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ABSTRACT

Reducing hidden bias in the data and ensuring fairness in algo-

rithmic data analysis has recently received significant attention. In

this paper, we address the problem of identifying a densest sub-

graph, while ensuring that none of one binary protected attribute

is disparately impacted.

Unfortunately, the underlying algorithmic problem is NP-hard,

even in its approximation version: approximating the densest fair

subgraph with a polynomial time algorithm is at least as hard as

the densest subgraph problem of at most k vertices, for which no

constant approximation algorithms are known.

Despite such negative premises, we are able to provide approx-

imation results in two important cases. In particular, we are able

to prove that a suitable spectral embedding allows recovery of

an almost optimal, fair, dense subgraph hidden in the input data,

whenever one is present, a result that is further supported by experi-

mental evidence. We also show a polynomial time, 2-approximation

algorithm, whenever the underlying graph is itself fair. We finally

prove that, under the small set expansion hypothesis, this result is

tight for fair graphs.

The above theoretical findings drive the design of heuristics,

which we experimentally evaluate on a scenario based on real data,

in which our aim is to strike a good balance between diversity and

highly correlated items from Amazon co-purchasing graphs.

CCS CONCEPTS

• Theory of computation→ Graph algorithms analysis; • In-

formation systems → Web searching and information discovery.
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1 INTRODUCTION

The identification of dense subgraphs is a fundamental primitive in

community detection and graph mining [19, 25, 35, 40, 46]. Given

an underlying graph G = (V , E), the density of a node set S ⊆ V is

defined as
2· |E∩S×S |

|S | . In most mining scenarios, communities are

assumed to have a high intra-community density versus a lower

inter-community density. In this sense, density is arguably the

most natural measure of quality for evaluating and comparing

communities in graphs (see [12] for an extensive survey.)

In this paper, we consider the densest subgraph problem with

fairness constraints. Specifically, we are given a binary labeling of

the nodes of the graph ℓ : V → {−1, 1}. The labeling corresponds

to an attribute that ideally should be uncorrelated with commu-

nity membership. Our goal is to compute a set of nodes S ⊆ V of

maximum density while ensuring that S contains an equal number

of representatives of either label. The problem has a number of

motivating applications, some of which are discussed below.

Mitigation of Polarization. Social networks are very prone

to polarization among users [9]: reinforcement of user preferences

can lead to feedback loops. For example, recommender systems

incentivize disagreement minimization, leading to echo chambers

among users with similar preferences. This problem has been con-

sidered for example byMusco et al. [34], who studied the problem of

identifying a graph of connections between users (of two different

opinions), such that polarization and disagreement are simulta-

neously minimized. The notions behind the fair densest subgraph

problem are closely related: Its goal is to maximize agreement while

avoiding polarization.

Team Formation. In crowdsourcing, team formation consists

in identifying a set of workers, whose collective skill set includes

all skills that are required for processing some given jobs. Lappas

et al. [30] proposed subgraph density as a way of modeling the

effectiveness of multiple individuals when working together. The

potential benefits of team diversity are well documented in orga-

nizational psychology [24] studies and also highlighted by recent

work (e.g., see [32] and follow-up work). Diversity in turn can be

naturally modeled via fairness constraints.

Diversity in Association RuleMining. Sozio and Gionis [43]

study dense subgraphs for association rule mining: Given a set of

tags used to label objects, the densest subgraph problem allows

to determine additional related tags that can be used for a better

description of the objects. It is common that the tags that are added
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are semantically identical to those already used. We argue that an

appropriate labeling of the tags followed by solving the fair densest

subgraph problem allows recovery of a set of tags that are not only

closely related, but also unique.

Algorithmic Fairness. As pioneered by Chierichetti et al. [14],

there has recently been considerable work on clustering data sets

using the disparity-of-impact measure. Conceptually, the aim is to

perform data analysis such that the resulting clustering or classifier

does not discriminate based on some protected attribute. In our

case, finding a densest subgraph such that a protected attribute is

not disparately impacted is equivalent to the definition of the fair

densest subgraph problem.

1.1 Contributions

As it turns out (see Section 3), the fair densest subgraph problem is

intractable in general, whereas its unconstrained counterpart can

be solved optimally through network flow [22]. Nevertheless, we

have some quantifiable results regarding approximation algorithms

in special cases. We can show that, if the underlying graph itself is

fair, there exists a 2-approximation algorithm.We further show that,

assuming the widely used small set expansion hypothesis [38], this

is the best possible. We also consider the case where the graph itself

is not fair and we instead aim for a proportional representation. For

this, in our opinion more flexible variant of the problem, we show

that the results for fair graphs can be extended.

Although this worst-case behavior is discouraging, the possibility

of effective algorithms on practical instances is not ruled out. To

this end, we identify properties that, if satisfied by some subgraph

of the network under consideration, will afford recovery of an

approximately fair, dense subgraph. More precisely, our goal in this

respect is to design a heuristic that

(a) has a quantifiable guarantee if the underlying graph is well-

behaved and

(b) is practically viable.

Our main result is a spectral algorithm that satisfies both of these

requirements. In particular, the practical viability of our algorithm

underscores that our notion of a well-behaved graph is a realistic

one. As a candidate application, we consider the scenario of provid-

ing diverse recommendations of high quality, using data from the

Amazon product co-purchasing graph. Our experiments not only

confirm the quality of the output solutions, but also the scalability

of our approach, which may not be the case for a conventional

combinatorial approximation algorithm.

Overview of our approach. Our approach builds on the finding

[27, 33] that the densest subgraph problem admits a spectral for-

mulation. Specifically, an approximate densest subgraph can be

computed by selecting nodes for inclusion according to the mag-

nitudes of the corresponding entries in the main eigenvector of

G’s adjacency matrix. Unfortunately, this approach does not afford

balanced solutions in general. In a nutshell, we sidestep this issue by

first projecting the adjacency matrix onto a suitable “fair” subspace,

an operation that corresponds to the enforcement of “soft” fairness

constraints.

To see why the conventional spectral approach of [27] may not

work
1
and why our approach mitigates the issue, Figure 1 presents

plots obtained from Amazon books on US politics [29]. The books

are labeled as either conservative or liberal, which corresponds to

the labels −1 or 1. As described above, a candidate application may

be to find a selection of books that are of interest to multiple readers,

while mitigating potential polarization along political lines.

On the left, we observe the books ordered according to their

corresponding entries in the main eigenvector of the adjacency

matrix of the co-purchase graph. Books are also colored according

to political orientation. We can observe that, whereas liberal books

are well distributed, conservative ones are clustered. On the right

we observe the results after application of our spectral embedding,

which affords recovery of a subgraph of the co-purchase graph

that is both dense and approximately balanced. Note that now

conservative books are also well distributed along the principal

component.

1.2 Related Work

Densest Subgraph. Identifying dense subgraphs is a key primitive

in a number of applications; see [18, 20, 21, 46]. The problem can be

solved optimally in polynomial time [22]. On the contrary, the fair

densest subgraph problem is highly related to the densest subgraph

problem limited to at most k nodes, which cannot be approximated

up to a factor of n1/(log logn)
c
for some c > 0 assuming the exponen-

tial time hypothesis [31] and for which state-of-the-art methods

yield an O(n1/4+ε ) approximation [6].

Algorithmic Fairness. Fairness in algorithms received consider-

able attention in the recent past, see [23, 45, 47, 49] and references

therein. The closely related notion of disparate impact was first

proposed by Feldman et al. [17]. It has since been used by Zafar et

al. [48] and Noriega-Campero et al. [37] for classification and Celis

et al. [10, 11] for voting and ranking problems. Another problem

that received considerable attention is fair clustering. This was

first proposed as a problem by Chierichetti et al. [14] in the case

of a binary protected attribute. It was then investigated for var-

ious objectives and more color classes in theirs and subsequent

work [1, 4, 5, 26, 39, 42].

Most closely related to our work are some recent works [28, 41,

44]. From those, the works of Samadi et al.[41] and Tantipongpipat

et al. [44]. consider the problem of executing a principal component

analysis in a fair manner. Specifically, given a matrix A where

the rows are colored (e.g., every row corresponds to a man or

a woman), they ask for an algorithm that finds a rank-k matrix

A′
whose residual error ∥A − A′∥ is small for both types of rows

simultaneously. Whereas our method is similarly based on using

the principal component in a fair manner, the difference is that we

may be forced to treat the classes differently, if we aim to uncover a

dense subgraph as illustrated in the example mentioned previously

and illustrated in Figure 1.

The paper by Kleindessner et al. [28] considers spectral clustering

problems such as normalized cut. Like our work, they project the

Laplacian matrix of a graph G onto a suitable “fair” subspace, and

then run k-means on the subspace spanned by the smallest resulting

1
In fact, this applies to any approach based on unconstrained maximization of the

induced subgraph’s density.
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Figure 1: Projection of books (see Section 4) onto the first principal component. (Left) Original data. (Right) Data after spectral

embedding. Books are ordered on the x axis according to their corresponding entries in the main eigenvector, whereas on the

y axis we have random noise for visualization.

eigenvectors. Under a fair version of the stochastic block model,

they show that this algorithm recovers planted fair partitions. Our

work continues this idea by applying the technique to the densest

subgraph problem.

1.3 Preliminaries and Notation

We consider an undirected graph G(V , E,w), where V is the set of

n nodes, E ⊂ V × V is the set of edges, and w : E → R≥0 is a

weight function. We denote the (weighted) adjacency matrix of G
by A. For a subset E ′ ⊂ E of the edges, we letw(E ′) =

∑
e ∈E′ w(e).

For unweighted graphs we have w(e) = 1 for each e ∈ E. For a
node u ∈ V , its (weighted) degree (often called volume) is du =∑
e∩{v },∅w(e). We also let dmax = maxu du . For a S ⊆ V , we

denote byGS the induced subgraph. The density DS (G) of S ⊆ V is

simply the average degree of GS , namely,

DS (G) =
2 ·w(E ∩ S × S)

|S |
.

We omit G from DS (G), whenever it is clear from context.

A coloring of the vertices is simply a map c : V → [ℓ] ofV , where

[ℓ] := {1, 2, . . . , ℓ}. A set S ⊂ V is called fair if |S ∩ {v ∈ V | c(v) =
1}| = |S ∩ {v ∈ V | c(v) = 2}| = · · · = |S ∩ {v ∈ V | c(v) = ℓ}|. A
graph is called fair ifV is fair. In the remainder, we provide positive

results for the important case ℓ = 2. In this case, for simplicity of

exposition, we denote the colors red and blue and we use Red :=

{v ∈ V | c(v) = red} and Blue := {v ∈ V | c(v) = blue} to refer to

nodes of the respective color.

Definition 1.1 (Fair Densest Subgraph Problem). Given a (weighted)
graphG(V , E,w) and a coloring c of its vertices, identify a fair subset
S ⊆ V that maximizes DS .

The fair densest subgraph problem is obviously a constrained

version of the densest subgraph problem. It turns out to be con-

siderably harder than its (polynomially solvable) unconstrained

counterpart, as we show in Section 3.

Linear algebra notation. We denote by λ1 ≥ λ2 ≥ . . . ≥ λn
the eigenvalues of A and by vi its ith eigenvector. We also set

λ = max{λ2, |λn |}. Note that we always have λ1 ≤ dmax. For a

subset S ⊂ V , we denote by χ its normalized indicator vector, where

S is understood from context. Namely, χi = 1/
√
|S | if i ∈ S , χi = 0

otherwise. Finally, for a vector x ∈ Rn , we let ∥x ∥ =
√∑n

i=1 x
2

i , the

2-norm of x .

2 SPECTRAL RELAXATIONS FOR THE FAIR

DENSEST SUBGRAPH

As observed in Kannan and Vinay [27], the densest subgraph prob-

lem admits a spectral formulation. In particular, if we let x be an

indicator vector over the vertex set, then the indicator vector of the

vertex subset maximizing density is the maximizer of the following

expression:

max

x ∈{0,1}n
xTAx

xT x
.

Now, assume that each node is colored with one of two colors,

red or blue. In the optimal solution x∗ one of the colors might be

overrepresented. To formulate the problem of computing a fair

solution, we can add the constraint∑
node i is red

xi =
∑

node i is blue

xi

⇔
∑

node i is red

xi −
∑

node i is blue

xi = 0.

If we define the (unit 2-norm) vector

fi =


1√
n

if node i is red

− 1√
n

if node i is blue,

the above constraint can be described as f T x = 0. We call such

an x fair. Conversely, very unbiased solutions will have high, in

absolute value, inner products with f .

Fair Densest Subgraph: Spectral Relaxation. Based on the consid-

erations above, our approach transforms the input data (in this case

the adjacency matrix A) by first projecting them onto the kernel of

f . Namely, we first consider the following formulation of the fair

densest subgraph problem:

max

x ∈{0,1}n
2xT (I − f f T )A(I − f f T )x

xT x
.
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It should be noted that, for any fair subset S with indicator x , we

have
2xTAx
xT x =

2xT (I−f f T )A(I−f f T )x
xT x . Conversely, for any indicator

vector x < span(I − f f T ), the objective value can only decrease

after we project to the kernel of f.

We next note that, by the discussion in the beginning of the

section, by relaxing x to be an arbitrary vector, the above expression

is maximized by the main eigenvector of (I − f f T )A(I − f f T ). The
above relaxation corresponds to replacing hard fairness constraints

with soft ones.

It is straightforward to encode more complicated fairness con-

straints using this technique. Suppose, for example, that we are

given ℓ colors, and wish to output a subgraph such that every color

is featured equally often. This induces a set of constraints∑
node i is red

xi =
∑

node i is blue

xi∑
node i is red

xi =
∑

node i is green

xi

...∑
node i is red

xi =
∑

node i is yellow

xi

The vectors satisfying all of these constraints lie in the nullspace

of some ℓ − 1 dimensional subspace S . Assume that F is a matrix

such that the columns of F form an orthogonal basis of S . Then the

above technique leads to the problem

max

x ∈{0,1}n
2xT (I − FFT )A(I − FFT )x

xT x
.

More generally, this technique can be extended to any system of

linear constraints. One only has to merely find a suitable basis and

project A onto said basis.

We note that even though the technique can handle these more

complicated constraints, leveraging this in an algorithm with prov-

able guarantees seems very difficult. Nevertheless, our experiments

dealing with multiple colors showcase that we can still tackle more

complicated fairness constraints with success in practice, see Sec-

tion 4.1.

2.1 Recovery of Dense Fair Subgraphs in

Almost Regular Graphs

To prove our main result we need the following definition:

Definition 2.1. A graphH = (VH , EH ) is (d, ϵ)-regular if ad exists,

such that (1 − ϵ)d ≤ di ≤ (1 + ϵ)d , for every i ∈ VH .

Theorem 2.2. Assume we have a graph G = (V , E,w) with a 2-
coloring of the nodes. Assume the spectrum of A satisfies λ1 ≥ 4λ.
Assume further that G contains a fair subset S such that: (1) GS is
(d, ϵ)-regular and (2) d ≥ (1 − θ )dmax. In this case, it is possible to
recover all but 16(ϵ + θ )|S | of the vertices in S in polynomial time.

Intuitively, the result above states that, if the underlying net-

work G is an expander containing an almost-regular, dense and

fair subgraph, we can approximately retrieve it in polynomial time.

Succinctly, this follows because, under these assumptions, the indi-

cator vector of S forms a small angle with the main eigenvector of

(I − f f T )A(I − f f T ).

Proof of Theorem 2.2. For this proof, we denote by
ˆλ1 ≥, . . . , ≥

ˆλn the eigenvalues of (I − f f T )A(I − f f T ) and by v̂i the ith asso-

ciated eigenvector. For a vertex i of GS we denote by
ˆdi its degree

in GS . We denote by χ the indicator vector of S and we letm = |S |.
As a first step, we summarize straightforward, yet useful proper-

ties of the spectrum of (I − f f T )A(I − f f T ).

Claim 1. Whenever ˆλi , 0 we have:

(I − f f T )v̂i = v̂i and ˆλi = v̂
T
i Av̂i (1)

Proof. If
ˆλi , 0, we have:

(I − f f T )A(I − f f T )v̂i = ˆλiv̂i .

Because (I − f f T ) is a projection matrix, if we pre-multiply both

members of the above equation by (I − f f T ) we have:

(I − f f T )A(I − f f T )v̂i = ˆλi (I − f f T )v̂i .

Subtracting the first equation from the second and recalling that

ˆλi , 0, we immediately obtain the first part of the claim. The second

part follows immediately from the first:

ˆλi = v̂
T
i (I − f f T )A(I − f f T )v̂i = v̂

T
i Av̂i .

□

It should be noted that, as a consequence of Claim 1, we always

have:

ˆλ1 = v̂
T
1
(I − f f T )A(I − f f T )v̂1 = v̂

T
1
Av̂1 ≤ vT

1
Av1 = λ1.

Note that this last property does not apply to the other eigenvalues

in general. The first important, technical step to prove Theorem 2.2

is showing that the hypothesis λ1 ≥ 4λ implies that
ˆλ2 cannot be

too large.

Lemma 2.3. Assume the spectrum of A satisfies the condition λ1 ≥

4λ2. Then ˆλ2 ≤ 3

4
λ1.

Proof. We express v̂1 and v̂2 as v̂1 = βv1 + q and v̂2 = γv1 +
z, where q and z respectively denote v̂1’s and v̂2’s components

orthogonal to v1, the main eigenvector of A. Note that, because v1,
v̂1 and v̂2 have unit norms, we have β2+ ∥q∥2 = 1 andγ 2+ ∥z∥2 = 1.

Next:

ˆλ2 = (γv1 + z)
TA(γv1 + z)

T = γ 2λ1 + z
TAz, (2)

where the first equality follows fromClaim 1, and the second follows

because z ∈ span(v2, . . . ,vn ) by definition and the vi ’s form an

orthonormal basis.

We next show that γ 2 ≤ 1/2. Assume on the contrary that

γ 2 > 1/2. We show that this implies β2 ≤ 1/2 and that the latter in

turns brings to a contradiction. Because the v̂i ’s are orthonormal,

we have v̂T
1
v̂2 = 0, which implies |βγ | = |qT z |. As a consequence,

if β2 > 1/2, we would have |βγ | ≥ 1/2, whereas β2 + ∥q∥2 = 1 and

γ 2 + ∥z∥2 = 1 would imply ∥q∥2 < 1/2 and ∥z∥2 < 1/2, whence

|qT z | ≤ ∥q∥∥z∥ < 1/2 from the Cauchy–Schwarz inequality, a

contradiction. On the other hand, if β2 ≤ 1/2:

λ1 = ˆλ1 = (βv1 + q)
TA(βv1 + q)

T = β2λ1 + q
TAq

= β2λ1 + ∥q∥2
qTAq

∥q∥2
≤

1

2

λ1 + (1 − β2)λ2 ≤
1

2

λ1 + λ2.

The last expression is strictly less than λ1, whenever λ2 < λ1/2.
Since we are assuming λ1 ≥ 4λ2, this is clearly a contradiction.
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Assume therefore that γ 2 ≤ 1/2. In this case, Equation (2) im-

plies:

ˆλ2 = γ
2λ1 + z

TAz ≤ γ 2λ1 + ∥z∥2 max

w⊥v1

wTAw

∥w ∥2

= γ 2λ1 + (1 − γ 2)λ2 ≤
λ1
2

+ λ2 ≤
3

4

λ1.

□

The second step is showing that Lemma 2.3 implies that the

indicator vector of the fair densest subgraph is close to v̂1:

Lemma 2.4. Assume the hypotheses of Theorem 2.2 hold. Then:

∥χ − v̂1∥
2 ≤ 4(ϵ + θ ).

Proof. We begin by noting that χT f = 0 by definition, which

implies (I − f f T )χ = χ . We therefore have:

χT (I − f f T )A(I − f f T )χ =

∑
i ∈S

ˆdi
m

≥ (1 − ϵ)d, (3)

Next, we decompose χ along its components respectively parallel

and orthogonal to v̂1, namely, χ = αv̂1 + z, and we note that

∥z∥2 = 1 − α2, as both v̂1 and χ are unit norm vectors. Set B =
(I − f f T )A(I − f f T ) for the sake of space. We have:

χT Bχ = (αv̂1 + z)
T B(αv̂1 + z) = α2 ˆλ1 + z

T Bz

≤ α2 ˆλ1 + ˆλ2∥z∥
2 ≤ α2 ˆλ1 + (1 − α2) ˆλ2. (4)

Putting together (3) and (4) yields α2 ≥
(1−ϵ )d− ˆλ2

ˆλ1− ˆλ2
. Now:

∥χ −v ∥2 ≤ 1 −
(1 − ϵ)d − ˆλ2

ˆλ1 − ˆλ2

≤ 1 −
(1 − ϵ)(1 − θ )dmax − ˆλ2

λ1 − ˆλ2

≤ 1 −
(1 − ϵ)(1 − θ )λ1 − ˆλ2

λ1 − ˆλ2

< 1 −
λ1 − ˆλ2 − (ϵ + θ )λ1

λ1 − ˆλ2

=
(ϵ + θ )λ1

λ1 − ˆλ2
≤ 4(ϵ + θ ).

Here, the second inequality follows from our hypotheses on d and

because
ˆλ1 ≤ ˆλ, the third inequality follows because the main eigen-

value of an adjacency matrix is upper-bounded by the maximum

degree of the underlying graph, and the last inequality follows from

Lemma 2.3. □

Corollary 2.5. Under the hypotheses of Lemma 2.4, for all but at
most 16m(ϵ + θ ) vertices in V we have: (1) v̂1(i) ≥ 1

2

√
m

if i ∈ S , (2)

v̂1(i) <
1

2

√
m

otherwise.

The algorithm. Our algorithm is based on a sweep of v̂1 [27, 33].
In particular, we run Algorithm GSA (see Algorithm 1) withM =
(I − f f T )A(I − f f T ) and ∆ = 16(ϵ + θ ).

Corollary 2.5 ensures that i) the above algorithm always returns a

solution, ii) the solution returned by the algorithmwill not be worse

than the one obtained by picking i if v̂1(i) ≥
1

2

√
m

and rejecting it

otherwise. This concludes the proof of Theorem 2.2. □

1 Algorithm: General Sweep Algorithm (GSA)

Data: Non-negative n × n matrixM , parameter ∆
Result: Subset S ⊆ V

2 Ŝ = ∅; D̂ = 0;

3 Compute v1 = main eigenvector ofM ;

4 Sort nodes i ∈ V in nonincreasing order of v1(i);

// Assume w.l.o.g. that {1, . . . ,n} is the

resulting ordering of the nodes in V ;

5 for s = 1 to n do

6 S = {1, . . . , s}

7 Compute DS = density of the subgraph induced by S

8 if DS > D̂ AND | |S ∩ Red | − |S ∩ Blue | | ≤ ∆|S | then

9 Ŝ = S ; D̂ = DS
10 end

11 end

12 return Ŝ

Algorithm 1: General Sweep Algorithm (nonincreasing).

The running time of the algorithm is dominated by computing

the first eigenvector and the projecting of the rows of the Laplacian

onto said eigenvector. This can be done, up to (1 + ε) precision, in
linear time.

3 HARD CONSTRAINTS AND HARDNESS OF

APPROXIMATION

In general, enforcing fairness can make an easy problem intractable

and this is the case for the densest subgraph problem. In this context,

spectral relaxations can be regarded as a way to mitigate this issue,

by enforcing soft fairness constraints to virtually any problem that

is amenable to an algebraic formulation.

Nevertheless, in some cases it might be important to assess the

price of fairness, by comparing the achievable quality of fair solu-

tions to that of solutions for the original, unconstrained problem. In

this section, we complement our algorithmic treatment of fairness

with hardness results and approximation algorithms for specific

cases. Some proofs are omitted for the sake of space, but they are

available in the full version of the paper.
2
Some of our hardness

results are based on the small set expansion hypothesis, which we

now describe.

Consider a d-regular weighted graph G and, for every S ⊂ V ,
denote by Φ(S) the expansion (or conductance) of S [38]. Given

two constants δ ,η ∈ (0, 1), the small set expansion problem [38]

SSE(δ ,η) asks to distinguish between the following two cases:

Completeness There exists a set of nodes S ⊂ V of size δ · |V |

such that Φ(S) ≤ η.
Soundness For every set of nodes S ⊂ V of size δ · |V |, Φ(S) ≥

1 − η.

Our hardness proofs are based on the small set expansion hypothe-

sis defined as follows.

Conjecture 3.1 (SSEH). For every η > 0 there exists a δ :=

δ (η) > 0 such that SSE(η, δ ) is NP-hard.

2
https://arxiv.org/abs/1905.13651
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Recall from Section 1.2 that, whereas the densest subgraph prob-

lem is polynomially solvable, the best approximation for the densest

at-most-k subgraph problem is inO(n1/4) [7] and cannot be approx-

imated up to a factor of n1/(log logn)
c
for some c > 0 assuming the

exponential time hypothesis [31] . The next theorem implies that

these inapproximability results for the densest at-most-k subgraph

problem hold also for the fair densest subgraph problem, show-

ing that fairness constraints can drastically affect hardness of this

problem.

Theorem 3.2. The densest fair subgraph problem is at least as
hard as the densest at most k subgraph problem. Moreover, any α-
approximation to the densest at-most-k subgraph is a 2α approxima-
tion to densest fair subgraph.

Proof. Consider an arbitrary graph G(V , E). We consider V to

be colored red. Add k blue nodes with no edges. Then the density

of the fair densest subgraph is, up to a multiplicative factor of

exactly
1

2
, equal to the density of the densest-at-most-2k subgraph.

Conversely, running an algorithm for densest k-subgraph with

k = min(|Blue |, |Red |), and balancing out the resulting subgraph in

post processing decreases the density by at most a factor 2. (This

latter part is explained in more detail in the following theorem). □

When the input graph G is itself fair, we can provide stronger

bounds.

1 Input: Graph G(V , E,w)

2 Compute the densest subgraph S

3 W.l.o.g |S ∩ Blue | ≥ |S ∩ Red |

4 While |S ∩ Blue | > |S ∩ Red |, add an arbitrary node

v ∈ Red \ S to S
5 Return S

Algorithm 2: Approximate Fair Densest Subgraph

Theorem 3.3. Given a fair graph G(V , E,w), Algorithm 2 com-
putes a fair set S ⊂ V , such that 2DS ≥ OPT , where OPT is the
density of the fair densest subgraph.

Proof. We refer to the set S computed after line 2, and 4 as S1 an
S2, respectively. Because S1 is the unconstrained densest subgraph,

DS1 > OPT . For S2, we observe that |S2 | = S1 + |S1 ∩ Blue| − |S1 ∩

Red| ≤ 2 · |S1 |, hence DS2 =
w (ES

2
)

|S2 |
≥

w (ES
1
)

2 |S1 |
≥ OPT

2
. □

The running times of both algorithms depend on the running

time of the subroutines used to compute dense subgraphs. Uncon-

strained dense subgraphs can be found by solving a linear program

or by computing a max flow [13, 22]. A faster (1+ ε) approximation

that runs in time O(npolylog(n)) also exits [2, 15].

For the densestk-subgraph problem, the currently best algorithm

that computes anO(n1/4+ε ) approximation runs in time nO (1/ε )
[6].

We conclude this section by showing that approximating the

fair densest subgraph problem beyond a factor of 2 is at least as

hard as solving SSE(η, δ ). Therefore, barring a major algorithmic

breakthrough, Algorithm 2 is optimal. The proof is provided in the

full version of the paper and it is based on the following idea: In

regular graphs, for a given set of nodes S , the expansion Φ(S) is

related to the density of S . We can use this, so that, given a graph

G, we can carefully construct a colored graph G ′
such that finding

the optimal fair densest subgraph in G ′
gives an estimate of the

largest-expansion node set in G.

Theorem 3.4. If SSEH holds, computing a (2 − ε) approximation
of the fair densest subgraph problem in fair graphs is NP-hard for
any ε > 0.

4 EXPERIMENTAL ANALYSIS

Worst case bounds are often uninformative when compared with

empirical behaviour. Algorithm 2 is (assuming that the underly-

ing graph is fair) theoretically optimal and therefore theoretically

superior to the spectral recovery schemes. As we now describe,

the empirical performance between these approaches paints the

opposite picture.

Overview. To test the performances of our algorithms on real

data we used two publicly available datasets: PolBooks [29] and

Amazon products metadata [36]. Both (explicitly or implicitly) con-

tain undirected unweighted graphs, whose nodes are products from

the Amazon catalog, and an edge between two nodes exists if the

corresponding products are frequently co-purchased by the same

buyers. Moreover, for both datasets, each product belongs to exactly

one category.

We tested our methods in a scenario in which, given a (not

necessarily fair) labeled graph, our only interest lies in finding fair

subgraphs with high density. In this context, we are considering the

density of the provided solution as a quality indicator: the higher

the density, the better the quality of a solution.

For our experiments we used an Intel Xeon 2.4GHz with 24GB

of RAM running Linux Ubuntu 18.04 LTS. All methods have been

implemented in Python3 using the functionalities provided by Net-

workX
3
and SciPy

4
libraries.

Datasets. The PolBooks dataset [29] is an undirected unweighted
graph

5
, whose nodes represent books on US politics included in

the Amazon catalog, and an edge between two books exists if both

books are frequently co-purchased by the same buyers. Each book

is further labeled depending on its political stance, possible labels

being liberal, neutral, and conservative. For our experiments, we

considered only the subgraph induced by liberal and conservative
books, obtaining 92 nodes (43 of which were associated with a

conservative worldview, 49 with a liberal worldview) for 374 edges
in total.

The Amazon products metadata dataset [36] contains descrip-

tions for 15.5 million Amazon products
6
. For a single product, we

only considered the product id (asin field), the category the product
belongs to (main_cat field), and the set of frequently co-purchased

products (also_buy field). It should be noted that in this dataset,

each node belongs to exactly one (main) Amazon category so that,

together, these three fields allow recovery of a large, undirected,

labeled graph, with products as nodes, categories as labels, and

3
https://networkx.github.io/documentation/stable

4
https://www.scipy.org

5
http://www.casos.cs.cmu.edu/computational_tools/

datasets/external/polbooks/polbooks.gml.

6
https://nijianmo.github.io/amazon/index.html
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edges representing frequent co-purchasing product pairs. For this

dataset, we leveraged the co-purchasing relation among products

to naturally extract undirected and unweighted labeled graphs. In

more detail, for each pair (ℓ1, ℓ2) of Amazon main categories, we

extracted the undirected subgraph induced by the subset of nodes of

category ℓ1 (ℓ2) that have at least one neighbor from category ℓ2 (ℓ1).

We did not consider graphs with fewer than 100 nodes. In this way,

we retrieved 299 subgraphs of two categories (colors), with sizes

ranging between 103 and 33,922 nodes. We extended and applied

this procedure to triples (ℓ1, ℓ2, ℓ3) and quadruples (ℓ1, ℓ2, ℓ3, ℓ4) of

labels, obtaining 1,147 subgraphs of three categories (colors), with

sizes ranging between 352 and 30,135 nodes, and 1,408 subgraphs

of four categories (colors), with sizes ranging between 1,521 and

30,086 nodes.

Algorithms. We compare the performance of the following algo-

rithms, which for simplicity we describe in the two-colors scenario:

2-DFSG. The optimal 2-approximation algorithm (Algorithm 2)

based on Goldberg’s optimal algorithm for the densest subgraph

problem [22], described in Section 3.

Spectral Algorithms. Following [27, 33] and Theorem 2.2, we ran

a variety of eigenvector rounding algorithms. These are all variants

of a modified version of the General Sweep Algorithm (Algorithm 1)

used in the proof of Theorem 2.2 that sorts the entries of the main

eigenvector of M four times (instead of a single one) according

to the following criteria: (1) nonincreasing; (2) nondecreasing; (3)

nonincreasing absolute values; (4) nondecreasing absolute values.

With these premises, we consider the following spectral algorithms.

The first two are just the modified version of Algorithm 1 with

different choices for M , whereas PS and FPS perform a slightly

modified sweep that always affords a fair solution.

Single Sweep (SS). This algorithm is simply (Algorithm 1), when

all previously mentioned sorting criteria are used, with M = A and

∆ = 0.

Fair Single Sweep (FSS). It is the execution of SS, this time on

matrix (I − f f T )A(I − f f T ) instead of A.
Paired Sweep (PS). Paired Sweep is a modification of SS in which

the fairness constraint is satisfied by construction in each subgraph

produced by the rounding algorithm. This is done by considering

the subsets Red and Blue of the nodes, sorting each of them sepa-

rately according to the values of the corresponding entries in the

main eigenvector ofA and then, for each s = 1, . . . ,min{|Red |, |Blue |}
considering the candidate set of nodes of cardinality 2s obtained by
taking the first s nodes from each ordered subset. For a pseudocode,

we refer to Algorithm 3.

Fair Paired Sweep (FPS). It is the execution of PS, this time on

matrix (I − f f T )A(I − f f T ) instead of A.

4.1 Results

Figure 2 shows the performance of our algorithms on PolBooks

dataset through the Pareto front of the subgraphs generated by each

algorithm during its execution w.r.t. density and balance
7
. PS and

FPS by construction only return fair solutions whereas the other

7
Given two color classes Red and Blue, we define the balance of a subgraph containing

x Red and y Blue nodes as min

(
x
y ,

y
x

)
.

Data: Graph G(V , E), with V = Red ∪ Blue, n × n adjacency

matrixM , parameter ∆
Result: Subset S ⊆ V

1 Ŝ = ∅; D̂ = 0;

2 Compute v1 = main eigenvector ofM ;

3 Sort nodes i ∈ Red and nodes j ∈ Blue in non increasing

order wrt v1
// Assume w.l.o.g. that Πred = {1, . . . , |Red |} and
Πblue = {1, . . . , |Blue |} is resulting ordering of
nodes in V ;

4 Fuse node i from Πred with node i from Πblue
5 for s = 1 to min(|Red |, |Blue |) do
6 S = {1, . . . , s}

7 Compute DS = density of the subgraph induced by S

8 if DS > D̂ AND | |S ∩ Red | − |S ∩ Blue | | ≤ ∆|S | then

9 Ŝ = S ; D̂ = DS
10 end

11 end

12 return Ŝ

Algorithm 3: Paired Sweep Algorithm.
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Figure 2: Pareto front of the subgraphs generated by each

algorithm, w.r.t. density and balance, on PolBooks dataset.

algorithms potentially have trade-offs. In particular, the 2-DFSG

(Algorithm 2) starts at the unconstrained optimum and proceeds

to add nodes that increase balance while potentially decreasing

density.

Figure 3 shows the distributions of the normalized density, over

the entire set of Amazon instances (for two, three, and four colors),

of the fair subgraphs retrieved by different algorithms. Normaliza-

tion, performed to make solutions for different instances compara-

ble, is done by scaling to the optimal density of the unconstrained

problem, making the maximum possible value on the y-axis equal
to 1. Experimental results represented in Figure 3 (a, b, and c) show

that spectral heuristics based on the paired-sweep technique (PS
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(a) Amazon 2 colors: 299 subgraphs.
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(b) Amazon 3 colors: 1147 subgraphs.
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(c) Amazon 4 colors: 1408 subgraphs.

Figure 3: Performance of our algorithms on Amazon dataset for 2,3 and 4 colors on 299, 1147 and 1408 samples (subgraphs)

respectively. Reported are aggregates over all generated subgraphs, with unfair solutions receiving a density of 0, see Table 1.

and FPS) consistently outperform 2-DFSG algorithm, despite its

theoretical optimality (proved in a two-color scenario and in pres-

ence of a fair input graph), regardless of the number of considered

colors. In more detail, the FPS heuristic is the method that achieves

the maximum median density. According to Figure 3 (b and c), it is

evident that for a number of colors greater than two, the spectral

methods that do not rely on the paired-sweep technique (SS and

FS) are not the appropriate approaches for tackling the problem. Fo-

cusing on the two-color scenario, depicted in Figure 3 (a), we have

that, with the exception of SS, which uses the original adjacency

matrix and whose distribution is skewed towards lower density val-

ues, performances of spectral heuristics are comparable, with FPS

achieving the highest median density. Always in the two-colors sce-

nario, we can observe that algorithms run on (I − f f T )A(I − f f T )
(FSS and FPS) respectively outperform their counterparts (SS and

PS) run on A.
We report in Table 1 the percentage of instances each algorithm

is not able to solve, that is, for which it does not return a fair solution

and, consequently, we assign a density equal to 0.

#Colors #Samples SS FSS PS FPS 2-DFSG

2 299 0 0.33 0 0 3.01

3 1147 73.93 95.55 0 0 5.31

4 1408 92.54 99.64 0 0 1.91

Table 1: Percentages of unfair solutions forAmazon dataset.

The data reported in Table 1 confirm the observation that spectral

methods that do not rely on the paired-sweep technique essentially

fail to recover a dense fair subgraph in a context that involves

more than two colors: the SS and FSS methods provided unfair

solutions for almost all samples when the number of considered

colors is greater than 2. As noted previously, PS and FPS cannot

return unfair solutions: this is the reason behind the presence of

zeros in their columns. It is worth to say that 2-DFSG (Algorithm 2)

results in an unfair solution if the original graph is unbalanced and

the unconstrained densest subgraph cannot be made fair via line

4. This justifies the presence of quantities greater than zero in the

last column.

Amazon dataset 2 Colors 3 Colors 4 Colors

#Samples 299 1147 1408

2-DFSG 46388 (101391) 151049 (152898) 127834 (75276)
FPS 360 (659) 1083 (2073) 745 (524)
PS 424 (842) 1130 (2106) 775 (572)
FSS 465 (861) 1652 (2185) 1369 (984)
SS 463 (859) 1665 (2216) 1368 (986)

Table 2: Average and standard deviation of the running

times (in msec) of all proposed methods onAmazon dataset:

2, 3, and 4 colors.

Table 2 reports that spectral methods are faster than 2-DFSG.

Indeed, the average running time of the 2-DFSG method is of two

orders of magnitude greater than the one required by the spectral

methods. This is coherent with the fact that the 2-DFSG method

requires solving the Max-Flow problem, which is computationally

expensive.

Table 3 reports execution time and solution quality of all pro-

posed methods on three not small-sized Amazon subgraphs with

2, 3 and 4 colors each. In particular, for what concerns the quality

of the provided solutions, the results provided in Table 3 are com-

pletely in line with with the information extracted from Figure 3

and Table 1. The relation among execution times are also in line

with what provided in Table 2, moreover, we can see that on the

considered instances (2, 3, and 4 colors, 100K nodes and 1.1M edges)

the 2-DFSG method requires slightly more than one hour of com-

putation, against 91sec required by the paired spectral heuristics

(PS and FPS). These results suggest that the spectral approaches

are suitable for dealing with not small-sized graphs.
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Amazon dataset 2 Colors 3 Colors 4 Colors

#Nodes, #Edges 108230/1851733 108185/1132578 108220/1360241

2-DFSG 4126002/0.50 3618960/0.34 3991358/0.27
FPS 36199/0.65 11467/0.45 31988/0.61
PS 91582/0.56 39327/0.45 32643/0.50
FSS 33074/0.51 17358/NoFairSol 45465/NoFairSol
SS 26429/0.21 24161/NoFairSol 32324/NoFairSol

Table 3: Running time (in msec) and solution quality (ex-

pressed as normalized density of the retrieved fair subgraph

to the optimal density of the unconstrained problem) of all

proposed methods on three Amazon subgraphs with 2, 3,

and 4 colors each. Each subgraph has roughly 100K nodes

and 1.1M edges.

5 CONCLUSION AND FUTUREWORK

In this work, we studied graphs with an arbitrary 2-coloring. For

these graphs, the densest-fair-subgraph problem consists in finding

a subgraph with maximal induced degree under the condition that

both colors occur equally often. We observed that the problem is

closely related to the densest-at-most-k subgraph problem and thus

has similar strong inapproximability results. On the positive side,

we presented an approximation algorithm under the assumption

that the graph itself is fair, and a more involved spectral recov-

ery algorithm inspired by the work of Kleindessner et al. [28] on

stochastic block models.

In practice, the spectral recovery algorithm tends to dominate

the approximation algorithm. We interpret these results as showing

that (1) an approximation algorithm may not be the correct way to

attack this problem, and (2) as previous work also suggests [28, 41],

spectral relaxations seem to be an inexpensive tool to improve the

fairness of algorithms geared towards recovery and learning.

Future work might consider extending this approach to more

involved fairness constraints with provable guarantees. Empirically,

we already observed that, although the spectral algorithms retain a

good behavior both theoretically and empirically, the performance

of the approximation algorithm deteriorates. We identify two key

problems that may be more manageable. First, one might consider

the case where the graph only has two colors, but the colors may

overlap, that is, a node can be both red and blue. Clearly, the ap-

proximation results still hold in this case. Can one improve the

analysis of the spectral recovery scheme, depending on the degree

of overlap? Second, one might consider the case of multiple disjoint

colors, each of equal size. Such considerations have been studied

in clustering literature [3, 4, 8, 16]. Is it possible to derive similar

results for densest subgraph?
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