑖−1) ≤ 2OPT.

By definition of 𝑐𝑖 , we know that for any cluster𝑂 𝑗 with center 𝑜 𝑗 that has an empty intersection with𝐶𝑖−1, we
have 𝑑 (𝑜 𝑗 ,𝐶𝑖−1) ≤ 𝑑 (𝑐𝑖 ,𝐶𝑖−1). Because the distance of any point 𝑝 ∈ 𝑂 𝑗 to 𝑜 𝑗 is at most OPT, we therefore have

𝑑 (𝑝,𝐶𝑖−1) ≤ 𝑑 (𝑝, 𝑜 𝑗 ) + 𝑑 (𝑜 𝑗 ,𝐶𝑖−1) ≤ OPT + 𝑑 (𝑐𝑖 ,𝐶𝑖−1) ≤ OPT + 2OPT = 3OPT. (1)

Finally, we argue why there exists a valid fair clustering with this bound. The union of two disjoint balanced

clusters is a balanced cluster. Let 𝑐 𝑗 ∈ 𝑂 𝑗 ∩𝐶𝑖−1, for any cluster 𝑂 𝑗 intersecting with 𝐶𝑖−1. Due to the triangle

inequality, the cost of any point in 𝑂 𝑗 is now upper bounded by at most 2𝑂𝑃𝑇 . We assign all the points of

𝑂 𝑗 to 𝑐 𝑗 . For any cluster 𝑂 𝑗 not intersecting with 𝐶𝑖−1, we assign the points of 𝑂 𝑗 to the center minimizing

min𝑐∈𝐶𝑖−1 𝑑 (𝑜 𝑗 , 𝑐). Due to Equation 1, the cost of any point in 𝑂 𝑗 is therefore upper bounded by 3𝑂𝑃𝑇 . □

However, we remark that although we can guarantee the existence of a good clustering using 𝐶 as centers, it

seems hard to recover it while ensuring fairness. This stands in contrast to unconstrained clustering, where one

can simply assign every point to its closest center. For the special case ℓ = 2, a fair clustering may be recovered

using flow-based techniques. For ℓ ≥ 3, deciding whether there exists a clustering with some cost, given a

candidate set of centers, it is a hard problem.

Proposition 4.4. Let 𝐴 be a set of ℓ · 𝑛 points in some finite metric with a fair coloring 𝑐 : [ℓ · 𝑛] → [ℓ], let 𝐶 be
(a possibly optimal) set of 𝑘 centers and let 𝑡 > 0 be a parameter. Then deciding whether there exists a fair 𝑘-center
clustering using 𝐶 as centers with the range [𝑡, 3𝑡] is NP-hard.

Proof. See Appendix A.4 for the proof. □

Lastly, we briefly show how to derive a (1 + 𝜀) approximation for fair 𝑘-clustering in Euclidean spaces if the

number of centers is constant. This shows that a separation between the hardness of unconstrained clustering

and fair clustering has to consider large values of 𝑘 .

Theorem 4.5. Let 𝐴 be a set of points in Euclidean space and let 𝑘 be a constant. Then there exists an algorithm
that computes in time 𝑂 (𝑛poly(𝑘/𝜀 ) ) a (1 + 𝜀)-approximation for fair 𝑘-median, fair 𝑘-means, and fair 𝑘-center.

Proof. The high-level idea is similar to early polynomial time approximation schemes for unconstrained

𝑘-clustering [1, 6], with a few modifications to account for fairness. Assume we are given an oracle that (1) returns

a set of 𝑘 centers such that these centers form a (1 + 𝜀)-approximation and (2) returns the size of the clusters

associated to these centers. If we have access to both, we can recover a clustering with the same approximation

ratio by solving the following minimum-transportation problem. For every color, we construct an assignment as

follows. Every input point 𝑝 corresponds to a node 𝑣𝑝 in a flow network. Every center 𝑐 corresponds to a node 𝑢𝑐 .

These nodes are connected by a unit capacity edge. Furthermore, we have unit capacity edges from the source

node to each 𝑣𝑝 , as well as edges from the nodes 𝑢𝑐 to the target node. These edges have capacity that are exactly

the target size of the clustering. We now find a feasible flow such that the connection cost

∑
𝑣

∑
𝑢 𝑓 (𝑣𝑝 , 𝑢𝑐 ) ·𝑑 (𝑝, 𝑐)

is minimized, where 𝑑 (𝑝, 𝑐) corresponds to the Euclidean distance between points 𝑝 and 𝑐 6
. Finding a feasible

flow can be done in polynomial time, moreover such a flow is integral, i.e. guaranteed to be a fair assignment.

To remove the oracle, we do the following. For (2), we observe that there are 𝑂 (𝑛𝑘 ) different ways of selecting
the sizes of the 𝑘 clusters, given a ground set of 𝑛 points. For (1), it is well known that for all of the considered

objectives, there exist weak coresets of for a single center of size poly(𝜀−1), see [6] and [1]. Weak coresets

essentially satisfy the following property: Given a point set 𝐴, a weak coreset wrt to some objective is a subset of

𝑆 of 𝐴 such that a (1 + 𝜀) approximation computed on 𝑆 is a (1 +𝑂 (𝜀)) computed on 𝐴.

6
For 𝑘-means, we would have to use squared Euclidean distances. For 𝑘-center, we would use a threshold network that only connects nodes

to centers that are within distance (1 + 𝜀 ) · OPT and find an arbitrary flow.
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Hence, we can find a suitable set of poly(𝑘/𝜀−1) points from which to compute 𝑘 candidate centers by

enumerating all poly(𝑘/𝜀−1)-tuples in time 𝑛poly(𝑘/𝜀
−1 )

. □

5 EXPERIMENTAL ANALYSIS

Whereas worst-case bounds give guarantees for algorithm behavior, they do not provide the entire picture when

studying the empirical behavior. Algorithm 2 is theoretically optimal (assuming that the underlying graph is

fair) and therefore theoretically superior to the spectral recovery schemes. As we now describe, the empirical

performance between these approaches paints the opposite picture.

Overview. To test the performance of our algorithms on real data we used publicly available datasets. For our

experiments we used an Intel Xeon 2.4GHz with 24GB of RAM running Linux Ubuntu 18.04 LTS. All methods

have been implemented in Python3 using the functionalities provided by NetworkX
7
and SciPy

8
libraries.

Datasets for Fair Densest Subgraph. The PolBooks dataset [41] is an undirected unweighted graph,
9
whose

nodes represent books on US politics included in the Amazon catalog, and an edge between two books exists

if both books are frequently co-purchased by the same buyers. Each book is further labeled depending on its

political stance, possible labels being liberal, neutral, and conservative. For our experiments, we considered only

the subgraph induced by liberal and conservative books, obtaining 92 nodes (43 of which were associated with a

conservative world view, 49 with a liberal world view) for 374 edges in total.

The Amazon products metadata dataset [49] contains descriptions for 15.5 million Amazon products.
10
For

a single product, we only considered the product id (asin field), the category the product belongs to (main_cat
field), and the set of frequently co-purchased products (also_buy field). It should be noted that in this dataset,

each node belongs to exactly one (main) Amazon category so that, together, these three fields allow recovery of a

large, undirected, labeled graph, with products as nodes, categories as labels, and edges representing frequent

co-purchasing product pairs. For this dataset, we leveraged the co-purchasing relation among products to naturally

extract undirected and unweighted labeled graphs. In more detail, for each pair (ℓ1, ℓ2) of Amazon main categories,

we extracted the undirected subgraph induced by the subset of nodes of category ℓ1 (ℓ2) that have at least one

neighbor from category ℓ2 (ℓ1). We did not consider graphs with fewer than 100 nodes. In this way, we retrieved

299 subgraphs of two categories (colors), with sizes ranging between 103 and 33,922 nodes. We extended and

applied this procedure to triples (ℓ1, ℓ2, ℓ3) and quadruples (ℓ1, ℓ2, ℓ3, ℓ4) of labels, obtaining 1,147 subgraphs of

three categories (colors), with sizes ranging between 352 and 30,135 nodes, and 1,408 subgraphs of four categories

(colors), with sizes ranging between 1,521 and 30,086 nodes.

The Facebook100 dataset [59] contains 100 anonymized undirected unweighted graphs constructed from the

Facebook social network. Each graph is associated with a single university in the United States, where nodes

represent Facebook accounts of people affiliated with the university, and edges represent friendship relations

between these Facebook accounts. Nodes have several attributes, among which we selected gender (male, female,
not_specified) and profession (dichotomized as student, not_student). We considered three versions of this

dataset: for the two-color version, we considered the graphs induced by nodes with values for the gender attribute
equal to male or female; for the three-color version, we considered also the value not_specified for this

attribute; and for the four-colors version, we combined the gender and profession attributes, considering only

graphs induced by nodes with the following values for these attributes: (male, student), (male, not_student),

7
https://networkx.github.io/documentation/stable

8
https://www.scipy.org

9
http://www.casos.cs.cmu.edu/computational_tools/ datasets/external/polbooks/polbooks.gml.

10
https://nijianmo.github.io/amazon/index.html
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(female, student), (female, not_student). We generated 100 graphs of two and four colors, with sizes ranging

between 701 and 38,786 nodes, and 100 graphs of three colors, with sizes ranging between 769 and 41,554 nodes.

Datasets for Fair𝑘-Clustering. The six datasets used for experiments are taken from previous literature [5, 10, 22].

As our interest is in the multiple-color scenario, we ran our experiments considering 8 colors. Each color represents

a protected class characterized by some particular value of the chosen protected attributes. For each dataset, we

selected protected attributes to obtain 8 classes in total, and we also subsampled the original records to get the

same number of records for each class. Each sample is a perfectly balanced set of points with respect to the eight

colors described in the following.

The Adults dataset11 contains “1994 US census” records about registered individuals including age, education,

marital status, occupation, ethnicity, sex, hours worked per week, native country, and others. Following prior

work [10] and [22], the numerical attributes chosen to represent points in the Euclidean space are AGE, FNLWGT,
EDUCATION-NUM, CAPITAL-GAIN, and HOURS-PER-WEEK. The protected attributes chosen to represent the classes

are SEX, ETHNICITY, and INCOME, where each of them takes only 2 possible values. For the experiments, we used

100 balanced subsamples of 1000 distinct records.

The Athletes dataset12 contains information on Olympic athletes and medal results from Athens 1896 to Rio

2016. The selected features are AGE, HEIGHT, and WEIGHT. The protected attributes are SEX (Female, Male), SPORT
(we selected two sports—gymnastics and basketball), and MEDAL (we considered two types of athletes for—athletes
who won at least one medal and athletes who did not). For the experiments, we used 100 balanced subsamples of

1000 distinct records.

The Bank dataset
13
stems from direct marketing campaigns, based on phone calls, of a Portuguese banking

institution. As in [10] and [22], the selected features to represent the points in the space are AGE, BALANCE, and
DURATION. The protected attributes are MARITAL STATUS (Married or notMarried), EDUCATION (Secondary or
Tertiary), and HOUSING (True or False). For the experiments, we used 100 balanced subsamples of 1000 distinct

records.

The Diabetes dataset,14 used for experiments in [22], represents 10 years (1999-2008) of clinical care at 130

US hospitals and integrated delivery networks. It includes over 50 features representing patient and hos-

pital outcomes; of these features, 4 were chosen to represent the points in the space: TIME_IN_HOSPITAL,
NUM_LAB_PROCEDURES, NUM_MEDICATIONS, and NUMBER_DIAGNOSES. The protected attributes are SEX (Female,
Male), ETHNICITY (Caucasian or AfricanAmerican), and age (this attribute has been dichotomized in order to

have two classes of ages: people who are respectively less and more than 50 years old). For the experiments, we

used 100 balanced subsamples of 1000 distinct records.

The Credit-Cards dataset,15 contains information on credit-card holders from a certain credit card in Taiwan.

Here, we selected the same 14 features chosen by [10] and the protected attributes that we consider are SEX
(Female, Male), EDUCATION (GraduateSchool or University), and MARRIAGE (married or notMaried). For the
experiments, we used 100 balanced subsamples of 1000 distinct records.

The CensusII data set contains records extracted from the USCensus1990raw16
data set (also used in [5]),

containing 2,458,285 records composed of 68 attributes. Among all of these attributes, we chose 9 to represent the

points in the Euclidean space: AGE, AVAIL, CITIZEN, CLASS, DEPART, HOUR89, HOURS, PWGT1, and TRAVTIME. For this
dataset, the selected protected attributes are SEX (Female, Male), RACE (dichotomized as White, notWhite), and

11
https://archive.ics.uci.edu/ml/datasets/Adult

12
https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

13
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

14
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008

15
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

16
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
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MARITAL (dichotomized as NowMarried, NowNotMarried). For the experiments, we used 100 balanced subsamples

of 1000 and another 100 balanced subsamples of 450,000 distinct records. We refer to the latter collection of

subsamples as the CensusII 450K points dataset.

Algorithms for Fair Densest Subgraph. We compare the performance of the following algorithms, which for

simplicity we describe in the two-colors scenario:

2-DFSG. The optimal 2-approximation algorithm (Algorithm 2) based on Goldberg’s optimal algorithm for the

densest subgraph problem [31], described in Section 3.

Spectral Algorithms. Following prior work [36, 47] and Theorem 2.2, we ran a variety of eigenvector-rounding

algorithms. These are all variants of a modified version of the General Sweep Algorithm (Algorithm 1) used in

the proof of Theorem 2.2 that sorts the entries of the main eigenvector of𝑀 four times (instead of a single one)

according to the following criteria: (1) nonincreasing; (2) nondecreasing; (3) nonincreasing absolute values; (4)

nondecreasing absolute values. With these premises, we consider the following spectral algorithms: The first two

are just the modified version of Algorithm 1 with different choices for𝑀 , whereas PS and FPS perform a slightly

modified sweep that always affords a fair solution.

Single Sweep (SS). This algorithm is simply Algorithm 1, when all previously mentioned sorting criteria are

used, with𝑀 = 𝐴 and Δ = 0.

Fair Single Sweep (FSS). It is the execution of SS, this time on matrix (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) instead of 𝐴.

Paired Sweep (PS). Paired Sweep is a modification of SS in which the fairness constraint is satisfied by con-

struction in each subgraph produced by the rounding algorithm. This is done by considering the subsets Red
and Blue of the nodes, sorting each of them separately according to the values of the corresponding entries in

the main eigenvector of 𝐴 and then, for each 𝑠 = 1, . . . ,min{|Red |, |Blue |} considering the candidate set of nodes

of cardinality 2𝑠 obtained by taking the first 𝑠 nodes from each ordered subset. For a pseudocode, we refer to

Algorithm 4.

Data: Graph 𝐺 (𝑉 , 𝐸), with 𝑉 = Red ∪ Blue, 𝑛 × 𝑛 adjacency matrix𝑀 , parameter Δ
Result: Subset 𝑆 ⊆ 𝑉

1 𝑆 = ∅; 𝐷̂ = 0;

2 Compute 𝑣1 = main eigenvector of𝑀 ;

3 Sort nodes 𝑖 ∈ Red and nodes 𝑗 ∈ Blue in non increasing order wrt 𝑣1

// Assume w.l.o.g. that Πred = {1, . . . , |Red |} and Πblue = {1, . . . , |Blue |} is resulting ordering

of nodes in 𝑉 ;

4 Fuse node 𝑖 from Πred with node 𝑖 from Πblue

5 for 𝑠 = 1 to min( |Red |, |Blue |) do
6 𝑆 = {1, . . . , 𝑠}
7 Compute 𝐷𝑆 = density of the subgraph induced by 𝑆

8 if 𝐷𝑆 > 𝐷̂ AND | |𝑆 ∩ Red | − |𝑆 ∩ Blue | | ≤ Δ|𝑆 | then
9 𝑆 = 𝑆 ; 𝐷̂ = 𝐷𝑆

10 end

11 end

12 return 𝑆

Algorithm 4: Paired Sweep Algorithm.

Fair Paired Sweep (FPS). It is the execution of PS, this time on matrix (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) instead of 𝐴.
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Algorithms for Fair 𝑘-Clustering. We solved the fair 𝑘-median problem by implementing Algorithm 3, algorithm

Q, and algorithm Excellent. Algorithm Q is similar to the algorithm by Böhm et al. [15], except that we select the

color with minimum perfect-matching cost. This variant is guaranteed to return an (𝛼 + 4) approximation and is

slightly faster than the original algorithm in [15]. Algorithm Excellent is a further variant of the same original

algorithm [15] that computes a good clustering for each color and subsequently performs a fair assignment. The

approximation factor is theoretically equal to that of Böhm et al. [15] but empirically, as we show later, the results

are often superior.

Given the strong relationship between Q and Excellent with the algorithm from [15], we also implemented

the last one for comparison.

We ran the algorithms for all values of 𝑘 between 2 and 20; for one center, any solution is naturally fair. We

observed that that there was already little to no difference between cost of a fair 20-clustering and the cost of a

fair 𝑛-clustering, so we did not consider larger values of 𝑘 .

We compared these algorithms with the implementation of Bera et al. [10]. For the largest data set (CensusII
450K points) consisting of 8 colors with a total of 450,000 points, their code did not terminate. On this dataset,

we showcased the modularity of our approach by combining it with the fast fairlet algorithm by Backurs et

al. [5], something not possible with the approach of Bera et al. Because our algorithm requires a solver for the

unconstrained 𝑘-median problem, for all 1000-points datasets, we used the single-swap local search strategy,

while yields a 5-approximation in the worst case [4].

For the CensusII 450K points dataset, local search is infeasible to run. Instead, we used a simple heuristic that

essentially mimics the 𝑘-means++ algorithm [3]: First we sample 𝑘 centers by iteratively selecting the next center

with probability proportional to its distance to the previously chosen centers, and then running the 𝑘-medoids

algorithm to further refine the solution.

5.1 Results
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Fig. 2. Pareto front of the subgraphs generated by each algorithm, with respect to density and balance, on PolBooks dataset.

Fair Densest Subgraph. Figure 2 shows the performance of our algorithms on PolBooks dataset through the

Pareto front of the subgraphs generated by each algorithm during its execution with respect to density and

balance.
17
PS and FPS by construction only return fair solutions whereas the other algorithms potentially have

tradeoffs. In particular, the 2-DFSG (Algorithm 2) starts at the unconstrained optimum (DSG) and proceeds to

add nodes that increase balance while potentially decreasing density.

17
Given two color classes Red and Blue, we define the balance of a subgraph containing 𝑥 Red and 𝑦 Blue nodes as min

(
𝑥
𝑦
,
𝑦

𝑥

)
.
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(a) Amazon 2 colors: 299 subgraphs.
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(b) Amazon 3 colors: 1147 subgraphs.
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(c) Amazon 4 colors: 1408 subgraphs.

Fig. 3. Performance of our algorithms on Amazon dataset for 2, 3, and 4 colors on 299, 1147 and 1408 samples (subgraphs)

respectively. Reported are aggregates over all generated subgraphs, with unfair solutions receiving a density of 0, see Table 1.
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(a) Facebook100 2 colors: 100 subgraphs.
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(b) Facebook100 3 colors: 100 subgraphs.
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(c) Facebook100 4 colors: 100 subgraphs.

Fig. 4. Performance of our algorithms on Facebook100 dataset for 2, 3, and 4 colors on 100 subgraphs. Reported are aggregates

over all generated subgraphs. The density values are normalized to [0, 1], considering the density of the input graph as the

minimum value and the density of the densest subgraph as the maximum value.

Figure 3 shows the distributions of the normalized density, over the entire set of Amazon instances (for two,

three, and four colors), of the fair subgraphs retrieved by different algorithms. Normalization, performed to

make solutions for different instances comparable, is done by scaling to the optimal density of the unconstrained

problem, making the maximum possible value on the 𝑦-axis equal to 1. Experimental results represented in

Figure 3(a, b, and c) show that spectral heuristics based on the paired-sweep technique (PS and FPS) consistently

outperform 2-DFSG algorithm, despite its theoretical optimality (proved in a two-color scenario and in presence

of a fair input graph), regardless of the number of considered colors. In more detail, the FPS heuristic is the

method that achieves the maximum median density. According to Figure 3(b and c), it is evident that for a number

of colors greater than two, the spectral methods that do not rely on the paired-sweep technique (SS and FS) are not
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the appropriate approaches for tackling the problem. Focusing on the two-color scenario, depicted in Figure 3(a),

we have that, with the exception of SS, which uses the original adjacency matrix and whose distribution is

skewed towards lower density values, the performance of spectral heuristics is comparable with that of FPS

achieving the highest median density. Always in the two-color scenario, we can observe that algorithms run on

(𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) (FSS and FPS) respectively outperform their counterparts (SS and PS) run on 𝐴.

We report in Table 1 the percentage of instances each algorithm is not able to solve, that is, for which it does

not return a fair solution and, consequently, we assign a density equal to 0.

#Colors #Samples SS FSS PS FPS 2-DFSG

2 299 0 0.33 0 0 3.01

3 1,147 73.93 95.55 0 0 5.31

4 1,408 92.54 99.64 0 0 1.91

Table 1. Percentages of unfair solutions for Amazon dataset.

The data reported in Table 1 confirm the observation that spectral methods that do not rely on the paired-sweep

technique essentially fail to recover a dense fair subgraph in a context that involves more than two colors: the

SS and FSS methods provided unfair solutions for almost all samples when the number of considered colors is

greater than 2. As noted previously, PS and FPS cannot return unfair solutions: this is the reason behind the

presence of zeros in their columns. It is worth to say that 2-DFSG (Algorithm 2) results in an unfair solution if

the original graph is unbalanced and the unconstrained densest subgraph cannot be made fair via line 4. This

justifies the presence of quantities greater than zero in the last column.

Amazon 2 colors 3 colors 4 colors

#Samples 299 1,147 1,408

2-DFSG 46,388 (101,391) 151,049 (152,898) 127,834 (75,276)
FPS 360 (659) 1,083 (2,073) 745 (524)
PS 424 (842) 1,130 (2,106) 775 (572)
FSS 465 (861) 1,652 (2,185) 1,369 (984)
SS 463 (859) 1,665 (2,216) 1,368 (986)

Table 2. Average and standard deviation of the running times

(in msec) of all proposed methods on Amazon dataset: 2, 3,

and 4 colors.

Facebook100 2 colors 3 colors 4 colors

#Samples 100 100 100

2-DFSG 373,092 (361,407 ) 400,628 (364,886) 363,625 (353,587 )
FPS 1,354 (1,338) 1,815 (1,342) 1,892 (1,354)
PS 1,348 (1,346) 1,219 (1,042) 1,141 (1,002)
FSS 1,159 (1,001) 1,773 (1,278) 1,829 (1,259)
SS 1,131 (980) 1,179 (988) 1,089 (921)

Table 3. Average and standard deviation of the running times

(in msec) of all proposed methods on Facebook100 dataset: 2,

3, and 4 colors.

To show the versatility of our methods, we replicated the experiment performed with the Amazon dataset

on the Facebook100 dataset while employing a slightly different notion of fairness. Here, we consider a set of

nodes to be fair if, for all pairs of colors, the ratio of the number of nodes belonging to these colors in the set

equals the corresponding ratio in the original graph. This type of constraint represents a linear dependence

between colors, and it is directly incorporated into our spectral embedding as discussed in Section 2. Additionally,

Algorithm 2 can be easily modified to handle this type of constraint by adapting line 4 accordingly. As any input

graph satisfies this definition of fairness, all our methods provide fair solutions in output. Because of this fact, in

this experiment the density values of solutions provided by our methods are normalized in [0, 1], considering the
density of the input graph as the minimum value and the density of the densest subgraph as the maximum value.

Figure 4 reports results for this experiment on the Facebook100 dataset. Results are similar to those for Amazon

dataset.

Tables 2 and 3 report that spectral methods are faster than 2-DFSG. Indeed, the average running time of the

2-DFSG method is of two orders of magnitude greater than the one required by the spectral methods. This is
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Amazon dataset 2 colors 3 colors 4 colors

#Nodes, #Edges 108,230/1,851,733 108,185/1,132,578 108,220/1,360,241

2-DFSG 4,126,002 /0.50 3,618,960 / 0.34 3,991,358 / 0.27
FPS 36,199 / 0.65 11,467 / 0.45 31,988 / 0.61
PS 91,582 / 0.56 39,327 / 0.45 32,643 / 0.50
FSS 33,074 / 0.51 17,358 / NoFairSol 45,465 / NoFairSol
SS 26,429 / 0.21 24,161 / NoFairSol 32,324 / NoFairSol

Table 4. Running time (in msec) and solution quality (expressed as normalized density of the retrieved fair subgraph to the

optimal density of the unconstrained problem) of all proposed methods on three Amazon subgraphs with 2, 3, and 4 colors

each. Each subgraph has roughly 100K nodes and 1.1M edges.

coherent with the fact that the 2-DFSGmethod requires solving the Max-Flow problem, which is computationally

expensive.

Table 4 reports execution time and solution quality of all proposed methods on three not small-sized Amazon

subgraphs with 2, 3, and 4 colors each. In particular, for what concerns the quality of the provided solutions, the

results provided in Table 4 are completely in line with with the information extracted from Figure 3 and Table 1.

The relation among execution times are also in line with what provided in Table 2. Moreover, we can see that on

the considered instances (2, 3, and 4 colors, 100K nodes and 1.1M edges) the 2-DFSG method requires slightly

more than one hour of computation, against 91sec required by the paired spectral heuristics (PS and FPS). These

results suggest that the spectral approaches are suitable for dealing with not small-sized graphs.

The experiments also provide information on the performance of both spectral and combinatorial approaches

designed for the unconstrained problem on the densest fair subgraph problem. In particular, the performance of

the spectral algorithm for the unconstrained problem based on [36, 47] cannot be better than those of SS on the

constrained version of the problem. This is because both methods generate the same set of candidate solutions,

and, while SS provides in output the densest fair solution among the candidate solutions (if any), the method

for the unconstrained problem always provides in the output the densest one, that is not necessarily a feasible

one. Furthermore, the performance of 2-DFSG provides information on the fact that the global optimum to the

unconstrained problem provided by the Goldberg’s algorithm [31] never provided a feasible solution for the

densest fair subgraph problem. This is shown in Figure 3, Figure 4, and Table 4, where 2-DFSG never provide

solutions with maximum normalized density.

These results highlight the significant shortcomings of algorithms from the unconstrained problem in addressing

the densest fair subgraph problem.

Fair𝑘-Clustering. In this experimental analysis, we compare the performance of algorithms for the fair𝑘-median

problem in terms of both solution cost and execution time. We additionally report the cost of an unconstrained

solution and the cost for a fair 𝑛 clustering solution, which provides a lower bound for the cost of any fairlet-based

algorithm.

Regarding solution cost (Figure 5(a), 5(c), 5(e), 5(g), 5(i), and 5(k); Table 5, 6, 7, 8, 9, and 10), across all tested

datasets of 1000-points, all algorithms perform slightly better than the one of Bera et al. [10] on instances in

which the fairlets (i.e., the fair 𝑛 clusterings) are very cheap compared to the cost of a 𝑘-clustering. This cost

difference shrinks on datasets where fairlets are more expensive. Excellent consistently produces the cheapest

feasible solutions among all algorithms, on average, and the average solution cost of Q is comparable to that of

the algorithm by Böhm et al. [15], which never exceeds the cost of Algorithm 3.

In terms of running time (Figure 5(b), 5(d), 5(f), 5(h), 5(k), and 5(l)), all algorithms run substantially faster than

the one by Bera et al. [10] by roughly factors of 100 or more. Algorithms 3 and Q report an average running time

of 176msec and 258msec, respectively. This is also significantly faster than the algorithm by Böhm et al.![15] and

Excellent (1111msec and 1044msec on average respectively), while having a roughly comparable cost.
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Fig. 5. Average cost and execution time of the fair-k-median algorithms on all datasets of 1000 points: 8 colors and 100

subsamples for each dataset.

Furthermore, we empirically observe that the algorithm of Bera et al. [10] almost always computes a balanced

solution, as opposed to the bicriteria result stated in their paper. Specifically, fewer than 0.8% of the instances for

Diabetes, fewer than 0.6% of the instances for Credit-Cards dataset, fewer than 0.3% of the instances for Adults
dataset, fewer than the 0.2% of instances for Athletes dataset, and fewer than the 0.05% of instances for Bank
yielding an unfair solution. By design, our algorithms and the algorithm by Böhm et al. [15] always guarantee

fairness; on the other hand, solutions returned by the unconstrained 𝑘-median method are highly unbalanced.

For the larger 450,000-point variant of the CensusII data set (CensusII 450K points), we use the fast fairlet

decomposition by Backurs et al. [5] to ensure scalability. Unfortunately, the implementation by Bera et al. [10]
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Fig. 6. Average cost and execution time of the fair-k-median methods combined with fast fairlets decomposition [5] on the

CensusII 450K points dataset: 8 colors, 100 subsamples of 450,000 distinct points each. The algorithm of Bera et al. [10] is

missing as it was not able to terminate in this dataset.

could not benefit from this preprocessing step, and the implementation itself is not able to process data sets at this

scale. Relations among running times of algorithms are coherent to those from the smaller data sets (Figure 6(b)).

In general, the most notable difference is that computing an approximate fair assignment after optimization as

done by Excellent negatively affects the approximation (Figure 6(a) and Table 11).

6 FUTURE WORK

Future work might consider extending the spectral approach to more involved fairness constraints with provable

guarantees. Empirically, we already observed that, although the spectral algorithms retain a good behavior both

theoretically and empirically, the performance of the approximation algorithm deteriorates. We identify two key

problems that may be more manageable. First, one might consider the case where the graph only has two colors,

but the colors may overlap, that is, a node can be both red and blue. Clearly, the approximation results still hold

in this case. Can one improve the analysis of the spectral recovery scheme, depending on the degree of overlap?

Second, one might consider the case of multiple disjoint colors, each of equal size. Such considerations have been

studied in clustering literature [9, 10, 16, 26]. Is it possible to derive similar results for densest subgraph?

For clustering, a number of problems are left in this work. The most challenging one is to show whether the

constant factor loss in the approximation is necessary or not. In other words, does there exist a result showing

that fair clustering is strictly harder than unconstrained clustering, for any objective? Since this question is rather

general and might be hard to answer, we propose a few simpler problems. First, we have shown that in general

metrics, fair 𝑛-center is APX-hard if the number of colors is greater than 3. Does this result also hold for the

Euclidean plane? Moreover, what can we say about computing a fair 𝑛-median? We also showed that a PTAS for

fair clustering exists, provided that 𝑘 is constant. 𝑘-median and 𝑘-means in constant dimension admit a PTAS. A

natural question is whether such a PTAS also exists for the fair variants of the problem. This problem is open,

even in the case of two protected attributes.

Of course, solving the two problems that we study in this paper does not give a recommender system that

exposes the user to a wide range of topics. The main challenge is to use the ideas of this paper and apply them

in graph-based or clustering-based approaches. Plainly using these algorithms instead of classical approaches
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inside recommender systems will almost certainly not work, so a lot of experimentation is required to arrive at a

working system.
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A APPENDIX

A.1 Proof of Theorem 2.2

Proof. For this proof, we denote by
ˆ𝜆1 ≥, . . . , ≥ ˆ𝜆𝑛 the eigenvalues of (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) and by 𝑣𝑖 the 𝑖th

associated eigenvector. For a vertex 𝑖 of 𝐺𝑆 we denote by
ˆ𝑑𝑖 its degree in 𝐺𝑆 . We denote by 𝜒 the normalized

indicator vector of 𝑆 and we let𝑚 = |𝑆 |.
As a first step, we summarize some straightforward, yet useful properties of the spectrum of (𝐼− 𝑓 𝑓 𝑇 )𝐴(𝐼− 𝑓 𝑓 𝑇 ).

Claim 1. Whenever ˆ𝜆𝑖 ≠ 0 we have:

(𝐼 − 𝑓 𝑓 𝑇 )𝑣𝑖 = 𝑣𝑖 and ˆ𝜆𝑖 = 𝑣𝑇𝑖 𝐴𝑣𝑖 (2)

Proof. If
ˆ𝜆𝑖 ≠ 0, we have: (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 )𝑣𝑖 = ˆ𝜆𝑖𝑣𝑖 . Because (𝐼 − 𝑓 𝑓 𝑇 ) is a projection matrix, if we

pre-multiply both members of the above equation by (𝐼 − 𝑓 𝑓 𝑇 ) we have (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 )𝑣𝑖 = ˆ𝜆𝑖 (𝐼 − 𝑓 𝑓 𝑇 )𝑣𝑖 .
Subtracting the first equation from the second and recalling that

ˆ𝜆𝑖 ≠ 0, we immediately obtain the first part of

the claim. The second part follows immediately from the first:

ˆ𝜆𝑖 = 𝑣𝑇𝑖 (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 )𝑣𝑖 = 𝑣𝑇𝑖 𝐴𝑣𝑖 .

□

It should be noted that, as a consequence of Claim 1, we always have:

ˆ𝜆1 = 𝑣𝑇
1
(𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 )𝑣1 = 𝑣𝑇

1
𝐴𝑣1 ≤ 𝑣𝑇

1
𝐴𝑣1 = 𝜆1 .

Note that this last property does not apply to the other eigenvalues in general. The first important, technical step

to prove Theorem 2.2 is showing that the hypothesis 𝜆1 ≥ 4𝜆 implies that
ˆ𝜆2 cannot be too large. The reason is

that, under the assumptions of Theorem 2.2, 𝑣1 forms a (relatively) small angle with 𝑣1. Because 𝑣2 ⊥ 𝑣1, this in

turn implies that a (relatively) large component of 𝑣2 belongs to the span of {𝑣2, . . . , 𝑣𝑛}.

Lemma A.1. Assume the spectrum of 𝐴 satisfies the condition 𝜆1 ≥ 4𝜆2. Then ˆ𝜆2 ≤ 3

4
𝜆1.

Proof. We begin by noting that 𝑓 𝑇 𝜒 = 0 by definition, which implies that (𝐼 − 𝑓 𝑓 𝑇 )𝜒 = 𝜒 . We therefore have:

𝜒𝑇 (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 )𝜒 =

∑
𝑖∈𝑆 ˆ𝑑𝑖√︁
|𝑆 |
≥ (1 − 𝜖)𝑑, (3)

In the remainder of this proof, we express 𝑣1 and 𝑣2 as 𝑣1 = 𝛽𝑣1 +𝑞 and 𝑣2 = 𝛾𝑣1 + 𝑧, where 𝑞 and 𝑧 respectively

denote 𝑣1’s and 𝑣2’s components orthogonal to 𝑣1, the main eigenvector of 𝐴. Note that, because 𝑣1, 𝑣1, and 𝑣2

have unit norms, we have 𝛽2 + ∥𝑞∥2 = 1 and 𝛾2 + ∥𝑧∥2 = 1. Moreover, by definition of
ˆ𝜆1,

18
from (3) and from the

hypotheses of Theorem 2.2 we have:

ˆ𝜆1 ≥ (1 − 𝜖)𝑑 ≥ (1 − 𝜖) (1 − 𝜃 )𝑑max > (1 − (𝜖 + 𝜃 ))𝜆1, (4)

where the last inequality follows because the main eigenvalue of an adjacency matrix is upper-bounded by the

maximum degree of the underlying graph and because 𝜖𝜃 > 0. We further have:

ˆ𝜆1 = (𝛽𝑣1 + 𝑞)𝑇𝐴(𝛽𝑣1 + 𝑞)𝑇 = 𝛽2𝜆1 + 𝑞𝑇𝐴𝑞

= 𝛽2𝜆1 + ∥𝑞∥2
𝑞𝑇𝐴𝑞

∥𝑞∥2 ≤ 𝛽2𝜆1 + (1 − 𝛽2)𝜆2 ≤ 𝛽2𝜆1 +
𝜆1

4

,

18
I.e., 𝑣1 maximizes the Rayleigh quotient of (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) .
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where the last inequality follows from the hypothesis that 𝜆1 ≥ 4𝜆2. Together, the last inequality and (4) imply

𝛽2 >
3

4

− (𝜖 + 𝜃 ) ≥ 1

2

,

from our assumption that 𝜖 + 𝜃 ≤ 1/4. We next show that 𝛾2 < 1/2. To this purpose, note that since the 𝑣𝑖 ’s

are orthonormal, we have 𝑣𝑇
1
𝑣2 = 0, which implies |𝛽𝛾 | = |𝑞𝑇𝑧 |. As a consequence, if 𝛽2 > 1/2 and 𝛾2 ≥ 1/2,

we would have |𝛽𝛾 | > 1/2, whereas 𝛽2 + ∥𝑞∥2 = 1 and 𝛾2 + ∥𝑧∥2 = 1 would imply ∥𝑞∥2 < 1/2 and ∥𝑧∥2 < 1/2,
whence |𝑞𝑇𝑧 | ≤ ∥𝑞∥∥𝑧∥ < 1/2 from the Cauchy–Schwarz inequality, a contradiction.

Next:

ˆ𝜆2 = (𝛾𝑣1 + 𝑧)𝑇𝐴(𝛾𝑣1 + 𝑧)𝑇 = 𝛾2𝜆1 + 𝑧𝑇𝐴𝑧

≤ 𝛾2𝜆1 + ∥𝑧∥2𝜆2 ≤ 𝛾2𝜆1 +
𝜆1

4

≤ 3

4

𝜆1,

where the first equality follows from Claim 1, the second follows because 𝑧 is orthogonal to 𝑣1, the third inequality

again follows because 𝑧 ∈ span(𝑣2, . . . , 𝑣𝑛), the fourth from the lemma’s hypothesis and the fifth since we showed

above that 𝛾2 ≤ 1/2. This concludes the proof of Lemma A.1. □

Lemma A.2. Assume the hypotheses of Theorem 2.2 hold. Then:

∥𝜒 − 𝑣1∥2 ≤ 8(𝜖 + 𝜃 ).

Proof. We decompose 𝜒 along its components respectively parallel and orthogonal to 𝑣1, namely, 𝜒 = 𝛼𝑣1 +𝑤 ,

and we note that ∥𝑤 ∥2 = 1 − 𝛼2
, as both 𝑣1 and 𝜒 are unit norm vectors. Set 𝐵 = (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) for the

sake of space. Moreover, since 𝑣1 is defined up to its sign, we choose it so that 𝛼 ≥ 0. We have:

𝜒𝑇𝐵𝜒 = (𝛼𝑣1 +𝑤)𝑇𝐵(𝛼𝑣1 +𝑤) = 𝛼2 ˆ𝜆1 +𝑤𝑇𝐵𝑤

≤ 𝛼2 ˆ𝜆1 + ˆ𝜆2∥𝑤 ∥2 = 𝛼2 ˆ𝜆1 + (1 − 𝛼2) ˆ𝜆2. (5)

Putting together (3) and (5) yields 𝛼2 ≥ (1−𝜖 )𝑑− ˆ𝜆2
ˆ𝜆1− ˆ𝜆2

. Now:

∥𝜒 − 𝑣1∥2 = (𝜒 − 𝑣1)𝑇 (𝜒 − 𝑣1) = 2 − 2𝛼 ≤ 2 − 2𝛼2 ≤ 2 − 2 (1 − 𝜖)𝑑 −
ˆ𝜆2

ˆ𝜆1 − ˆ𝜆2
≤ 2 − 2 (1 − 𝜖) (1 − 𝜃 )𝑑max − ˆ𝜆2

𝜆1 − ˆ𝜆2

≤ 2 − 2 (1 − 𝜖) (1 − 𝜃 )𝜆1 −
ˆ𝜆2

𝜆1 − ˆ𝜆2
< 2 − 2𝜆1 −

ˆ𝜆2 − (𝜖 + 𝜃 )𝜆1
𝜆1 − ˆ𝜆2

= 2

(𝜖 + 𝜃 )𝜆1
𝜆1 − ˆ𝜆2

≤ 8(𝜖 + 𝜃 ).

Here, the third inequality follows from 0 ≤ 𝛼 ≤ 1, the fifth inequality follows from our hypotheses on 𝑑 and

because
ˆ𝜆1 ≤ 𝜆1, the sixth inequality again follows because the main eigenvalue of an adjacency matrix is upper-

bounded by the maximum degree of the underlying graph, and the last inequality follows from Lemma A.1. □

Corollary A.3. Under the hypotheses of Lemma A.2, for all but at most 32𝑚(𝜖 + 𝜃 ) vertices in 𝑉 we have: (1)
𝑣1 (𝑖) ≥ 1

2

√
|𝑆 |

if 𝑖 ∈ 𝑆 , (2) 𝑣1 (𝑖) < 1

2

√
|𝑆 |

otherwise.

The algorithm. Our algorithm is based on a sweep of 𝑣1 [36, 47]. In particular, we run Algorithm GSA (see

Algorithm 1) with𝑀 = (𝐼 − 𝑓 𝑓 𝑇 )𝐴(𝐼 − 𝑓 𝑓 𝑇 ) and Δ = 16(𝜖 + 𝜃 ).
Corollary A.3 ensures that (1) Algorithm 1 always returns a solution, (2) the solution returned by the algorithm

will not be worse than the one obtained by picking 𝑖 if 𝑣1 (𝑖) ≥ 1

2

√︃√
|𝑆 |

and rejecting it otherwise. This concludes

the proof of Theorem 2.2. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Fair Projections as a Means Towards Balanced Recommendations • 111:27

A.2 Proof of Theorem 3.4

Proof. We consider the 𝑆𝑆𝐸 (𝜂, 𝛿) problem. Let𝐺 (𝑉 , 𝐸,𝑤) be a𝑑-regular graph and let 𝜂 ∈ (0, 1) and 𝛿 = 𝛿 (𝜂) ∈
(0, 1/2] be constants that wewill specify later. For any set 𝑆 ⊂ 𝑉 of size 𝑠 := 𝛿 · |𝑉 |, we have𝑤 (𝐸𝑆 ) := 𝑑 ·𝑠−Φ(𝑆) ·𝑑 ·𝑠 .
We construct a colored graph 𝐺 ′ (𝑉 ′, 𝐸′,𝑤 ′) by considering all nodes of𝐺 to be colored red, and by adding |𝑉 |

blue nodes. Of these nodes, we select an arbitrary but fixed subset of 𝛿 · |𝑉 | blue nodes that we denote by 𝐵. Each
edge in 𝐸𝐵 is weighted uniformly by 𝑡 := 2·𝑑

𝑠−1 . The remaining edges are weighted with 0.

Recall that SSEH states that distinguishing between the two cases is 𝑁𝑃-hard.

Completeness. If there exists some 𝑆 ⊂ 𝑉 of size 𝑠 with Φ(𝑆) ≤ 𝜂, then

𝑤 (𝐸𝑆 ) ≥ (1 − 𝜂) · 𝑑 · 𝑠 .

Then the density of the fair subgraph induced by 𝑆 ∪ 𝐵 of size 2𝑠 satisfies

𝐷𝑆∪𝐵 =
𝑤 (𝐸𝑆 ) +𝑤 (𝐵)

2|𝑆 | ≥
(1 − 𝜂) · 𝑑 · 𝑠 + 𝑡 ·

(
𝑠
2

)
2𝑠

=
(1 − 𝜂) · 𝑑 + 𝑡 · 𝑠−1

2

2

≥ (1 − 𝜂) · 𝑑. (6)

Soundness. If for all 𝑆 ⊂ 𝑉 of size 𝑠 , Φ(𝑆) ≥ 1 − 𝜂, then

𝑤 (𝐸𝑆 ) ≤ 𝜂 · 𝑑 · 𝑠 . (7)

Denote the size of the fair densest subgraph 𝐶 by 𝑘 . Further, let 𝐶𝑟𝑒𝑑 = 𝐶 ∩ 𝑅𝑒𝑑 . We will distinguish between

four basic cases: (1) 𝑘 < 2𝜇 · 𝑠 , (2) 2𝜇 · 𝑠 ≤ 𝑘 < 2 · 𝑠 , (3) 2 · 𝑠 ≤ 𝑘 < 2

𝜇
𝑠 , and (4) 2

𝜇
𝑠 ≤ 𝑘 , where 𝜇 > 0 is suitably small

constant specified later. We note that cases (1) and (4), and (2) and (3) will turn out to be somewhat symmetric,

even if slightly different proofs are required in every case.

First, let 𝑘 < 2𝜇 · 𝑠 and again let 𝐵𝑘 be an arbitrary subset of 𝐵 of size 𝑘 . Then

𝐷𝐶𝑟𝑒𝑑∪𝐵𝑘
≤ 𝑑 · 𝑘 +𝑤 (𝐵𝑘 )

2 · 𝑘 ≤ (1 + 2𝜇)𝑑
2

, (8)

where the first inequality holds due to regularity.

Now, let 2𝜇 · 𝑠 ≤ 𝑘 < 2 · 𝑠 . We have

𝐷𝐶𝑟𝑒𝑑∪𝐵𝑘
≤ 𝜂 · 𝑑 · 𝑠 +𝑤 (𝐵𝑘 )

2 · 𝑘 ≤
(
1 + 2𝜂

𝜇

)
𝑑

2

. (9)

Now, let 2 · 𝑠 ≤ 𝑘 ≤ 2

𝜇
· 𝑠 . We will first show that

𝑤 (𝐶) ≤ 2

𝜇
· 𝜂 · 𝑑 · 𝑘. (10)

For the sake of contradiction, assume that this is not the case. The argument revolves around double counting

𝑤 (𝐶). There exist
(
𝑘
𝑠

)
subsets of size 𝑠 of 𝐶 . Observe that for any such subset 𝑆 ′ has weight𝑤 (𝑆 ′) ≤ 𝜂 · 𝑑 · 𝑠 and

hence ∑︁
𝑆 ′⊂𝐶 ∧ |𝑆 ′ |=𝑠

𝑤 (𝑆 ′) ≤ 𝜂 · 𝑑 · 𝑠 ·
(
𝑘

𝑠

)
.

At the same time, every (possibly 0 valued) edge appears in

(
𝑘−2
𝑠−2

)
of these subsets. Hence∑︁

𝑆 ′⊂𝐶 ∧ |𝑆 ′ |=𝑠
𝑤 (𝑆 ′) = 𝑤 (𝐶) ·

(
𝑘 − 2
𝑠 − 2

)
>

2

𝜇
· 𝜂 · 𝑑 · 𝑘 ·

(
𝑘 − 2
𝑠 − 2

)
.
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Combining both equations, we have

2

𝜇
· 𝜂 · 𝑑 · 𝑘 ·

(
𝑘 − 2
𝑠 − 2

)
< 𝜂 · 𝑑 · 𝑠 ·

(
𝑘

𝑠

)
⇔ 2

𝜇
<

𝑘 · (𝑘 − 1)
𝑠 · (𝑠 − 1)

𝑠

𝑘
≤ 2

𝜇
,

which is a contradiction.

Consider now the density of any fair cut containing 𝐶 ∪ 𝐵𝑘 , where 𝐵𝑘 contains 𝐵 and 𝑘 − 𝑠 further arbitrary
blue nodes. We have

𝐷𝐶𝑟𝑒𝑑∪𝐵𝑘
≤

2𝜂

𝜇
· 𝑑 · 𝑘 + 𝑡 ·

(
𝑠
2

)
2 · 𝑘 ≤

(
1 + 2𝜂

𝜇

)
· 𝑑
2

. (11)

Finally, consider the case 𝑘 > 2

𝜇
𝑠 . Then the density of any fair cut containing 𝐶 ∪ 𝐵𝑘 , where 𝐵𝑘 contains 𝐵 and

𝑘 − 𝑠 further arbitrary blue nodes, is

𝐷𝐶𝑟𝑒𝑑∪𝐵𝑘
≤

𝑑 · 𝑘 + 𝑡 ·
(
𝑠
2

)
2 · 𝑘 ≤ (1 + 2𝜇)𝑑

2

. (12)

We note that bounds from Equations 8 and 11 and Equations 9 and 12 are identical. For 𝜀 < 1

4
, we set 𝜇 = 𝜀

2
,

𝜂 ≤ 8

3
·𝜀2. Then the ratio between the terms 6 and 8 and the terms 6 and 9 is at least 2−𝜀. Therefore, approximating

the fair densest subgraph problem beyond a factor of 2 solves the 𝑆𝑆𝐸 (𝜂, 𝛿) problem. □

A.3 Proof of Proposition 4.2

Proof. We give a reduction from 3-dimensional matching to fair 𝑘-center with three colors; a generalization

from ℓ-dimensional matching and ℓ colors is straightforward. Given a hypergraph𝐺 (𝑋 ⊎ 𝑌 ⊎ 𝑍, 𝐸), with disjoint

nodes sets 𝑋,𝑌, 𝑍 of size 𝑛 each and 𝑘 hyperedges 𝐸 ⊂ 𝑋 × 𝑌 × 𝑍 , a 3-dimensional matching consists in deciding

whether there a exists perfect hypermatching, that is, a collection of 𝑛 pairwise disjoint hyperedges 𝐻 ⊆ 𝐸.

We construct an instance of fair 𝑘-center as follows. Each hyperedge 𝑒 ∈ 𝐸 will be mapped to some point 𝑝𝑒
and also every node 𝑣 ∈ 𝑋,𝑌, 𝑍 will be mapped to some point 𝑝𝑣 . The points corresponding to hyperedges will

be our candidate set of centers 𝐶 . We now define the distances between our points as follows. For nodes 𝑣 and

hyperedges 𝑒 , we set

𝑑 (𝑝𝑣, 𝑝𝑒 ) =
{
1 if 𝑣 ∈ 𝑒
2 if 𝑣 ∉ 𝑒

.

The remaining distances are set to 2. This trivially results in a metric.

Now, assume that a perfect hypermatching exists. Then the fair 𝑛-center clustering cost is precisely 1. If,

however, no perfect hypermatching exists, the cost is 2. Distinguishing between these two cases is NP-hard,

hence approximating fair 𝑛-center within a factor of 2 − 𝜖 is also 𝑁𝑃-hard.

Similarly, if a perfect hypermatching exists, the cost of a fair 𝑛-median clustering is precisely 3𝑛. If the size of

the largest hypermatching is 3𝑛 − 𝑡 , then, in the corresponding fair 𝑛-median clustering problem, at least 𝑡 points

have to pay 2, that is, the total cost is at least 3𝑛 + 𝑡 . Because distinguishing between a perfect hypermatching

and a hypermatching of size 95/94 [23] is NP hard, 𝑡 must be greater than
1

95
𝑛. This in turn implies that it is NP

hard to compute an 𝑛-fairlet with an approximation factor better than 96/95. . □

A.4 Proof of Proposition 4.4

Proof. We give a reduction from 3-dimensional matching to fair 𝑘-center with three colors (a generalization

from ℓ-dimensional matching and ℓ colors is straightforward). Given a hypergraph𝐺 (𝑋 ⊎𝑌 ⊎𝑍, 𝐸), with disjoint

nodes sets 𝑋,𝑌, 𝑍 of size 𝑛 each and 𝑘 hyperedges 𝐸 ⊂ 𝑋 × 𝑌 × 𝑍 , 3-dimensional matching consists of deciding

whether there exists perfect hypermatching, i.e. a collection of 𝑛 pairwise disjoint hyperedges 𝐻 ⊆ 𝐸.
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We construct an instance of fair 𝑘-center as follows. Each hyperedge 𝑒 ∈ 𝐸 will be mapped to some point

𝑝𝑒 and also every node 𝑣 ∈ 𝑋,𝑌, 𝑍 will be mapped to some point 𝑝𝑣 . The points corresponding to hyperedges

will be our candidate set of centers 𝐶 . We now define the distances between our points as follows. For nodes

𝑣 and hyperedges 𝑒 , we set 𝑑 (𝑝𝑣, 𝑝𝑒 ) =
{
1 if 𝑣 ∈ 𝑒
3 if 𝑣 ∉ 𝑒

. The remaining distances are set to 2. To see that this

induces a metric, we only need to observe that the triangle inequality holds for 𝑑 (𝑝𝑣, 𝑝𝑒 ) when 𝑣 ∉ 𝑒 . For any

𝑢 ∈ 𝑉 \ {𝑣}, we have 𝑑 (𝑝𝑣, 𝑝𝑢) + 𝑑 (𝑝𝑢, 𝑝𝑒 ) = 2 + 𝑑 (𝑝𝑢, 𝑝𝑒 ) ≥ 3 = 𝑑 (𝑝𝑣, 𝑝𝑒 ). For any 𝑒′ ∈ 𝐸 \ {𝑒}, we have

𝑑 (𝑝𝑣, 𝑝𝑒′ ) + 𝑑 (𝑝𝑒′ , 𝑝𝑒 ) = 𝑑 (𝑝𝑣, 𝑝𝑒′ ) + 2 ≥ 3 = 𝑑 (𝑝𝑣, 𝑝𝑒 ).

Soundness. Let 𝐻 be a perfect hypermatching. We show that this induces a fair 𝑘-center clustering of cost 1.

For every hyperedge 𝑒 = (𝑥,𝑦, 𝑧) ∈ 𝐻 , we set the cluster 𝐶𝑒 := {𝑝𝑥 , 𝑝𝑦, 𝑝𝑧} with center 𝑝𝑒 , the remaining clusters

are empty. Clearly, the resulting clustering is fair and the distance of every point to its assigned center is 1.

Completeness. Suppose no perfect hypermatching exists. We show that then there exists no fair clustering of

cost 1 (or even less than 3 − 𝜀) using the 𝑝𝑒 as centers. For the sake of contradiction, suppose there exists such a

clustering with clusters 𝐶1, . . .𝐶𝑘 . Any for any cluster with center 𝑝𝑒 and more than three nodes must contain a

point 𝑝𝑣 such that 𝑣 ∉ 𝑒 , and hence have cost 3. Hence all clusters must have size at most 3. The union of these

clusters, however, is a perfect hypermatching. □

A.5 Additional Experimental Results for Fair 𝑘-Clustering

The following tables contain the average and standard deviation of the cost of the fair-𝑘-median methods across

all clustering datasets. Each dataset consists of 8 colors and 100 subsamples.

𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 4,789.9 229.5 4,789.9 229.5 4,789.9 229.5

k-median++ 10,354.9 1,691.9 7,218.8 485.1 5,710.4 396.4
Excellent 10,689.6 1,541.6 7,927.3 431.1 6,749.5 343.6

Böhm et al. [15] 10,855.6 1,488.8 8,188.5 435.3 7,016.6 354.3
Q 10,975.4 1,499.6 8,288.9 449.5 7,089.5 367.7

Algorithm 3 11,082.9 1,468.3 8,423.7 490.0 7,219.0 394.0
Bera et al. [10] 11,148.2 1,454.4 8,653.1 444.2 7,466.4 392.0

Table 5. Average and standard deviation of the cost of the fair-k-medianmethods onDiabetes dataset: 8 colors, 100 subsamples

of 1000 distinct points each.
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𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 15,981,152.5 1,968,761.8 15,981,152.5 1,968,761.8 15,981,152.5 1,968,761.8

k-median++ 35,093,729.4 10,482,181.7 16,518,716.6 2,704,863.2 9,390,692.2 1,632,344.3
Excellent 37,334,601.9 9,646,426.1 22,164,330.5 2,448,591.7 18,136,890.1 2,030,020.3

Böhm et al. [15] 38,601,051.2 9,319,399.3 23,480,401.1 2,606,059.3 18,863,910.7 2,110,809.0
Q 39,150,199.6 9,445,281.9 23,786,205.0 2,731,965.7 19,069,140.1 2,222,137.3

Algorithm 3 40,372,180.0 9,277,749.3 25,507,540.8 3,548,581.9 20,864,471.0 3,425,165.9
Bera et al. [10] 38,101,545.1 9,528,290.7 22,713,743.0 2,587,922.8 18,488,295.4 2,018,105.9

Table 6. Average and standard deviation of the cost of the fair-k-median methods on Adults dataset: 8 colors, 100 subsamples

of 1000 distinct points each.

𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 72,339,739.1 3,121,117.5 72,339,739.1 3,121,117.5 72,339,739.1 3,121,117.5

k-median++ 107,302,571.2 21,435,714.7 71,975,930.7 5,299,320.0 57,207,897.4 4,066,524.0
Excellent 119,312,415.8 16,746,700.6 93,053,938.9 4,189,509.1 84,871,284.9 3,599,454.6

Böhm et al. [15] 122,659,466.9 16,198,184.0 96,614,545.3 4,341,943.3 87,722,007.7 3,818,697.4
Q 124,251,499.5 16,883,999.8 97,391,340.5 4,602,652.1 88,173,991.3 3,940,251.9

Algorithm 3 126,706,176.1 16,066,799.1 101,750,820.7 7,338,227.3 92,743,080.9 7,061,486.0
Bera et al. [10] 123,705,922.5 17,036,610.1 97,835,628.9 4,640,655.8 89,211,162.0 3,889,060.7

Table 7. Average and standard deviation of the cost of the fair-k-median methods on Credit-Cards dataset: 8 colors, 100
subsamples of 1000 distinct points each.

𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 434,892.4 63,810.1 434,892.4 63,810.1 434,892.4 63,810.1

k-median++ 699,773.5 178,243.2 375,005.8 53,842.9 240,197.8 33,496.6
Excellent 782,666.7 148,502.7 566,505.9 66,761.8 501,728.7 63,811.2

Böhm et al. [15] 799,852.1 147,306.8 581,807.0 68,002.9 512,378.1 64,506.9
Q 813,091.6 151,845.3 585,861.4 68,185.5 514,900.4 64,694.5

Algorithm 3 840,799.3 158,718.3 622,778.7 89,740.2 551,295.3 86,282.3
Bera et al. [10] 806,863.1 146,858.0 595,020.8 70,544.2 522,864.6 65,312.6

Table 8. Average and standard deviation of the cost of the fair-k-median methods on Bank dataset: 8 colors, 100 subsamples

of 1000 distinct points each.
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𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 143,647.8 11,160.9 143,647.8 11,160.9 143,647.8 11,160.9

k-median++ 95,258.4 25,778.1 56,917.8 5,417.5 41,405.2 3,832.5
Excellent 184,695.5 20,692.4 160,658.8 10,799.8 153,238.9 10,856.3

Böhm et al. [15] 187,589.5 20,660.7 163,074.4 10,881.9 155,139.9 10,832.0
Q 189,288.9 21,659.0 163,719.4 11,099.0 155,544.5 10,952.7

Algorithm 3 205,788.6 33,060.7 173,844.1 14,035.4 165,075.1 13,902.7
Bera et al. [10] 186,506.1 21,502.2 162,025.1 10,575.3 154,067.1 10,496.4

Table 9. Average and standard deviation of the cost of the fair-k-medianmethods onCensusII dataset: 8 colors, 100 subsamples

of 1000 distinct points each.

𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15]: k=n 20,278.4 280.9 20,278.4 280.9 20,278.4 280.9

k-median++ 9,970.3 2,171.1 6,327.1 439.9 5,079.1 327.3
Excellent 21,107.9 300.0 20,769.6 276.7 20,585.8 273.5

Böhm et al. [15] 21,299.8 297.6 20,948.8 276.4 20,728.2 275.6
Q 21,340.9 302.0 20,965.2 278.8 20,736.5 276.4

Algorithm 3 21,629.2 391.5 21,333.2 418.7 21,092.3 411.6
Bera et al. [10] 21,959.2 796.3 21,098.5 295.8 20,793.4 288.7

Table 10. Average and standard deviation of the cost of the fair-k-median methods on Athletes dataset: 8 colors, 100

subsamples of 1000 distinct points each.

𝑘 ∈ [2, 5] 𝑘 ∈ [6, 10] 𝑘 ∈ [11, 20]
Böhm et al. [15] + FF: k=n 108,369,855.9 3,054,639.9 108,369,855.9 3,054,639.9 108,369,855.9 3,054,639.9

k-median++ 57,863,762.6 19,309,933.8 32,275,620.7 3,110,506.0 24,170,463.4 1,923,303.3
Excellent + FF 171,581,102.9 8,929,810.2 174,418,606.9 6,230,287.9 171,759,787.4 5,951,334.0

Böhm et al. [15] + FF 126,373,453.8 3,582,880.6 124,704,090.1 3,391,359.4 124,237,402.6 3,429,534.5
Q + FF 126,885,878.7 4,115,222.4 124,681,188.1 3,454,367.0 124,220,881.3 3,424,855.2

Algorithm 3 + FF 135,025,164.1 7,359,895.1 134,129,796.4 7,632,188.8 133,834,734.3 7,742,148.8
Bera et al. [10] — — —

Table 11. Average and standard deviation of the cost of the fair-k-median methods combined with fast fairlets decomposi-

tion [5] on the CensusII 450K points dataset: 8 colors, 100 subsamples of 450,000 distinct points each. The algorithm of Bera

et al. [10] was not able to terminate in this dataset.
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