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Οὐ πάνυ ἡμῖν οὕτω φροντιστέον τί ἐροῦσιν οἱ πολλοὶ ἡμᾶς,

ἀλλ᾿ ὅτι ὁ ἐπαΐων περὶ τῶν δικαίων καὶ ἀδίκων. [Σωκράτης,

Πλάτωνος ῾῾Κρίτων᾿᾿]

We should not care so much about what the many say about us,
but about what says whoever is expert on what is right and wrong.
[Socrates in Plato’s “Crito”]

ABSTRACT
Crowdsourcing is a computational paradigm whose distinctive fea-
ture is the involvement of human workers in key steps of the com-
putation. It is used successfully to address problems that would be
hard or impossible to solve for machines. As we highlight in this
work, the exclusive use of nonexpert individuals may prove ineffec-
tive in some cases, especially when the task at hand or the need for
accurate solutions demand some degree of specialization to avoid
excessive uncertainty and inconsistency in the answers. We address
this limitation by proposing an approach that combines the wisdom
of the crowd with the educated opinion of experts. We present a
computational model for crowdsourcing that envisions two classes
of workers with different expertise levels. One of its distinctive fea-
tures is the adoption of the threshold error model, whose roots are
in psychometrics and which we extend from previous theoretical
work. Our computational model allows to evaluate the performance
of crowdsourcing algorithms with respect to accuracy and cost. We
use our model to develop and analyze an algorithm for approximat-
ing the best, in a broad sense, of a set of elements. The algorithm
uses naïve and expert workers to find an element that is a constant-
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factor approximation to the best. We prove upper and lower bounds
on the number of comparisons needed to solve this problem, show-
ing that our algorithm uses expert and naïve workers optimally up
to a constant factor. Finally, we evaluate our algorithm on real and
synthetic datasets using the CrowdFlower crowdsourcing platform,
showing that our approach is also effective in practice.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]: Gen-
eral; H.3.3 [Information Storage and Retrieval]: Information Fil-
tering; H.1.2 [Models and Principles]: User/Machine Factors—
Human information processing

Keywords
Crowdsourcing; human computation; max algorithm; worker mod-
els

1. INTRODUCTION
Crowdsourcing is a computational paradigm that enables out-

sourcing pieces of the computation to humans, who perform them
under monetary compensation. The main rationale for the involve-
ment of humans is the existence of tasks that are easy to perform
for a person but very difficult or impossible to accomplish for a
machine. Crowdsourcing-based systems [14] and algorithms have
been developed to answer important queries for which relational
DBMSs have traditionally been used, such as selectivity estimation,
counting, ranking, and filtering [7, 24, 25, 32]. Crowdsourcing has
applications in various areas, including machine learning, visual-
ization, recommendation systems, computational photography, and
data analytics.

One of the main reasons for bringing humans into the computa-
tional loop is that the task is underspecified or cannot be specified
sufficiently in details for a machine to perform it, whereas humans
can use intuition and their background knowledge to understand
what is requested from them. Even when the job is well specified,
humans may perform the task much better than a machine.

Despite the fact that humans can carry out some operations bet-
ter or more easily than machines, they do not always perform them
correctly. Indeed, it has been observed that the output of crowd-
sourcing systems can be extremely noisy [16, 37]. There are two
main sources of error. The first is incompleteness of information:
tasks may be underspecified in many respects, so that individual



factors come into play when humans perform them. In this case,
although a ground truth may exist (e.g., cars come with factory
prices), humans may err because they possess only partial informa-
tion and/or their judgment may be clouded by personal biases. The
second source of error, or actually set of sources, includes mistakes
due to input errors, misunderstanding of the requirements, and ma-
licious behavior (crowdsourcing spamming).

To motivate the topic of this work, assume that we ask you which
of the two pictures of Figure 1(a) has fewer dots; which one would
you select? (Try, if you want, before proceeding!) The correct
answer is the first one (180 vs. 200). Most humans can answer
questions like this thanks to abilities that are either hard-wired or
naturally learnt in the course of time. Thus, if we ask several indi-
viduals the same question, we expect that the majority will answer
correctly, and the more people we ask, the higher is our confidence
that the preferred answer is correct. In cases like this we can suc-
cessfully apply the paradigm of the wisdom of crowds [30]. Indeed,
it is for this reason that crowdsourcing platforms offer the possibil-
ity to ask the same question to several human workers.

Consider now Figure 1(b) and the question “Which car has a
higher price?” (Try to guess again!), and similarly for Figure 1(c).
In both cases the correct answer is the second car. Yet, unless one
is an expert on car pricing or has access to accurate information
about the cars, she probably cannot figure out why the Mercedes
($114K) is more expensive than the BMW ($100K), yet cheaper
than the Audi ($120K)1. In this case the wisdom of crowds will
not work: it is hard to guess the correct answer when the price dif-
ference is small, unless one is a real expert on U.S. car prices or
is able to retrieve accurate information about the prices. For this
reason, crowdsourcing platforms have started introducing the con-
cept of experts. Amazon mechanical Turk now has masters and
CrowdFlower allows to employ skilled workers. Although the con-
cept of an expert is broad, there are three characteristics that expert
workers possess in contrast with naïve (i.e., nonexpert) workers:
(1) they obtain training or pass tests to certify that they produce
higher-quality results for specific application domains with respect
to regular workers; (2) they are a much scarcer resource than regu-
lar workers; (3) they offer their services at a much higher price.

The design and analysis of algorithms that employ human work-
ers on crowdsourcing platforms require computational and cost mod-
els that are flexible enough to allow performance analysis and that
are realistic enough to reflect the actual runtime and costs of the al-
gorithms. In this respect, two crucial aspects make crowdsourcing
different from most other computational paradigms: human error
and monetary cost. The computational and cost models must allow
the expression and analysis of these aspects in a realistic way. In
addition, as already mentioned, the recent trend in crowdsourcing
platforms to organize the available workforce into different classes
with different skills demands a suitable modeling of the expert
workers, who allow to achieve higher quality results, which can-
not be attained by naïve workers but which come at a higher cost.

1.1 Contributions and Roadmap
In this paper we introduce a computational model that captures

important aspects of crowdsourcing and present and analyze a max-
finding algorithm on top of this model. We introduce the concept of
expert worker, who can add qualitatively more power to the com-
putations that we are able to perform. We show how expert workers
can help in a practical case by presenting an algorithm that lever-
ages on experts to find the maximum among a set of elements. This
is a problem often encountered in practice in crowdsourcing sce-

1Prices are from August 2013.

(a) Task: select the picture with fewer dots.

(b) Task: select the most expensive car.

(c) Task: select the most expensive car.

Figure 1: Examples of crowdsourcing tasks.

narios (e.g., ranking of search results, evaluation of web-page rel-
evance to a query, selection of the best labeling for a picture [6]).
Whereas this problem is simple enough in the standard computa-
tional model, it becomes nontrivial in more complex scenarios as
the one we present here. For these reasons, it is one of the most
studied problems in the context of crowdsourcing [34, 35] (with-
out considering experts). Our algorithm can be used inside systems
like CrowdDB [14] to answer a wider range of queries using the
crowd. To summarize our contributions:
• By performing experiments on the CrowdFlower crowdsourc-

ing platform, we identify key characteristics of workers’ per-
formance in diverse scenarios (Section 3.1).
• Building on the findings we present models that can capture

the behavior in the diverse settings (Section 3.2).
• We introduce the concept of crowdsourcing experts and we

incorporate them in our model (Section 3.3).
• Building on our models, we formally define the problem of

finding the maximum element. We provide lower bounds on
the number of expert and nonexpert comparisons required to
solve it. We provide an algorithm for this problem that com-
putes a constant-factor approximation to the maximum ele-



ment and makes an optimal (modulo constant factors) use of
the workers (Section 4).
• We perform a series of simulations for evaluating the effi-

ciency of our algorithm in practice complementing our theo-
retical analysis, and we perform a set of experiments on Crowd-
Flower to show its effectiveness in finding the maximum (Sec-
tion 5). Among others, we apply our approach on the problem
of evaluation of search results to show the applicability of our
approach in a real-life scenario.

2. RELATED WORK
Many works in the algorithmic literature have dealt with the

problem of sorting or computing the maximum of a set of elements
using comparators some of which may be faulty [28, 36], even
without considering the crowdsourcing settings. Various different
models and solutions have been proposed. A number of works con-
sidered the idea that the comparator errs with some probability at
each comparison, independently from other comparisons [3, 8, 11,
15, 17, 18, 35]. They presented algorithms to compute the max-
imum element, studying numerous variants of this purely proba-
bilistic error model. In the simplest variant, each comparator has
a fixed probability associated to it, and this remains constant over
all comparisons, independently of the values of the elements. This
is for example the case for the basic models considered by Feige
et al. [11] and Davidson et al. [8] (in both works, more sophis-
ticated probabilistic models are also considered, but they do not
incorporate the concept of experts, crucial in our work). An impor-
tant consequence of this probabilistic modeling of the error is the
following: If the error probabilities are independent and less than
1/2 then, given two items to compare, independently of their mu-
tual distance, it is possible to identify the element with higher value
with arbitrarily high probability by performing the same compari-
son multiple times, and taking the element that won the majority of
the comparisons (or an arbitrary element in case of a tie). In our
work, we consider a different model (the threshold model) where
such conclusion is not possible: an expert has more capabilities
than a naïve worker and her answers cannot be simulated by ag-
gregating the answers of multiple naïve workers. Another model
is presented by Aigner [1], where at each step of the computation
a fraction p of the answers returned so far could be wrong. This
setting is in part related to past work on comparisons with faulty
memories [12, 13] and more generally to computational tasks in-
volving communication across noisy channels. Pelc [26] presents
a survey of this broader area of research. Other works considered
a threshold model, where the comparator may err if the elements
have values very close to each other [2]. We extend and adapt some
of the results from these previous contributions to the crowdsourc-
ing model of computation. None of these consider the main idea of
the present work, namely that comparators may belong to different
classes with different error parameters and different costs, and one
cannot be used to simulate the other.

In the crowdsourcing environment, Marcus et al. [20] looked at
how to select the maximal element and sort a sequence of elements
by splitting the input into nonoverlapping sets with the same size
and sort these sets recursively. No guarantee is given on the running
time and accuracy of the algorithms.

Venetis and Garcia-Molina [34] and Venetis et al. [35] present
algorithms for finding the maximum in crowdsourcing environ-
ments based on static and dynamic tournaments. They consider
error models taken from the psychometrics literature and, given a
specific error model and a budget of computational resources, they
compute the optimal parameters for the algorithms using simulated
annealing. They do not discuss, though, about the possibility of

having experts and the tradeoffs between accuracy and costs that
this possibility would allow.

The need for experts is pointed out by Sun et al. [29]: a single
majority vote from all the workers is only accurate for low difficulty
tasks, but it is insufficient as the difficulty of tasks increases.

Some works [14, 21, 25] took into account the probability of
mistakes and different cost measure to optimize various filtering
tasks using crowdsourcing, but without analyzing their effect in a
formal framework. We present a different model and algorithm,
giving precise guarantees on the performances.

Karger et al. [17] presented an algorithm for crowdsourcing that
learns the reliability of each worker and assigns tasks to work-
ers according to their reliability, using this piece of information
to minimize the number of questions asked to the workers. Other
works [4, 5, 9, 19, 27, 33] presented methods to identify sets of well
performing workers or to detect badly performing workers and rule
them out, whereas we assume to know precisely who the experts
are, as they may reside outside a classical crowdsourcing system.
As an example, consider the case where the task requires to se-
lect the best picture representing the Colosseum. A professional
photographer would be an expert in this case, to whom we ask to
solve the task offline. She is hired for the precise reason that she
is an expert, hence her status is known in advance. Alternatively,
it is possible to apply the algorithms presented in those works to
detect a set of experts and then use our algorithm to leverage their
additional expertise. In this sense, our work is orthogonal and com-
plementary to that from [4, 5, 9, 19, 27, 33].

Mason and Watts [22] investigated the effect of increasing the
financial incentives for workers on the quality of the performed
work. They found out that there is no improvement in quality as the
incentive grows. This implies that one cannot just pay some work-
ers more than others and use them as experts. Instead, in our model
we pay experts more than others for the only reason that they are
experts and are going to perform the work with higher precision.

Mo et al. [23] proposed algorithms to compute the number of
workers whom to ask the same question such as to achieve the best
accuracy with a fixed available budget. The workers all belong to
the same class and they perform a task correctly or incorrectly with
a probability that depends on the task but not on the workers.

Davidson et al. [8] introduced algorithms inspired by Feige et al.
[11] to solve max, top-k, and group-by queries under a new error
model where the probability of error when comparing two elements
depends on the distance between the elements. The probability of
error is the same for all workers, so there is no concept of experts
and nonexperts.

3. MODELING CROWDSOURCING
In this section we formalize crowdsourcing computation for com-

puting the maximum (or best) among a set of elements. We perform
some crowdsourcing experiments and we use the findings to justify
a class of models that we introduce.

Finding the maximum over a set of elements. Let U be a universe
of elements and let v(·) be a function from U to the reals: v :
U → R. For an element e ∈ U we call v(e) the value of e. The
function v establishes a partial2 order over the elements of U . We
define the distance between two elements u, v ∈ U as d(u, v) =
|v(u)− v(v)|. Given a set L of n elements from U , let VL =
maxe∈L v(e). We denote with ML any of the elements from L
with value VL, so that, v(ML) = VL by definition, and we refer to
it as the maximum element of L. The set L will often be clear from
2The order is partial because it is possible to have v(e1) = v(e2)
for e1 6= e2.



the context and we will drop it from the notation of ML and only
use M . The problem of interest in this work is the selection of an
element e ∈ Lwhose value v(e) is equal to or closely approximates
VL, as formally defined in Section 4.

Human workers and crowdsourcing algorithms. Both the uni-
verse U and the value function v are arbitrary. In particular, v may
be very difficult or time consuming to evaluate or even approximate
for computers but very easy to evaluate or approximate for humans.
In this work we develop a crowdsourcing algorithm to compute an
element from L whose value is close to that of the maximum el-
ement M , using a set of human workers W . We assume that a
worker can only compare two elements at a time (this assumption
is often present also in prior works as it simplifies the formaliza-
tion) and returns the one that she believes has the maximum value.
Following Venetis et al. [35], the algorithms we consider are orga-
nized in logical time steps. In the s-th logical step, a batch Bs of
pairwise comparisons is sent to the crowdsourcing platform, which,
after some time, returns the corresponding answers from the human
workers. Depending on these answers, the algorithm selects the
next batch Bs+1 of comparisons, and so on, until the algorithm ter-
minates. Depending on the size ofW , each logical step s in general
corresponds to a sequence F(s) of consecutive physical time steps.
In particular, in the generic physical time step t ∈ F(s), a subset
Wt ⊆ W of the workers is active. Each active worker w ∈ Wt

receives a pair (k, j) of distinct3 elements from L × L. Worker w
then “computes” a comparison function mw(k, j), which returns
the element from k, j that she believes has the maximum value.
We say that the returned element wins the comparison.

Remark. Venetis et al. [35] simply call steps what we call logical
steps here. The reason is that they consider the number of logical
time steps (according to our terminology) a reasonable measure of
the time complexity.

Given the generality of the function v and of the universe U , the
worker w may not be able to compute v exactly, but only to some-
how approximate it. Hence, the element returned by the function
mw may not be the one with maximum value. To delve more into
this question, we start by performing a set of crowdsourcing ex-
periments, which allow us to observe how humans err in different
max-finding tasks and how we can use their collective knowledge.

3.1 Workers’ Accuracy in Crowdsourcing
To find the properties required for our models, we performed

a series of experiments on the CrowdFlower crowdsourcing plat-
form.4 We describe first the two main datasets that we created and
then we provide some details about the CrowdFlower setup. The
task at hand is to ask workers to compare two items. The main
question that we want to address with our experiment is: is it al-
ways possible to improve accuracy by asking multiple workers to
answer the same question independently, or is there a cognitive
barrier, at least for certain types of questions, that does not allow
to achieve arbitrarily high precision?

Datasets. We created two main datasets:
• DOTS (inspired by [33]): It consists of a collection of images

containing randomly placed dots. The number of dots in each
picture ranges from 100 to 1500, with steps of 20.
• CARS: This dataset contains descriptions of cars. We down-

loaded a set of approximately 5000 new cars from the cars.
com web site. For each car we collected a photo, the make,

3By distinct we just mean that a worker does not receive two copies
of the same element, not that d(k, j) 6= 0.
4http://crowdflower.com

model, body style (e.g., SUV, sedan, coupe, etc.), engine in-
formations, number of doors, and its price (in August 2013).
We cleaned the dataset and created a set of 110 cars with price
between 14K and 130K. For every pair of cars the difference
in price is at least $500.
CARS is a very noisy dataset. For instance we found several
sets of cars of the same make and model that varied signif-
icantly in the price, often in the order of several thousands
dollars. Most of the times this difference is a result of the
differences in equipment, but sometimes different dealers also
sell the same car at different prices. Showing the entire equip-
ment to workers is impractical and would lead to higher error
rate, so we decided to show only limited information about
each car. We ensured that for the same brand and year the car
models are not repeated, by selecting a representative that was
in the middle of the price range.

Measuring Workers’ Accuracy. We used the CrowdFlower plat-
form, a paid crowdsourcing service, available since 2009. It offers
quality-ensured results at massive scale, good APIs, and multiple
channels.

For each dataset we used 50 elements for comparisons, and some
additional ones for gold comparisons, which are comparisons for
which the ground-truth value is provided and which are used by
CrowdFlower to evaluate the performance of workers and reduce
the effect of spam (responses of workers whose performance on
gold comparisons has accuracy less than 70% are ignored). In total,
15% of the queries that we performed are gold queries. We selected
pairs covering the overall range of values and differences. We sub-
mitted 105 pairs from DOTS and 154 from CARS (we found that
for the latter we needed more data points). For each pair to be com-
pared we requested at least 21 answers. Figure 1 shows snapshots
of the pairs presented to the workers.

Our goal is twofold. First, we want to measure the accuracy
of workers as the difference of the value of the two items under
comparison varies. Second, we want to study to what extent we
can improve the accuracy by increasing the number of workers.

We summarize our findings in Figure 2. In Figure 2(a), which
refers to DOTS, each line corresponds to responses obtained for a
given range of difference between the actual number of dots. For
example, the red (lowest) line accumulates the responses of queries
where the relative difference between the number of dots ranged
from 0 to 10% (these are the hardest questions), whereas the green
(second lowest) corresponds to the range 10–20%. On the x-axis
we vary the number of workers whose (independent) responses we
observe (we consider the votes of 1 worker to 21 workers, ordered
by time of response) and on the y-axis we report the aggregate ac-
curacy of the workers when we take a majority vote. Note that the
accuracy is generally quite low when considering a single worker
but it improves as we ask more workers, arriving very close to 1.
Figure 2(b) shows the same plot for CARS. When the relative dif-
ference between the price of the two cars is relatively large, the ac-
curacy approaches 1 as the number of workers increases. However,
for smaller differences (up to 20%) the accuracy of the workers
plateaus: it does not surpass 0.6 or 0.7, depending on the differ-
ence.

The results allow us to draw two conclusions. First, we need
different error models to capture the different behaviors that we
observed. For the behavior in DOTS we need a model in which
the accuracy increases with the number of workers. Instead, for
CARS we need a model where, for small values of the difference,
an increase to the number of workers is not sufficient to increase
the accuracy. This is the topic of the next section.
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Figure 2: Relative accuracy of responses varying the number of workers for
different deltas.

Second, these results show a key difference in the tasks: one
of them allows to leverage on innate expertise and collective wis-
dom (counting dots), whereas the other seems to require acquired
knowledge at some point (must know car prices). This observation
led us to the introduction and modeling of experts, skilled workers
who are able to rank elements with close values correctly, but who
require a higher monetary compensation. Higher compensation can
either reflect an immediate cost, or it can model scenarios in which
experts are a scarce resource and thus their time is more valuable.
This is the topic of Section 3.3.

3.2 Simple Error Models
There are a number of reasons and scenarios in which a worker

may commit a mistake as we mentioned in the introduction, and in
the previous section we saw that in different settings these can lead
to qualitatively different behavior. We next present the probabilistic
model, common in prior works, which can model the behavior in
DOTS, but not the one in CARS. Then we present a threshold-based
model, which captures the behavior in the CARS experiment.

Probabilistic Error Model. A common approach is to assume that
an error occurs with some probability, not necessarily fixed: when a
worker is given two elements to compare, she chooses the one with
highest value with some probability, and the one with lower value
with the residual probability, independently of any other compari-
son she or other workers might perform [3, 8, 11, 15, 17, 18, 35].
The error probability may depend on the difference of the values of
the elements to compare, and grows as the difference shrinks, even
though for purposes of analysis a common assumption is that it is
fixed and independent from the difference.

Assume that for a given question, the probability of error is p <
0.5. Then one can show that if we ask the same question to k work-
ers, the probability that the element with lower value receives the

majority of votes is bounded by e−
(1−2p)2

8(1−p)
k. It decreases exponen-

tially fast to 0 as k grows, implying that we can get arbitrarily good
precision by increasing the number of workers; this is qualitatively
the behavior that we observed in Figure 2(a). Of course, one can
create instances for DOTS on which we cannot aim to reach accu-
racy equal to 1: e.g., we can create one image with n dots (for large
n) and another with n + 1 dots. In this case, the probability p of
error is essentially 0.5 and it will not decrease no matter how many
workers we use.

The CARS experiment exemplifies situations in which the com-
parison tasks may require an expertise not possessed by unskilled
(naïve in the following) workers. Hence, it is not possible to achieve
arbitrary precision and confidence levels by just aggregating the
answers from a suitable number of naïve workers. To capture such
scenarios, we developed a generalization of the probabilistic model,
which we present next.

Threshold Model. To capture scenarios like those mentioned at
the end of the previous section, we consider the threshold model
T (δ, ε), an extension of the model introduced by Ajtai et al. [2]
to formalize the concept of Just Noticeable Difference by Weber
and Fechner (then generalized by Thurstone [31]). Here, when-
ever a worker is presented with two elements k, j to compare, she
chooses the less valuable one (i.e., errs) with a probability that de-
pends on their distance d(k, j) as follows: let δ be a nonnegative
parameter, which models the discernment ability of the workers,
and let ε ∈ [0, 1) be a residual error probability. If d(k, j) > δ
and (without loss of generality) v(k) > v(j), the worker returns
k with probability 1 − ε and j with probability ε.5 Instead, if the
two elements have values close to each other (d(k, j) ≤ δ) the
worker returns either k or j completely arbitrarily. In particular, if
asked multiple times to compare k and j, the worker may return k
on some occasions and j in others, or always k or j. As a result,
when the question is hard, asking a lot of workers does not help to
increase the accuracy, which is the behavior observed in CARS.

The parameter δ acts as a distance threshold, hence the name of
the model. In other words, if d(k, j) > δ, the worker is able to
discriminate between the two elements k and j, but for a number
of reasons she may still, with low probability, return the one with
the lower value. Modeling this uncertainty when the elements are
farther apart than δ allows us to take into account workers input
errors, malicious workers, or prior bias that the workers may have.

We say that two elements u, v with d(u, v) ≤ δ are indistin-
guishable. A set of indistinguishable elements is a set of elements
such that each two of them are indistinguishable. Note that, as-
suming the comparison model we just described, it is impossible to
exactly compute the element M of L with maximum value if there
is another element e ∈ L indistinguishable from M .

For simplicity, we assume that if the difference is above the
threshold then the probability of error is the fixed value ε. This
can be generalized to an error probability that depends on the dif-
ference, as in the probabilistic model. In addition, δ can be 0, so
the threshold model is a generalization of the probabilistic model.

3.3 Threshold Model with Experts
The experimental findings of Section 3.1 demonstrate that there

are types of questions that typically require knowledge or skills
that are neither innate nor naturally learnt; these questions exhibit
an accuracy barrier which cannot be overcome without involving
skilled workers with the required expertise. Here, a skilled worker
(expert in the following) should be seen as an abstraction. In some
scenarios, an expert is an actual skilled worker, with the necessary
expertise to perform the required comparison tasks with an accu-
racy that is not achievable by naïve workers. In other settings, an
expert models the extra effort needed to perform a comparison task
with higher accuracy, for example, by accessing authoritative, ex-
ternal information sources on the topic of the comparison. Yet an-
other setting is where the naïve worker corresponds, for example,
to a machine-learning algorithm and an expert to a human. The
main characteristic is that the presence of an actual expert or the
acquisition of authoritative information about the topic of a com-
parison cannot be simulated by simply increasing the number of
naïve workers. Crowdsourcing platforms have become aware of
this necessity and they have introduced the concept of experts.

The extension of the threshold model to capture experts is nat-
ural. The workers from W are split into two classes, one of naïve
workers and one of expert workers. Naïve workers follow the thresh-
old model T (δn, εn), whereas experts follow T (δe, εe), with δn �
5The probabilistic error model is a special case of the threshold
model when δ = 0.



δe and εe ≤ εn (possibly εe = 0). Given that there are now
two thresholds, we talk of naïve-indistinguishable elements for el-
ements u, v with d(u, v) ≤ δn, and of expert-indistinguishable if
d(u, v) ≤ δe. Indeed, under our model, two elements that are
expert-indistinguishable are also naïve-indistinguishable.
Remarks. We assume to know in advance whether a worker is an
expert or not. This is orthogonal and complementary to the ap-
proach taken in previous related works that tackle the problem of
finding the experts [4, 5, 9, 19, 27, 33]. Our assumption is intuitive
given the definition of an expert worker, which is someone who
is hired for the specific reason that she is an expert in the task at
hand. As we mention in Section 2, an example of this could be a
photographer hired to select the best picture of a monument. We
may have thousands of pictures to choose from and given the much
higher cost of the professional photographer we want to use the
cheap naïve workers to filter out the least interesting ones, so that
the photographer only has to look at few of them. Alternatively,
one can use the aforementioned algorithms to find a group of ex-
perts and then use our algorithm to exploit their additional skills
and computational power.
In our model we consider two classes of workers, but a natural ex-
tension models multiple classes of workers with different expertise
levels, or even a continuous measure of expertise for ranking work-
ers. We leave these extensions as future work.

3.4 Cost Model
We analyze our algorithms with respect to monetary cost. We

express the cost of the algorithm as a function of the size of the
input n = |L|.

The main measure of resource consumption that is usually of in-
terest in crowdsourcing applications is the number of operations
performed by workers, as they correspond directly to monetary
costs, given that workers are paid for each operation they perform.
In the presence of experts, we assume that naïve and expert workers
have different costs: experts have an associated cost ce per opera-
tion that is much greater than the cost cn per operation associated
to naïve workers (ce � cn). Therefore, if an algorithm performs
xe(n) expert comparisons and xn(n) naïve comparisons, the total
monetary cost of the algorithm is

C(n) = xe(n) · ce + xn(n) · cn.

4. FINDING THE MAXIMUM ELEMENT
In this section we delve into the problem of finding the maxi-

mum among a set of elements. Apart from the foundational nature
of the problem, we study it for the following reasons: (1) many
common crowdsourcing tasks are essentially problems of finding
the maximum according to some criterion (e.g., finding the best
result to a query, the most relevant ad to a page or query, or the
best design among a set of candidates [6]); (2) indeed many past
works on crowdsourcing algorithms studied the problem of finding
the maximum [20, 34, 35]; (3) it is well specified and amenable
to (albeit nontrivial) theoretical analysis. Furthermore, we hope
that this work will stimulate the rigorous and analytical study of
yet more complicated crowdsourcing problems (e.g., evaluation of
classification or other machine-learning algorithms).

Given a multiset L of |L| = n elements from a universe U , our
algorithm selects an element e ∈ Lwhose value is close to the max-
imum value among the elements in L. We consider the threshold
comparison model with experts. Recall that M ∈ L is an element
with maximum value among those in L. The algorithm finds an
element e ∈ L such that d(M, e) ≤ 3δe. Its cost depends on the
value un(n), which represents the number of elements in L that are

naïve-indistinguishable from M : un(n) = |{e : d(M, e) ≤ δn}|.
We assume that un(n) = o(n), giving power to naïve users to dis-
criminate a large part of the input from the maximum element; this
assumption is reasonable for typical crowdsourcing datasets and
tasks.
Remark. For the sake of presentation we assume that both residual
errors εn and εe (see Section 3.3). are equal to 0 Our results can be
extended to any value less than 1/2.

4.1 An Expert-Aware Max-Finding Algorithm
The algorithm consists of two phases, summed up in Algorithm 1.

In the first phase, it uses naïve workers to filter out the majority of
the elements that cannot possibly be the maximum, leaving a small
set S of candidate elements containing M . In more detail, in the
first phase we solve the following problem:

PROBLEM 1. Given an initial set L of n elements, return a sub-
set S ⊂ L of size O(un(n)) that contains M , using only naïve
workers to perform comparisons.6

Algorithm 1: Find an element close to the maximum M

Input : A set L of n elements, a function un(n) = o(n).
Output: An approximation of the maximum element M in L.

1 Obtain a set S ⊂ L using Algorithm 2 with naïve workers
2 Return the output of Algorithm 3 with expert workers on

input S

In the second phase, we apply a max-finding algorithm to the
set S found in the first phase, using only experts to perform the
comparisons. More precisely, we solve the following problem:

PROBLEM 2. Given an input set S of sizeO(un(n)) containing
M , return an element e, such that d(M, e) = O(δe), using only
experts and performing as few comparisons as possible.7

One could solve this problem with Θ(|S|2) experts comparisons by
performing a simple all-play-all tournament8 among the elements
in S. To reduce the number of comparisons performed by experts,
we instead use one of the algorithms proposed in [2, Section 3] and
return the element found by this algorithm. More details about the
second phase are given in Section 4.1.2.

4.1.1 First phase
In the first phase we want to solve Problem 1 using only naïve

workers and requesting as few comparisons as possible to mini-
mize monetary cost. We outline our algorithmic approach in Algo-
rithm 2. It relies on some combinatorial properties of all-play-all
tournaments, which we prove below. In particular, Lemma 1 shows
a key property of the maximum element M in all-play-all tourna-
ments.

LEMMA 1. In an all-play-all tournament among the elements
of L, the maximum element M wins at least n − un(n) compar-
isons.
6The exact value of |S| and the reason for such a choice are moti-
vated in Section 4.1.1. In a nutshell, this choice allows to achieve an
asymptotically optimal number of (naïve) comparisons, as shown
in Section 4.3.
7In practice, d(M, e) ≤ 3δe or d(M, e) ≤ 2δe, according to the
algorithm used to solve Problem 2; see Section 4.1.2.
8In an all-play-all tournament, each element is compared against
every other element. This is also sometimes known as a round-
robin tournament.



PROOF. By definition of un(n), there are at most un(n) ele-
ments e such that d(e,M) ≤ δn , whereas M wins every element
e such that d(e,M) > δn.

The previous lemma suggests a way (described below) to filter
out elements that are certainly not the maximum and eventually
obtain a set of candidates for further processing by expert workers.
In the following lemma (whose proof is deferred to Appendix B)
we prove that the size of this set is small. Actually, we prove a
slightly more general result that holds for any set of elements play-
ing an all-play-all tournament and any minimum number of wins,
and does not depend on the error model.

LEMMA 2. Let A be a set of elements and let r < |A|. In an
all-play-all tournament among the elements of A, there are at most
2r − 1 elements that win at least |A| − r comparisons each .

Lemmas 1 and 2 combined lead to an efficient algorithm to solve
Problem 1, that is, to compute a set S ( L of size at mostO(un(n)),
such that M ∈ S. In particular, Lemma 1 suggests that we should
make sure that S contains all the elements that would win at least
n−un(n) comparisons in an all-play-all tournament, otherwise we
may miss M . We could easily find S by performing an all-play-all
tournament among all elements in L and then picking those that
win at least n−un(n) times; this would require

(
n
2

)
= Θ(n2) com-

parisons. With the help of Lemma 2 we can find S more efficiently
(i.e., with fewer comparisons) as follows: We partition L into small
subsets of size g = 4un(n) (except for one subset, which may have
fewer), and then perform an all-play-all tournament within each
subset. We discard elements that lose at least un(n) comparisons
in the all-play-all tournament of their subset and we keep those that
win at least g − un(n) comparisons. In the next level, we partition
the set of all surviving elements into subsets of size g and perform
all-play-all tournaments within each of the subsets, and so on, until
the set of survivors contains fewer than 2un(n) elements. The pseu-
docode of the algorithm is presented as Algorithm 2. In Lemma 3
(proof in Appendix B) we prove its correctness and we show that
it requires only O(nun(n)) comparisons. Later, in Section 4.3 we
prove that this bound is optimal, within constant factors.

LEMMA 3. Algorithm 2 computes a set S such thatM ∈ S and
|S| ≤ 2un(n)− 1 by performing at most 4nun(n) comparisons.

4.1.2 Second phase
The outcome of the first phase is a set S of size at most 2un(n)−

1 containing M ; the second phase is devoted to solving Problem 2,
that is, retrievingM (or a nearby element) from S, using experts to
perform comparisons. We have three options to solve Problem 2:

1. Perform an all-play-all tournament on the set S and pick the
element ewith the most wins; it is guaranteed that d(M, e) ≤
2δe. This method requires Θ(un(n)2) expert comparisons.

2. Use the deterministic algorithm 2-MaxFind [2, Section 3.1]
(pseudocode in Algorithm 3); it performs O(un(n)3/2) ex-
pert comparisons to return an element e such that d(M, e) ≤
2δe.

3. Use the randomized algorithm from [2, Section 3.2] (pseu-
docode in Algorithm 5 in Appendix B); this performs Θ(un(n))
expert comparisons and it returns an element e with the guar-
antee that d(M, e) ≤ 3δe whp.

Clearly, we do not consider the first option as it is dominated by
the second one (assuming that we memorize results and we do not
repeat comparisons that we have already performed). For the theo-
retical analysis we assume that we use the third one. This allows us

Algorithm 2: Find a set of candidates containing the maximum
element M

Input : A set L of n elements, a function un(n) = o(n).
Output: A set of size at most 2un(n)− 1 containing the

maximum element M of L.
1 g ← 4un(n)
2 i← 0
3 Li ← L
4 while |Li| ≥ 2un(n) do
5 Li+1 ← ∅
6 Partition Li into subsets G1, . . . , G` of size g (the last one

may be smaller)
7 forall the Gj , 1 ≤ j ≤ `− 1 do
8 Perform an all-play-all tournament among the

elements of Gj

9 Let Wj be the set of the elements of Gj that win at
least g − un(n) comparisons in the all-play-all
tournament.

10 Li+1 ← Li+1 ∪Wj

11 end
12 if |G`| ≤ un(n) then
13 Li+1 ← Li+1 ∪G`

14 else
15 Let W` be the set of the elements of Gj that win at

least |G`| − un(n) comparisons in the all-play-all
tournament

16 Li+1 ← Li+1 ∪W`

17 end
18 i← i+ 1

19 end
20 return Li

to obtain asymptotically optimal results in terms of expert compar-
isons, with the downside that the value returned can be up to 3δe
far from the maximum, whp. In practice though it turns out that the
second option is superior to the third one for the values of n (and
un(n)) that we consider: even though the third option is a linear
algorithm, the constants are so high that for the values of n of our
interest they lead to a much higher cost. The second option has also
the advantage that it guarantees to return an element that is closer
to the maximum (only 2δe far, the best possible for the model [2]).
For this reason we use the 2-MaxFind algorithm for the simulations
in Section 5.

For the sake of completeness, we now outline the algorithm and
present its pseudocode in Algorithm 3 (see also [2, Section 3.1]).
Consider the candidate set S returned by Algorithm 2 and let s =
|S| ≤ 2un(n) − 1. Algorithm 2-MaxFind works by iteratively
selecting an arbitrary subset of

√
s elements and then performing

an all-play-all tournament among them. All the elements are then
compared to the winner of the tournament (i.e., one of the elements
with the highest number of wins). Those that lose against the win-
ner are removed. This process is iterated on the remaining elements
until only

√
s elements are left. A final all-play-all tournament

among these elements determines the winner.

4.2 Analysis of the Algorithm
In this section we analyze the correctness and efficiency of the

algorithm presented in the previous section. As we mentioned pre-
viously, for the purpose of the analysis, we assume that, in the sec-
ond phase, Algorithm 3 is replaced by its randomized counterpart
from [2, Section 3.2] (pseudocode in Algorithm 5 in Appendix B).



Algorithm 3: 2MaxFind: find (approximation of) maximum
element M

Input : A set S of s elements.
Output: An estimate of the maximum element M in S.

1 Label all items as candidates
2 while more than d

√
se candidates do

3 Pick an arbitrary set of d
√
se candidate elements and play

them in an all-play-all tournament. Let x have the most
number of wins

4 Compare x against all candidate elements and eliminate all
elements that lose to x

5 end
6 Play a final all-play-all tournament among the at most d

√
se

elements survived and return the element with the most wins

Correctness. The following lemma shows the correctness of our
algorithm, assuming that we use the randomized algorithm from [2,
Section 3.2]9 (i.e., option 3 from the discussion in the previous sec-
tion).

LEMMA 4. With probability at least 1−|S|−c, for any constant
c and S large enough, our algorithm returns an element e such that
d(M, e) ≤ 3δe.

PROOF. Immediate from the fact that S containsM and [2, The-
orem 4].

Cost analysis. The following lemma quantifies the cost of our al-
gorithm assuming, as we mentioned, that in the second phase we
apply the randomized algorithm in [2, Section 3.2].

LEMMA 5. Our algorithm performs O(nun(n)) naïve and
O((un(n))1.7 + (un(n))0.6 log2 un(n)) expert comparisons. Ac-
cordingly, its monetary cost C(n) is

C(n) = O(cnnun(n)+ce((un(n))1.7+(un(n))0.6 log2 un(n))) .

If we use algorithm 2-MaxFind to perform the second phase, the
following theorem follows from Lemma 3 and from [2, Lemma 1]:

THEOREM 1. There exists an algorithm that computes an ele-
ment e such that d(e,M) ≤ 2δe and that performs at most 4nun(n)

naïve comparisons and 2un(n)3/2 expert ones.

4.3 Lower Bounds
In this section, we study the inherent complexity of Problems 1

and 2, into which we have divided the task of the maximum element
of a set: (1) identifying a small candidate set containing the maxi-
mum using cheap, naïve workers and (2) selecting the maximum or
a nearby element out of S, using experts to perform comparisons.

We start with Problem 2, which is easier to analyze. It is sim-
ple to conceive instances of the problem for which un(n) elements
are naïve indistinguishable from the maximum. This implies that
the number of expert comparisons required are in the worst case
Ω(un(n)). Actually, it is possible to prove stronger results. The
following theorem follows from [2].

LEMMA 6. Any deterministic algorithm that computes an ele-
ment e such that d(e,M) ≤ 2δe must perform at least Ω(un(n)4/3)
expert comparisons.
9An analogous result holds deterministically if we use the 2-
MaxFind algorithm.

Next, we turn our attention to Problem 1. Here, we prove in
Corollary 1 below that the number of comparisons performed by
Algorithm 2 in Phase 1 is optimal. To prove this corollary, we first
show the key fact that, if we want to identify a subset of elements
containing the maximum out of the initial set L of size n using
naïve workers, we need to identify all elements that win at least
n − un(n) comparisons in an all-play-all tournament among the
elements of L, because any of them could be the maximum.

LEMMA 7. Let C be any set of comparisons by naïve work-
ers. If there exists an element e that takes part in at most un(n)
comparisons in C, then there exists an assignment of values to the
elements such that (1) the assignment of values is compatible with
the outcomes of C and (2) e is the element with maximum value.

PROOF. Let element e have the maximum value, and let E1 be
the set of (at least n−un(n), by Lemma 1) elements that the maxi-
mum wins andE2 the other (at most un(n)) elements. We construct
the following instance (see Figure 8 in the appendix). We arrange
the elements in E1 at distance about 1.5δn from e such that they
are distinct (say, we arrange them evenly in an interval of length
0.1δn, centered at distance 1.5δn from element e). We arrange the
elements in E2 in a similar way at distance 0.8δn from element e.
This is a valid instance for the model because there are at most
un(n) elements with distance at most δn from the maximum, and
the maximum wins against all the elements at distance more than
δn. With the exception of e, all the other elements are at a dis-
tance δn from each other, so any comparison result among them is
compatible with the results in C.

As a corollary, we obtain the fact that if we want to return a small
set of candidates for the maximum, then we must make at least
Ω(nun(n)) comparisons. This number of comparisons is required
even if the algorithm returns a large (up to a constant fraction) set.

COROLLARY 1. Any algorithm that uses only comparisons by
naïve workers, and that returns a set S that is guaranteed to con-
tain the maximum and such that |S| ≤ n/2, must perform at least
nun(n)/4 comparisons.

PROOF. The algorithm returns the set S with candidates for the
maximum, so it deduces that no element in the set L \ S is the
maximum. By Lemma 7, each of the elements in L \ S must take
part in at least un(n) comparisons (otherwise it is impossible to
deduce for sure that it is not the maximum). We have |S| ≤ n/2,
therefore |L \ S| ≥ n/2. Each comparison involves two elements,
so the required number of comparisons is at least nun(n)/4.

4.4 Estimation of un(n)

A nice feature of the algorithm is that it only requires one param-
eter, namely un(n), which we assume to be o(n). Overestimating
this parameter can only harm in cost but not in accuracy. We next
show how we can estimate an upper bound to un(n) using a train-
ing set, that is, a set of n̂ elements of which we know the one with
highest value (we denote this element with M̂ ). Training data like
this (or even richer; for example, assuming that the results of all
pairwise comparisons are known) are typically used in crowdsourc-
ing platforms to evaluate the workers and are sometimes referred to
as gold data.

First, we note that without additional assumptions on the model
it is impossible to estimate the value of un(n). Indeed, the model
allows for the workers to reply correctly when the difference in the
values of the elements presented to them is under the threshold δn,
thus providing no information about δn. Therefore we are required
to perform some additional assumptions:



Assumption 1. We assume that the training set reflects the statisti-
cal properties of the actual dataset we will work with. In particular,
we assume that the number of items within distance δn from M is
distributed like the number of items within distance δn from M̂ , the
element with maximum value in the training set, so that n

n̂
un(n̂) is

a reasonable estimator of un(n).
Assumption 2. We assume that, for comparisons between elements
whose difference in value is below the (naïve) threshold, workers
err with some probability perr > 0. We assume that the empirical
error rate in the training set (i.e., the fraction of times that the work-
ers select the wrong element in a comparison) is a good estimator
for perr.

For example, if we look at Figure 2(b), we might assume perr ≈
0.4 for accuracies up to 20%. We further assume that comparisons
performed by different workers or involving different item pairs
are statistically independent. This assumption, except for being
required as we noted previously, seems to be reasonable. Indeed, if
a worker is being tested and he never errs then we can consider him
an expert!

We remark that the assumptions are only needed to estimate
un(n); the algorithms discussed in Section 4 are completely obliv-
ious to these assumptions. We also stress once more that overesti-
mating un(n) has no impact on the correctness of the algorithm or
on the quality guarantees, only on the cost.

Below we describe the procedure to estimate un(n) as Algo-
rithm 4. Note that this algorithm does not assume any knowledge
of the naïve threshold δn. In this algorithm, c is a suitable constant
that is used to tune the level of confidence with which we return an
upper bound on un(n).

Algorithm 4: Estimating un(n) from training data.
Input : Training set containing n̂ elements.
Output: An estimate of un(n).

1 # errors← 0
2 forall the x in training set do
3 Ask a worker to compare pair (x, M̂ ).
4 if the worker made an error then
5 # errors← # errors+ 1
6 end
7 end
8 return n

n̂
max

{
c lnn, 2(# errors)

perr

}
Next we show that, under Assumption 2, we have

un(n̂) ≤ max

{
c lnn,

2(# errors)

perr

}
whp, which, using Assumption 1, implies that the above procedure
returns an upper bound for un(n).

If un(n̂) < c lnn we are done, so in the following we assume
that un(n̂) ≥ c lnn. Because there exist un(n̂) elements in the
training set that workers can confuse with the maximum, we have

E [# errors] = perrun(n̂).

Then, under Assumption 2 above, an application of a Chernoff
bound [10, Section 1.6] implies that:

P
(

# errors <
perr

2
un(n̂)

)
< e−

perr
8

un(n̂) ≤ n−
cperr
8 ,

which implies that whp we have that un(n̂) ≤ 2(# errors)
perr

, and
proves our claim.

Notice that we now need to estimate the value perr. We next dis-
cuss how this value is much easier to estimate than un(n) if we
assume our model reflects workers’ behavior. To this purpose, we
consider a subset of element pairs from our training set and we
compare them using naïve workers, assigning each pair to multi-
ple workers for comparison. For a given pair, if there is consensus
among the workers it was assigned to, we take this as an indication
that the difference in the values between the two elements of the
pair is at least δn, up to a residual probability that decreases expo-
nentially in the number of workers, following the same arguments
as in Section 3.2. On the other hand, for pairs in which the val-
ues of the two elements to compare differ by less than δn, the error
probability on these pairs is exactly perr, and a simple application of
a Chernoff bound shows that, with high probability, we can achieve
an accurate estimate of perr with a small number of workers. For
issues concerning the estimation of the value perr in real life and for
a more general discussion, we refer the reader to Appendix A.

5. EXPERIMENTS
To evaluate the efficiency of our algorithm we performed a series

of simulations, which we present next. In Section 5.1 we perform
experiments to compare the accuracy of our algorithm with simpler
ones. In Section 5.2 we measure the loss in accuracy and cost if we
err in the estimation of un(n). Finally, in Section 5.3 we show how
our algorithm performs when using real workers from the Crowd-
Flower platform, first in two controlled applications and then on the
more realistic problem of evaluating search results.

We study the performance of the algorithms both on randomly
and on adversarially generated inputs. For the former, we selected
n random values independently and uniformly at random from a
range. We experimented with various values for the parameters n,
δn, and δe; the last two, in particular, define the values of un(n)
and ue(n), respectively. When a worker is asked to rank a pair of
elements whose value difference is below her threshold (δn or δe),
each element is chosen as the answer with probability 1/2.

The adversarial data were created so as to maximize the number
of comparisons of 2-MaxFind algorithm. Specifically, in all the
comparisons of step 4 of Algorithm 3, whenever the difference is
below the threshold, we make element x lose, such as to maximize
the number of elements that go to the next round. Furthermore,
whenever the algorithm compares two elements whose values have
a difference smaller than the threshold, the response is such that it
maximizes the number of comparisons of the algorithm. For our
algorithm we considered the upper bound predicted by the theory,
even though the actual bound may be lower.

5.1 Comparison of Accuracy and Cost
Our algorithm is optimal asymptotically in the sense that it min-

imizes both naïve and expert comparisons (see Section 4). In this
section, we compare our algorithm against two other approaches,
(1) 2-MaxFind [2] (see also Section 4.1.2) when it uses only naïve
users and (2) 2-MaxFind when it uses only expert users. We will
refer to the former approach as 2-MaxFind-naïve and to the latter as
2-MaxFind-expert. In particular, we compare the three approaches
with respect to their cost and accuracy. By accuracy we mean the
rank of the element returned. If the rank is 1 then we have perfect
accuracy, and the higher is the rank the lower is the accuracy.

We start by comparing the accuracy of the three approaches. In
Figure 3 we depict the true rank of the element returned for each
of them. As expected, we can observe that the best approach is 2-
MaxFind-expert, with our Algorithm following closely, whereas 2-
MaxFind-naïve returns an element with a much lower rank, which
worsens as un(n) increases.
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Figure 3: Accuracy as a function of n for different values of un(n) and
ue(n). We compare our approach (Alg 1) with the 2-MaxFind algorithm
that uses either only expert or only naïve users.

Thus, unless un(n) is very small, which would mean that the
naïve users perform very well or that the dataset is small, if we
require high accuracy we need to resort either to our algorithm or
to 2-MaxFind-expert. Which one is preferable depends also on the
cost, which we explore next.

We next compare the number of naïve and expert comparisons
of the three approaches in Figure 4, on average and in the worst
case. First note how much smaller is the number of expert com-
parisons for our algorithm; it only depends on the leftover set, and
is expected to stay constant as n grows. On the other hand, this
comes at a price. We now perform a high number of naïve com-
parisons, actually higher than the number of expert comparisons
that 2-MaxFind-expert performs, in the average case. If the cost of
an expert and of a naïve worker is comparable (obviously the ex-
act values will depend on the platform and on the application), then
the cost of our algorithm will be higher than 2-MaxFind-expert, and
it is better to simply use the latter. On the other hand, in settings
where expert comparisons have a much higher cost than naïve com-
parisons, our algorithm leads to a significantly lower cost. In par-
ticular, in the case where naïve comparisons are performed by ma-
chines and expert ones by humans, the cost savings can be tremen-
dous. Similarly, in cases where experts are a limited resource, as
is often the case when the experts are hired outside of the crowd-
sourcing platform, it may be a necessity to use cheaper naïve users
to prefilter the items before eventually resorting to experts.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1000 2000 3000 4000 5000

#
 o

f 
c
o

m
p

a
ri

s
o

n
s

Dataset size (n)

Alg 1 naive (wc)
Alg 1 naive (avg)

2-MaxFind-naive (wc)
2-MaxFind-expert (wc)

2-MaxFind-exp/naive (avg)
Alg 1 expert (wc)

Alg 1 expert (avg)

(a) un(n) = 10, ue(n) = 5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1000 2000 3000 4000 5000

#
 o

f 
c
o

m
p

a
ri

s
o

n
s

Dataset size (n)

Alg 1 naive (wc)
Alg 1 naive (avg)

2-MaxFind-naive (wc)
2-MaxFind-expert (wc)

2-MaxFind-exp/naive (avg)
Alg 1 expert (wc)

Alg 1 expert (avg)

(b) un(n) = 50, ue(n) = 10

Figure 4: Number of comparisons as a function of n for two values of un(n)
and ue(n). Note that the y-axis is on a log scale. We depict the number
of expert and naïve comparisons for our algorithms, the number of expert
comparisons of 2-MaxFind-expert and the number of naïve comparisons
of 2-MaxFind-naïve. In each, we present the number of comparisons in
both the average-case and the worst-case scenario. The average number of
expert comparisons of 2-MaxFind-expert and the average number of naïve
comparisons of 2-MaxFind-naïve are very close to each other, and we depict
them with a single curve.

To quantify the savings in cost, we apply the model of Sec-
tion 3.4, with unit cost for cn and various values for ce. In Fig-
ure 5 we observe how the average cost increases in the input size,
for various parameters. Figure 9 contains the same information for
the worst-case cost, calculated as we mentioned previously. We
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Figure 5: Average cost as a function of n with cn = 1 and different values
of ce, un(n) and ue(n). We have ce = 10 (row 1), 20 (row 2), 50 (row 3).
We compare our approach (Alg 1) with the 2-MaxFind algorithm that uses
either only expert or only naïve users.

can observe that the savings of our two-phase algorithm become
higher as the the ratio ce/cn of the expert cost over the naïve cost
becomes higher. Notice that the average cost of 2-MaxFind-expert
is lower in cases in which the ratio ce/cn is relatively small (but the
worst-case cost is still comparable or higher). In such cases, it is
probably beneficial to use the 2-MaxFind-expert—the exact scenar-
ios depend on the values of un(n), ue(n), and the aforementioned
ratio. In particular, we found that if the ratio is less than 10, then
our algorithm has a higher cost in the average case. As the cost of
an expert worker becomes much higher than the cost of a naïve one,
the savings can become tremendous. A typical case for these sce-
narios is when we would use a crowdsourcing service as a provider
for naïve workers, and use external professionals as experts, as we
expect to be the case in the application of evaluation of search re-
sults that we describe in Section 5.3. The ratio can be even higher
when a naïve worker corresponds to a machine-learning algorithm,
whereas the expert is a human professional.

The overall conclusion of this set of experiments is that unless
the cost of an expert is comparable to the cost of a naïve worker
(less than 10 times more expensive), we can achieve great cost sav-
ings by our approach taking advantage of both naïve and expert
users.

5.2 Under/Over Estimation of un(n)

In this section we analyze the effects of inaccurate estimation of
parameter un(n) on the accuracy and cost of our algorithm.

To this end, we vary the input size and we measure the accu-
racy as the average real rank of the maximum element returned by
the algorithms we consider, where the average is taken over a set
of randomly generated instance of the given size, for the three ap-



proaches that we considered in the previous section: our algorithm
(Alg 1), 2-MaxFind-expert, and 2-MaxFind-naïve. We describe the
inaccuracy in the estimation of un(n) by the estimation factor, de-
fined as the ratio between the estimated and the true value of un(n).
We consider the values {0.2, 0.5, 0.8, 1, 1.2, 2} for the estimation
factor.

The effects of inaccurate estimation of un(n) on the accuracy are
summarized in Figure 6. As expected, when un(n) is overestimated
the results do not worsen w.r.t. the case that we have the exact value
of un(n) because in the end of the first phase of the algorithm we
end up with a larger set (though this comes at a higher cost). When
un(n) is underestimated, the accuracy of our algorithm potentially
decreases, because it could return an empty set of elements or a set
of elements that does not contain the real max. In practice, we find
that the results are not much worse compared to the case that the
underestimation is not very large. For instance, if the estimation
factor is 0.8 then the set returned in the first round contains the real
max in 99% of the times, whereas for an estimation factor of 0.5
results start to worsen with the max appearing in 82% of the sets.
When the estimation factor drops to 0.2 the number of times the
maximum arrives in the second round is only 38%. Yet the element
recovered is not very bad, as we see in Figure 6.
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Figure 6: Accuracy as a function of n for different values of un(n) and
ue(n). We compare the accuracy of our 2-phase algorithm for various val-
ues of the estimation factor.

Next we examine the effect on the cost. figures 7 and 10 depict
the change of the cost for different estimation factors as we vary the
dataset size. As in the Section 5.1 we consider both the average and
the worst-case datasets. Figure 7 shows that the cost has a smooth
linear behavior; for instance, an estimation factor of 2 doubles the
cost both in the average and the worst case.

As a general conclusion, a small overestimate or underestimate
of the value un(n) does not affect radically, neither the accuracy,
nor the cost of our algorithm, at least for the datasets that we con-
sidered, indicating a robust behavior of our algorithm.

5.3 Experiments on CrowdFlower
We finally conducted a series of experiments on CrowdFlower,

whose goal was twofold: (1) Assessing the ability of our algorithm
to compute a value close to the maximum; (2) investigating the ac-
curacy of a naïve-only approach based on 2-MaxFind on real prob-
lem instances. The first two problems are somewhat artificial, but
were chosen as they admit objective, numerical answers, which al-
low the evaluation of our approach. The third problem we consid-
ered is representative of a class of potential applications in which
the presence of experts may make a difference.
Settings. We used the datasets DOTS and CARS described in Sec-
tion 3.1. For each dataset we conducted two identical experiments,
namely, they have equal configuration and receive the same input
data. From each dataset we downsampled a set of n = 50 elements.
This volume of data allows to draw conclusions on the performance
of the algorithm on real data at reasonable cost. The real data we
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Figure 7: Average cost as a function of n with cn = 1 and different values
of ce, un(n) and ue(n). We have ce = 10 (row 1), 20 (row 2), 50 (row 3).
We compare the cost of our 2-phase algorithm for various values of the
estimation factor.

used suggested choosing a value un(n) = 5 for Algorithm 2. We
used the CrowdFlower workers to perform the naïve comparisons.

CrowdFlower does not provide a service of experts for the prob-
lem that we address, so we leveraged the wisdom-of-crowd ef-
fect [30], simulating each expert query by 7 naïve queries and se-
lecting the answer that received most votes, just as we did in Sec-
tion 3.1. As we saw there, this approach is effective in the DOTS
experiment but not in the CARS one. This points to the depen-
dency of the crowd’s performance on the type of expertise required
for the task at hand. We report the results for this latter experiment
(CARS) as well, as they provide further evidence for the findings
of Section 3.1.

Experiments on DOTS. This experiment was inspired from pre-
vious work [33]. We used images of random dots extracted from
DOTS. In particular, we used 80 images of random dots (50 images
are used for building the dataset and 30 for the golden set, used
for gold comparisons). The golden set associated to this dataset is
formed by images with a number of dots from 200 to 800 with step
20. The two sets have no elements in common. We performed two
experiments asking the users to select the image with the minimum
number of random dots.

The final results were almost perfect. In both experiments, nine
elements passed to the second phase, and in both they were the real
top-9 elements.

From the discussion in Section 3.1 about the findings presented
in Figure 2(a), for the DOTS experiment we can simulate expert
workers by using several naïve ones. Indeed, that is what we did
for the second phase of our algorithm. Since CrowdFlower does
not provide a service of experts for the problem that we address, we



leveraged the wisdom-of-crowd effect [30], simulating each expert
query by 7 naïve queries and selecting the answer that received
most votes, just as we did in Section 3.1. As we saw there, this
approach is effective in the DOTS experiment.

In Table 1 we can see a summary of the results of the second
phase, which confirm the conclusions of Section 3.1: The second-
phase (simulated) experts were able to always find the minimum,
and, further, the output correctly orders the top-9 elements, except
in one case for one of the experiments, in which the top-6 and top-
7 elements are swapped. This verifies that this is an example of a
question where using expert users is clearly not recommended.

# dots Exp. 1 Exp. 2

100 1 1
120 2 2
140 3 3
160 4 4
180 5 5
200 7 6
220 6 7
240 8 8
260 9 9

Table 1: The ranking of the last round of the two DOTS experiments.

Indeed, performing the two-level approach for this problem is
an overkill. The results of the 2-MaxFind algorithm with Crowd-
Flower workers are almost equally as good. We repeated the algo-
rithm 14 times in which in all but one case the correct instance was
returned.
Experiments on CARS. In this experiment we wanted to study the
quality of the results when the data are much more fuzzy. The goal
is to perform queries to find the car that is most highly priced.

Again we conducted two experiments. The results here are also
very good. Again nine cars passed to the second round and in
both cases the most expensive car passed to the second round even
though in this case some of the top-ranked cars did not pass to the
second round. As with the DOTS experiment, we attempted to sim-
ulate an expert by performing 7 naïve queries. The conclusions of
Section 3.1 about Figure 2(b) suggest that in this case this approach
will not work, and here we want to check this hypothesis.

We can see the ranking of the last round in Table 2 in Appendix C.
Note that, as we mentioned, the top car always reaches the last
round. However, in contrast with DOTS, the simulated experts are
not able to identify it, indicating the need for real experts for this
task. Furthermore, note that because of the fuzziness of the data
some cars far from the top-10 arrive at the second phase.

We obtained the results for 14 executions of 2-MaxFind for this
problem as well, but the algorithm performed poorly. In none of
the executions was the real minimum returned. Instead most of the
times the fourth-ranked car was given as a solution, and sometimes
even cars not in the top-10. Clearly a truly informed expert opinion
is required in this case.
Evaluation of Search Results. In the paragraphs above, we con-
sidered two rather artificial application examples that admit objec-
tively correct answers, allowing us to test accurately the model and
our algorithm with real workers. One though would expect that if
we are interested in applying our approach to real life, we should
assume that in many cases an objective answer might not exist (oth-
erwise we would probably not resort to humans), yet it might still
be possible to apply the same technique.

In the third set of experiments we considered a more realistic sce-
nario, addressed often by search-engine companies, namely, com-

paring query results. Typically this is performed by human judges,
who are experts in identifying the most relevant result for a given
query and in a given context (e.g., user profile)—but even using this
approach the inter-agreement among the judges is not perfect.

The objective evaluation of such a problem is far from trivial, as
results depend on the particular user, context, and history. To alle-
viate this problem we considered two specific queries from the area
of approximation algorithms: “asymmetric tsp best approximation”
and “steiner tree best approximation.” The reason for selecting such
queries is twofold: (1) We believe that there is a clear best result for
the majority of the searches—the paper or a link that contains the
current (recently published) best result; (2) We can find real human
experts (researchers in the area of algorithms) who can evaluate the
results.

For each of the queries we obtained 50 results from Google, dis-
tributed uniformly among the top-100 results; this allowed us to
have results that are relevant to the queries in different extents. We
applied our two-phase algorithm considering workers from Crowd-
Flower as naïve and researchers in the area of algorithms as ex-
perts, who informed us about the best (and recent—within 5 year)
approximation algorithms for the two problems. We experimented
with values of un(50) = 6, 8, 10. In both queries and for all these
values of un(50) the maximum was promoted to the second round
(and the experts identified it, of course).

Finally, we applied the 2-MaxFind algorithm, using only naïve
users. In detail, for each query we executed two runs of 2-MaxFind
on CrowdFlower, for a total of four independent runs. Results show
that the naïve-only approach was not satisfying: naïve users were
able to identify the best result only in one of the four cases (one run
over the asymmetric TSP instance). This suggests that a naïve-only
approach may not be sufficiently reliable for this type problem.

6. CONCLUSIONS
In this paper we defined computational and cost models for crowd-

sourcing, formalizing the idea of using workers with different ex-
pertise levels. Our main conclusion is that there are two types
of tasks, tasks in which the wisdom-of-crowds paradigm holds, in
which case we can simulate an expert by the use of several nonex-
pert users, and tasks in which it does not hold and in which there is
a necessity for real expertise. To model these two types of applica-
tions we considered different error models. A novelty of our work
is the definition of the threshold error model with experts and it is
applicable precisely when we need workers with different expertise
levels. We used these models to develop and analyze an algorithm
for approximate max-finding in these settings. The algorithm uses
naïve workers to filter out the majority of the elements, and then
asks the expert workers to focus on a restricted set. We also provide
lower bounds to the number of comparisons required to perform the
task. Our experimental evaluation of the models and the algorithm
on synthetic and real-world problems using the CrowdFlower plat-
form shows that the former are realistic and the latter performs well
in practice. In particular, it shows that for some applications sim-
ple crowdsourcing approaches can lead to erroneous results, and in
these cases the use of real experts is of paramount importance.
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APPENDIX
A. DISCUSSION ON THE MODEL AND AL-

GORITHM
Algorithm optimizations. It is possible to optimize the implemen-
tation of the algorithm to reduce the time and monetary costs by re-
ducing the number of comparisons it performs in practice. Firstly,
we can avoid repeating the comparison of two elements multiple
times by the same type of workers. This can happen both in the
first phase (naïve workers) or in the second phase (experts). In par-
ticular, in the first phase we may have that two elements belongs to
the same group at different iterations of the loop on line 4: there
is no need to compare them again after the first time. The algo-
rithm will keep an n× n table containing in cell (i, j) the result of
the first comparison between element ei and element ej . A second
optimization allows to filter out more elements at the end of each
iteration of the loop. This would have the net result of having a
smaller Lw at the end of iteration w, and therefore terminating ear-
lier. To understand this optimization one should realize that what
the algorithm is doing in the first phase is trying to identify all the
elements that would win at least n− un(n) comparisons in an all-
play-all tournament among all the n elements. Now, an element
may never lose more than un(n) comparisons in a single iteration
of the loop, but it may lose more than that (against different ele-
ments) in multiple iterations. This would imply that in a global
all-play-all tournament, the element would lose more than un(n)
comparisons so, according to Lemma 1, it cannot be the maximum.
We can therefore keep, for each element, a counter of the number
of losses against different elements across all the iterations. At the
end of each iteration we check these counters for all the elements
and remove fromLi+1 the elements for which the counter is greater
than un(n).
Model vs. real life. Clearly, the model we considered (as is the case
with several ones proposed in previous work) makes some simpli-
fying but unrealistic assumptions, such as the existence of a partial
order and of a unique error threshold common to all naïve users,
and that responses are independent. This is part of the price we pay
for a framework that can capture settings in which experts are bene-
ficial or even necessary to achieve satisfactory results and that at the
same time allows the design and rigorous analysis of algorithms.

Although the algorithms we propose apply directly to real set-
tings as long as we can define suitable values for the parameters
they require, generalizations of our model could reflect scenarios
of practical interest more faithfully. For instance, for a more realis-
tic model, we should assume that even if the difference between the
values of two elements is above δn a worker may err, albeit with a
smaller probability than perr, that the error probability depends on
the distance and the worker, and so on.

Extensive experimental work along the lines of the previous para-
graph is of great interest but it may require considerable economic
resources. Although it is in the scope of the present paper, our
attention in this work is more shifted towards the definition of a
model that captures naturally the concept of experts and is amenable
to analysis. We leave the extensions mentioned above for future
work; yet in Section 5 we apply our model in some controlled, al-
beit rather small, examples for which we possess a ground truth,
showing its applicability in real-life scenarios.

B. MISSING PROOFS
In this section we include the proofs missing from the main body

of the paper.

B.1 Proof of Lemma 2
PROOF. Let S ⊂ A be the set of elements with at least |A| − r

wins. If |S| ≤ r the lemma follows immediately. So, assume that
|S| > r. Each element in S can win against at most |A| − |S|
elements from A \ S. Then each element from S must also win
against at least |S| − r other elements from S so as to have at least
|A| − r wins. Indeed, for a given element e ∈ S, let x be the
number of elements that e wins among the elements in A \ S and
y the number of elements that it wins among the elements in S.
We will now show that y ≥ |S| − r. Because e ∈ S, we have that
x+y ≥ |A|−r. In addition, x ≤ |A \ S| = |A|−|S|. Combining
these two equations we obtain y ≥ |A|−r−(|A|−|S|) = |S|−r.
Each element in S wins against at least |S| − r other elements in
S, so there must be at least |S| (|S| − r) wins of elements in S
against other elements in S. Within S one can play at most

(|S|
2

)
comparisons, so we have that

|S| (|S| − r) ≤
(|S|

2

)
,

which is true if and only if |S| ≤ 2r − 1.

B.2 Proof of Lemma 3
PROOF. The fact that |S| ≤ 2un(n) − 1 follows trivially from

the condition of the while block on line 4 of Algorithm 2. After
each all-play-all tournament, we discard only elements that lose
more than un(n) comparisons so all elements that never lose more
than un(n) comparisons are never discarded and therefore are in S.
This means that in particular S contains all elements that, in an all-
play-all tournament among all elements of L, would lose at most
un(n) comparisons or, equivalently, that would win at least n −
un(n) comparisons. From Lemma 1 we know that the maximum
M ∈ L is in this latter set, so M ∈ S.

Suppose now that we are at iteration i and consider the elements
in a subset Gj of Li. (To simplify the presentation, we assume
that also the last set G` contains g elements.) After the all-play-all
tournament among the elements of Gj , it follows from Lemma 2
applied to Gj that there cannot be more than 2un(n)− 1 elements
with at least g − un(n) wins. Then at most 2un(n) − 1 elements



from each set Gj belong to Li+1. This means that (ignoring ceil-
ings, for clarity of the presentation) as long as |Li| ≥ 4un(n), we
have

|Li+1| ≤
|Li|
g

(2un(n)− 1) = |Li|
2un(n)− 1

4un(n)
≤
|Li|
2

.

When |Li| drops below 4un(n), then, by Lemma 2, by the end
of the iteration we will obtain that |Li+1| < 2un(n) and in the
next iteration the algorithm will terminate. Therefore the algorithm
stops after at most i∗ iterations, with

i∗ = log2 n− log2 4un(n) + 1 ≤ log2 n.

Furthermore, we have that L0 = n, so
∑i∗

i=0 |Li| ≤ 2n.
At each iteration of the loop on line 4, the algorithm performs

at most
(
g
2

)
comparisons for the all-play-all tournament of a group

Gi. In total, over all iterations and all groups, the number of com-
parisons that the algorithm performs is at most

i∗∑
i=0

|Li|
g

(
g

2

)
=

i∗∑
i=0

|Li| (g − 1)

2
≤ g

2

i∗∑
i=0

|Li| ≤ gn ≤ 4nun(n).

Figure 8: Instance considered in the proof of Lemma 7.

B.3 Randomized Algorithm for the Second phase
For completeness, we present as Algorithm 5 the randomized

algorithm for the second phase by Ajtai et al. [2].

Algorithm 5: Randomized Algorithm for finding (approxima-
tion of) maximum element M

Input : A set S of s elements.
Output: An estimate of the maximum element M in S, whp.

1 N0 ← S, W ← ∅, i← 0

2 while |Ni| ≥ s0.3 do
3 Sample from W n0.3 elements at random and insert them

into W
4 Randomly partition the elements in Ni into sets of size

80(c+ 2), for some constant c
5 In each set, perform an all-play-all tournament between

the elements of each set to find the minimal element (the
element with the fewest wins, with ties broken arbitrarily)

6 Let Ni+1 contain all of Ni except for the minimal
elements found in the previous step

7 i← i+ 1;
8 end
9 W ←W ∪Ni

10 Play all-play-all tournament between elements of W and
return element with highest number of wins, ties broken
arbitrarily

C. MISSING MATERIAL FROM SECT. 5

Model Price Exp. 1 Exp. 2

2013 BMW M6 Base - $123985 2 2
2013 Audi S8 4.0T quattro - $120375 5 -
2013 Mercedes-Benz ML63 AMG - $114730 - -
2013 Mercedes-Benz SL550 - $114145 2 1
2012 Mercedes-Benz SL550 - $111675 - 3
2013 Porsche Cayenne GTS - $97162 7 5
2013 BMW 750 Li xDrive - $95028 - -
2012 Audi A8 L 4.2 quattro - $88991 9 -
2013 Lexus LS 460 Base - $88110 - -
2013 Jaguar XJ XJL Portfolio - $84970 - -
2013 Chevrolet Corvette 427 - $83999 1 -
2013 Land Rover Range Rover Sport - $81151 - 6
2013 Cadillac Escalade Premium - $75945 - -
2013 BMW 550 i xDrive - $72895 5 4
2013 Infiniti QX56 Base - $71585 - -
2013 Audi A7 3.0T quattro Premium - $70020 - -
2013 Cadillac Escalade EXT Luxury - $68395 - -
2013 Porsche Cayenne Diesel - $67890 7 7
2013 Chevrolet Corvette Grand Sport - $66510 2 -

Table 2: Ranking at last round of the top-19 cars in the two experiments.

Section 5.1: Plot on worst-case dataset.
In Figure 9 we can see the comparison of the three approaches of

Section 5.1 and in Figure 10 the comparison of the cost for different
values of the estimation factor (Section 5.2).
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(e) un(n) = 10, ue(n) = 5
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Figure 9: Worst-case cost as a function of n with cn = 1
and different values of ce, un(n) and ue(n). We have ce =
10 (row 1), 20 (row 2), 50 (row 3). We compare our approach (Alg 1) with
the 2-MaxFind algorithm that uses either only expert or only naïve users.
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Figure 10: Worst-case cost as a function of n with cn = 1
and different values of ce, un(n) and ue(n). We have ce =
10 (row 1), 20 (row 2), 50 (row 3). We compare the cost of our 2-phase al-
gorithm for various values of the estimation factor.


