
Approximation Algorithms for Co-Clustering

Aris Anagnostopoulos
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089

aris@yahoo-inc.com

Anirban Dasgupta
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089

anirban@yahoo-inc.com

Ravi Kumar
Yahoo! Research

701 First Ave.
Sunnyvale, CA 94089

ravikuma@yahoo-inc.com

ABSTRACT
Co-clustering is the simultaneous partitioning of the rows
and columns of a matrix such that the blocks induced by
the row/column partitions are good clusters. Motivated by
several applications in text mining, market-basket analysis,
and bioinformatics, this problem has attracted severe atten-
tion in the past few years. Unfortunately, to date, most of
the algorithmic work on this problem has been heuristic in
nature.

In this work we obtain the first approximation algorithms
for the co-clustering problem. Our algorithms are simple and
obtain constant-factor approximation solutions to the opti-
mum. We also show that co-clustering is NP-hard, thereby
complementing our algorithmic result.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General

General Terms
Algorithms

Keywords
Co-Clustering, Biclustering, Clustering, Approximation

1. INTRODUCTION
Clustering is a fundamental primitive in many data anal-

ysis applications, including information retrieval, databases,
text and data mining, bioinformatics, market-basket analy-
sis, and so on [10, 18]. The central objective in clustering is
the following: given a set of points and a pairwise distance
measure, partition the set into clusters such that points that
are close to each other according to the distance measure
occur together in a cluster and points that are far away
from each other occur in different clusters. This objective
sounds straightforward, but it is not easy to state a universal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

desiderata for clustering—Kleinberg showed in a reasonable
axiomatic framework that clustering is an impossible prob-
lem to solve [19]. In general, the clustering objectives tend
to be application-specific, exploiting the underlying struc-
ture in the data and imposing additional structure on the
clusters themselves.

In several applications, the data itself has a lot of struc-
ture, which may be hard to capture using a traditional clus-
tering objective. Consider the example of a Boolean ma-
trix, whose rows correspond to keywords and the columns
correspond to advertisers, and an entry is one if and only
if the advertiser has placed a bid on the keyword. The
goal is to cluster both the advertisers and the keywords.
One way to accomplish this would be to independently clus-
ter the advertisers and keywords using the standard notion
of clustering—cluster similar advertisers and cluster simi-
lar keywords. However (even though for some criteria this
might be a reasonable solution, as we argue subsequently
in this work), such an endeavor might fail to elicit subtle
structures that might exist in the data: perhaps, there are
two disjoint sets of advertisers A1, A2 and keywords K1, K2

such that each advertiser in Ai bids on each keyword in Kj

if and only if i = j. In an extreme case, may be there is a
combinatorial decomposition of the matrix into blocks such
that each block is either almost full or almost empty. To
be able to discover such things, the clustering objective has
to simultaneously intertwine information about both the ad-
vertisers and keywords that is present in the matrix. This
is precisely achieved by co-clustering [14, 6]; other nomen-
clature for co-clustering include biclustering, bidimensional
clustering, and subspace clustering.

In the simplest version of (k, `)-co-clustering, we are given
a matrix of numbers, and two integers k and `. The goal is
to partition the rows into k clusters and the columns into `
clusters such that the sum-squared deviation from the mean
within each “block” induced by the row-column partition is
minimized. This definition, along with different objectives,
is made precise in Section 2. Co-clustering has received
lots of attention in recent years, with several applications
in text mining [8, 12, 29], market-basket data analysis, im-
age, speech and video analysis, and bioinformatics [6, 7, 20];
see the recent paper by Banerjee et al. [4] and the survey by
Madeira and Oliveira [22].

Even though co-clustering has been extensively studied in
many application areas, very little is known about it from an
algorithmic angle. Very special variants of co-clustering are
known to be NP-hard [15]. A natural generalization of the
k-means algorithm to co-clustering is known to converge [4].

Apart from these, most of the algorithmic work done on
co-clustering has been heuristic in nature, with no proven
guarantees of performance.

In this paper we address the problem of co-clustering from
an algorithmic point of view.

Main contributions.

Our main contribution is the first constant-factor approx-
imation algorithm for the (k, `)-co-clustering problem. Our
algorithm is simple and builds upon approximation algo-
rithms for a variant of the k-median problem, which we call
k-meansp. The algorithm works for any norm and produces
a 3α-approximate solution, where α is the approximation
factor for the k-meansp problem; for the latter, we obtain
a constant-factor approximation by extending the results of
the k-median problem. We next consider the important spe-
cial case of the Frobenius norm, and constant k, `. For this,
we obtain a (

√
2 + ε)-approximation algorithm by exploit-

ing the geometry of the space, and results on the k-means
problem.

We complement these results by considering the extreme
cases of ` = 1 and ` = nε, where the matrix is of size m×n.
We show that the (k, 1)-co-clustering problem can be solved
exactly in time O(mn + m2k) and the (k, nε)-co-clustering
problem is NP-hard, for k ≥ 2 under the `1 norm.

Related work.

Research on clustering has a long and varied history, with
work ranging from approximation algorithms to axiomatic
developments of the objective functions [16, 10, 19, 18, 34,
13]. The problem of co-clustering itself has found growing
applications in several practical fields, for example, simulta-
neously clustering words and documents in information re-
trieval [8], clustering genes and expression data for biological
data analysis [6, 32], clustering users and products for rec-
ommendation systems [1], and so on. The exact objective
function, and the corresponding definition of co-clustering
varies, depending on the type of structure we want to ex-
tract from the data. The hardness of the co-clustering prob-
lem depends on the exact merit function to be used. In the
simplest case, the co-clustering problem is akin to finding
out a bipartite clique (or dense graph) that is known to be
NP-hard even to approximate. Consequently, work on co-
clustering has mostly focused on heuristics that work well in
practice. Excellent references on such methods are the sur-
veys by Madeira and Oliveira [22] and Tanay, Sharan and
Shamir [30]. Dhillon et al. [4] unified a number of merit
functions for the co-clustering problem under the general
setting of Bregman divergences, and gave a k-means style
algorithm that is guaranteed to monotonically decrease the
merit function. Our objective function for the p = 2 case, in
fact is exactly the ‖·‖F merit function for which their results
apply.

There is little work along the lines of approximation algo-
rithms for the co-clustering problems. The closest algorith-
mic work to this problem relates to finding cliques and dense
bipartite subgraphs [24, 25]. These variants, are however, of-
ten hard even to approximate to within a constant factor.
Hassanpour [15] shows that a version of the co-clustering
problem that finds out homogeneous submatrices is hard
and Feige shows that the problem of finding out the maxi-

mum biclique is hard to approximate to within 2(log n)δ

[11].
Very recently, Puolamäki et al. [27] published results on

the co-clustering problem for objective functions of the same

form that we study. They analyze the same algorithm for
two cases, the `1 norm for 0/1-valued matrices and the `2
norm for real-valued matrices. In the first case they obtain
a better approximation factor than ours (2.414α as opposed
to 3α, where α is the best approximation factor for one-sided
clustering). On the other hand, our result is more general as
it holds for any `p norm and for real-valued matrices. Their
`2 result is the same as ours (

√
2α-approximation) and their

proof is similar (although presented differently).

Organization.

Sections 2 and 3 contain some background material. The
problem of co-clustering is formally defined in Section 4.
The algorithms for co-clustering are given in Section 5. The
hardness result is shown in Section 6. Finally, Section 7
contains directions for future work.

2. SOME CO-CLUSTERING VARIANTS
In this section we mention briefly some of the variants

of the objective functions that have been proposed in the
co-clustering literature and are close to the ones we use in
this work. Other commonly used objectives are based on
information-theoretic quantities.

Let A = {aij} ∈ R
m×n be the matrix that we want to

co-cluster. A (k, `)-co-clustering is a k-partitioning I =
{I1, . . . , Ik} of the set of rows {1, . . . , m} and an `-partitioning
J = {J1, . . . , J`} of the set of columns {1, . . . , n}.

Cho et al. [7] define for every element aij that belongs to
the (I, J)-co-cluster its residue as

hij = aij − aIJ , (1)

or

hij = aij − aiJ − aIj + aIJ , (2)

where aIJ = 1
|I|·|J|

∑

i∈I,j∈J aij is the average of all the

entries in the co-cluster, aiJ = 1
|J|

∑

j∈J aij is the mean of

all the entries in row i whose columns belong into J , and
aIj = 1

|I|

∑

i∈I aij is the mean of all the entries in column j

whose rows belong into I .
Having defined the residues, the goal is to minimize some

norm of the residue matrix H = (hij). The norm most
commonly used in the literature is the Frobenius norm, ‖·‖F ,
defined as the square root of the sum of the squares of the
elements:

‖H‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

h2
ij .

One can attempt to minimize some other norm; for exam-
ple, Yang et al. [33] minimize the norm

|‖H‖|1 =

m
∑

i=1

n
∑

j=1

|hij |.

More generally, one can define the norm

|‖H‖|p =

(

m
∑

i=1

n
∑

j=1

|hij |p
)1/p

. (3)

Note that the Frobenius norm is a special case, where p = 2.
In this work we study the general case of norms of the

form of Equation (3), for p ≥ 1, using the residual definition
of Equation (1). We leave the application of our techniques
to other objectives as future work.

3. ONE-SIDED CLUSTERING
In the standard clustering problem, we are given n points

in a metric space, possibly R
d, and an objective function that

measures the quality of any given clustering of the points.
Various such objective functions have been extensively used
in practice, and have been analyzed in the theoretical com-
puter science literature (k-center, k-median, k-means, etc.).
As an aid to our co-clustering algorithm, we are particularly
interested in the following setting of the problem, which we
call k-meansp. Given a set of vectors a1, a2, . . . an, the dis-
tance metric ‖·‖p, and an integer k, we first define the cost

of a partitioning I = {I1, . . . , Ik} of {1, . . . , n} as follows.
For each cluster I , the center of the cluster I is defined to
be the vector µI such that

µI = arg min
x∈Rd

∑

aj∈I

‖aj − x‖p
p .

The cost c(I) of the clustering I is then defined to be the
sum of distances of each point to the corresponding cluster
center, raised to the power of 1/p:

c(I) =

∑

I∈I

∑

aj∈I

‖aj − µI‖p
p

1/p

.

This differs from the k-median problem, where the cost of
the clustering is given by

∑

I∈I

∑

aj∈I

‖aj − µI‖p .

In the case of p = 1, k-meansp is the k-median problem,
while for p = 2, it is the k-means problem. We have not
seen any other versions of this problem in the literature.

In matrix notation, the points in the space define a ma-
trix A = [a1, . . . , ad]

T . We will represent each clustering
I = {I1, . . . , Ik} of n points in R

d by a clustering index ma-
trix R ∈ R

n×k. Each column of matrix R will essentially
be the index vector of the corresponding cluster, RiI = 1
if ai belongs to cluster I , and 0 otherwise (see Figure 1).
Similarly, the matrix M ∈ R

k×d is defined to be the set of
centers of the clusters, that is, M = [µ1, . . . , µk]T . Thus,
the aim is to find out the clustering index matrix R that
minimizes

|‖A − RM‖|p ,

where M is defined as the matrix in R
k×d that minimizes

M = arg minX∈Rk×` |‖A − RX‖|p .

Let mI be the size of the row-cluster I , and AI ∈ R
mI×d

the corresponding submatrix of A. Also let Ai? be the ith
row vector of A. We can write

|‖A − RM‖|pp =
∑

I∈I

|‖AI − RIM‖|pp

=
∑

I∈I

∑

i∈I

‖Ai? − µI‖p
p .

The two norms that are of particular interest to us are p = 1
and p = 2. For the p = 2 case, the center µI for each cluster
is nothing but the average of all the points Ai in that cluster.
For the case p = 1, the center µI is the median of all the
points Ai ∈ I . The p = 2 case, commonly known as k-means

clustering problem, has a (1 + ε)-approximation algorithm.

1

1

1

1

1

1

1

1

1

1

1

d = 8

n = 11

RA M

µ2

R2A2

k = 5

Figure 1: An example of a row-clustering, where

we have rows and columns that appear in the same

cluster next to each other. We have AI ∼ RI ·M ∼ µI .

For example, A2 ∼ R2 · M ∼ µ2.

Theorem 1 ([21]). For any ε > 0 there is an algorithm

that achieves a (1+ ε)-factor approximation for the k-means

objective, if k is a constant.

The same holds true in the case of p = 1, for constant values
of k.

Theorem 2 ([3]). For any ε > 0 there is an algorithm

that achieves a (1+ε)-factor approximation for the k-median

problem, if k is a constant.

The general case where p ≥ 1 and k is not necessarily con-
stant has not been addressed before. In Theorem 3 we show
that there exists a constant approximation algorithm for the
problem.

Theorem 3. For any k > 1, there is an algorithm that

achieves a 24-approximation to the k-meansp problem for `p
p

with p ≥ 1.

Proof sketch. The problem is similar to the k-median
problem, which has been studied extensively. However the
results do not apply directly in the k-meansp problem since
the `p

p norm does not induce a metric as it does not satisfy
the triangle inequality. Nevertheless, it nearly satisfies it
(it follows from Hölder’s inequality) and this allows (at the
expense of some constant factors) many of the results that
hold true for the k-median problem to hold true for the k-
meansp problem as well (as long as the triangle inequality is
only applied a constant number of times).

The theorem can be proven, for example, by the process
presented in [31, Chapters 24, 25], which has also appeared
in [17] (the case of p = 2 is Exercise 25.6 in [31]). The details
will appear in the full version of this work.

While the value of the constant 24 holds in general, it
is not necessarily the best possible, especially for particu-
lar values of p. For example, for p = 1 we can obtain a
value of 3 + ε, for any ε > 0 if k = ω(1) [2] (if k = O(1)
then Theorem 2 applies). For p = 2 we have a

√
108-

approximation [17].

4. CO-CLUSTERING
In the co-clustering problem, the data is given in the form

of a matrix A in R
m×n. We denote a row of A as Ai? and a

column of A as A?j . The aim in co-clustering is to simulta-
neously cluster the rows and columns of A, so as to optimize

1

1

1

1

1

1

1

1

1

1

1

1 1 1

1 1 1

1 1

k = 5n = 8

` = 3

µ23

m = 11

R M CA

A23 R2

C3

Figure 2: An example of co-clustering, where we

have rows and columns that appear in the same clus-

ter next to each other. We have AIJ ∼ RI · M · CJ ∼
µIJ . For example, A23 ∼ R2 · M · C3 ∼ µ23.

the difference between A and the clustered matrix. More for-
mally, we want to compute a k-partitioning I = {I1, . . . , Ik}
of the set of rows {1, . . . , m} and an `-partitioning J =
{J1, . . . , J`} of the set of columns {1, . . . , n}. The two parti-
tionings I and J naturally induce clustering index matrices
(see Figure 2) R ∈ R

m×k, M ∈ R
k×`, C ∈ R

`×n, defined as
follows: each row in R essentially corresponds to the index
vector of the corresponding part in the partition I, that is
RiI = 1, if Ai? ∈ I and 0 otherwise. Similarly the index ma-
trix C is constructed to represent the partitioning J , that
is CJj = 1, if A?j ∈ J and 0 otherwise. For each row-cluster
column-cluster tuple (I, J), we refer to the set of indices in
I × J to be a block.

The clustering error associated with the co-clustering (I,J)
is defined to be the quantity

|‖A − RMC‖|p ,

where M is defined as the matrix in R
k×` that minimizes

M = arg min
X

|‖A − RXC‖|p .

Let mI be the size of the row-cluster I and nJ denote the
size of the columns cluster J . By the definition of the |‖·‖|p,
we can write

|‖A − RMC‖|p =

∑

I∈I
J∈J

|‖AIJ − µIJRICJ‖|pp

1/p

, (4)

where each AIJ ∈ R
mI×nJ , each vector RI ∈ R

mI×1, and
each µIJ ∈ R, and vector CJ ∈ R

1×nJ . Two special cases
that are of interest to us are p = 1, 2. For the p = 2 case,
the matrix norm |‖·‖|p corresponds to the the well known

Frobenius norm ‖·‖F , and the value µIJ corresponds to a
simple average of the corresponding block. For the p = 1
case, the norm corresponds to a simple sum over the absolute
values of the entries of the matrix, and the corresponding
µIJ value would be the median of the entries in that block.

5. ALGORITHM
In this section, we give a simple algorithm for co-clustering.

We first present the algorithm, and then show that for the
general |‖·‖|p norm, the algorithm gives a constant-factor ap-
proximation. We then do a tighter analysis for the simpler
case of |‖·‖|2, i.e., the Frobenius norm, to show that we get

a (
√

2 + ε)-approximation.

Algorithm 1 Co-Cluster(A, k, `)

Require: Matrix A ∈ R
m×n, number of row-clusters k,

number of column-clusters `.
1: Let Î be the α-approximate clustering of the row vectors

with k clusters.
2: Let Ĵ be the α-approximate clustering of the column

vectors with ` clusters.
3: return (Î, Ĵ).

5.1 Constant-Factor Approximation
We now show that the co-clustering returned by algorithm

Co-Cluster is a constant-factor approximation to the opti-
mum.

Theorem 4. Given an α-approximation algorithm for the

k-meansp problem, the algorithm Co-Cluster(A,k, `) returns

a co-clustering that is a 3α-approximation to the optimal co-

clustering of A.

Proof. Let I∗,J ∗ be the optimal co-clustering solution.
Define the corresponding index matrices to be R∗ and C∗ re-
spectively. Furthermore, let Î∗ be the optimal row-clustering
and Ĵ ∗ be the optimal column-clustering. Define the index
matrix R̂∗ from the clustering Î∗, and the index matrix Ĉ∗

from the clustering Ĵ ∗. This means that there is a matrix
M̂∗

R ∈ R
k×n such that

∣

∣

∣

∥

∥

∥
A − R̂∗M̂∗

R

∥

∥

∥

∣

∣

∣

p

is minimized over all such index matrices representing k clus-
ters. Similarly, there is a a matrix M̂∗

C ∈ R
m×` such that

∣

∣

∣

∥

∥

∥
A − M̂∗

CĈ∗
∥

∥

∥

∣

∣

∣

p

is minimized over all such index matrices representing ` clus-
ters.

The algorithm Co-Cluster uses approximate solutions for
the one-sided row and column-clustering problems to com-
pute partitionings Î and Ĵ . Let R̂ be the clustering index
matrix corresponding to this row-clustering and M̂R be the
set of centers. Similarly, let Ĉ, M̂C be the corresponding ma-
trices for the column-clustering constructed by Co-Cluster.
By the assumptions of the theorem we have that

∣

∣

∣

∥

∥

∥
A − R̂M̂R

∥

∥

∥

∣

∣

∣

p
≤ α

∣

∣

∣

∥

∥

∥
A − R̂∗M̂∗

R

∥

∥

∥

∣

∣

∣

p
, (5)

and, similarly,
∣

∣

∣

∥

∥

∥
A − M̂CĈ

∥

∥

∥

∣

∣

∣

p
≤ α

∣

∣

∣

∥

∥

∥
A − M̂∗

CĈ∗
∥

∥

∥

∣

∣

∣

p
. (6)

For the co-clustering (M̂R, M̂C) that the algorithm com-
putes, define the center matrix M ∈ R

k×` as follows. Each
entry µIJ is defined to be

µIJ = arg min
x

∑

i∈I
j∈J

|aij − x|p . (7)

Now we will show that the co-clustering (Î, Ĵ) with the
center matrix M will be a 3α-approximate solution. First,
we lower bound the cost of the optimal co-clustering so-
lution by the optimal row-clustering and optimal column-
clustering. Since (R̂∗, M̂∗

R) is the optimal row-clustering, we

have that
∣

∣

∣

∥

∥

∥A − R̂∗M̂∗
R

∥

∥

∥

∣

∣

∣

p
≤ min

X
|‖A − R∗X‖|p

≤ |‖A − R∗M∗C∗‖|p .
(8)

Similarly, since (Ĉ∗, M̂∗
C) is the optimal column-clustering,

∣

∣

∣

∥

∥

∥A − M̂∗
CĈ∗

∥

∥

∥

∣

∣

∣

p
≤ min

X
|‖A − XC∗‖|p

≤ |‖A − R∗M∗C∗‖|p .
(9)

Let us consider a particular block (I, J) ∈ Î × Ĵ . Note

that (R̂M̂R)ij = (R̂M̂R)i′j for i, i′ ∈ I . We denote r̂Ij =

(R̂M̂R)ij . Let µ̂IJ be the value x that minimizes

µ̂IJ = arg min
x

∑

j∈J

|r̂Ij − x|p .

We also denote ĉiJ = (M̂CĈ)ij . Then for all i ∈ I we have
∑

j∈J

|r̂Ij − µ̂IJ |p ≤
∑

j∈J

|r̂Ij − ĉiJ |p ,

which gives

∑

i∈I
j∈J

|r̂Ij − µ̂IJ |p)

1/p

≤

∑

i∈I
j∈J

|r̂Ij − ĉiJ |p

1/p

≤

∑

i∈I
j∈J

|aij − r̂Ij |p

1/p

+

∑

i∈I
j∈J

|aij − ĉiJ |p

1/p

,

(10)

where the last inequality is just application of the triangle
inequality.

Then we get

∣

∣

∣

∥

∥

∥A − R̂MĈ
∥

∥

∥

∣

∣

∣

p

(a)
=

(

∑

I,J

∣

∣

∣

∥

∥

∥AIJ − µIJ R̂IĈJ

∥

∥

∥

∣

∣

∣

p

p

)1/p

=

∑

I,J

∑

i∈I
j∈J

|aij − µIJ |p

1/p

(b)

≤

∑

I,J

∑

i∈I
j∈J

|aij − µ̂IJ |p

1/p

(c)

≤

∑

I,J

∑

i∈I
j∈J

|aij − r̂Ij |p

1/p

+

∑

I,J

∑

i∈I
j∈J

|r̂Ij − µ̂IJ |p

1/p

(d)

≤

∑

I,J

∑

i∈I
j∈J

|aij − r̂Ij |p

1/p

+

∑

I,J

∑

i∈I
j∈J

|aij − r̂Ij |p

1/p

+

∑

I,J

∑

i∈I
j∈J

|aij − ĉiJ |p

1/p

=
∣

∣

∣

∥

∥

∥
A − R̂M̂R

∥

∥

∥

∣

∣

∣

p
+
∣

∣

∣

∥

∥

∥
A − R̂M̂R

∥

∥

∥

∣

∣

∣

p

+
∣

∣

∣

∥

∥

∥A − M̂CĈ
∥

∥

∥

∣

∣

∣

p

(e)

≤ α

(

∣

∣

∣

∥

∥

∥
A − R̂∗M̂∗

R

∥

∥

∥

∣

∣

∣

p
+
∣

∣

∣

∥

∥

∥
A − R̂∗M̂∗

R

∥

∥

∥

∣

∣

∣

p

+
∣

∣

∣

∥

∥

∥
A − M̂∗

CĈ∗
∥

∥

∥

∣

∣

∣

p

)

(f)

≤ 3α |‖A − R∗M∗C∗‖|p ,

where (a) follows from Equation (4), (b) follows from Equa-
tion (7), (c) from the triangle inequality, (d) from Equa-
tion (10), (e) from Equations (5) and (6), and (f) follows
from Equations (8) and (9).

By combining the above with Theorems 2 and 3 we obtain
the following corollaries.

Corollary 1. For any constant values of k, ` there ex-

ists an algorithm that returns a (k, `)-co-clustering that is a

(3 + ε)-approximation to the optimum, for any ε > 0, under

the |‖·‖|1 norm.

Corollary 2. For any k, ` there is an algorithm that re-

turns a (k, `)-co-clustering that is a 72-approximation to the

optimum, for any ε > 0.

5.2 A (
√

2 + ε)-Factor Approximation for the
‖·‖F Norm

A commonly used instance of our objective function is the
case of p = 2, i.e., the Frobenius norm. The results of the
previous section give us a (3 + ε)-approximation in this par-
ticular case, when k, ` are constants. But it turns out that in
this case, we can actually exploit the particular structure of
the Frobenius norm and give a better approximation factor.

To restate the problem, we want to compute clustering
matrices R ∈ R

m×k, C ∈ R
`×n, such that Ri,I = 1, if Ai? ∈

I and 0 otherwise, and CJ,j = 1, if A?j ∈ J and 0 otherwise
(see Section 4 for more details) such that ‖A − RMC‖F is

minimized, where M ∈ R
k×` and M contains the averages

of the cluster, i.e. M = {µIJ} where

µIJ =
1

mI · nJ

∑

i∈I
j∈J

aij ,

where mI is the size of row-cluster I and nJ is the size of
column-cluster J . We show the following theorem.

Theorem 5. Given an α-approximation algorithm for the

k-means clustering problem, the algorithm Co-Cluster gives

a
√

2α-approximate solution to the co-clustering problem with

the ‖·‖F objective function.

Proof. Define R̄ ∈ R
m×k similarly to R, but with the

values scaled down according to the clustering. Specifically,

R̄i,I = (mI)
−1/2, if i ∈ I and 0 otherwise. Similarly, define

C̄J,j = (nJ)−1/2, if j ∈ J and 0 otherwise. Then notice that
we can write RMC = R̄R̄T AC̄T C̄.

If we consider also the one-sided clusterings (RMR and
MCC) then we can also write RMR = R̄R̄T A and MCC =
AC̄T C̄.

We define PR = R̄R̄T . Then PR is a projection matrix.
To see why this is the case, notice first that R̄ has orthogonal
columns:

(R̄T · R̄)II =
∑

i∈I

1

mI
= 1,

and (R̄T · R̄)IJ = 0, for I 6= J , thus R̄T · R̄ = Ik. Therefore
PRPR = PR, hence PR is a projection matrix. Define as
P⊥

R = (I − PR) the projection orthogonal to PR. Similarly
we define the projection matrices PC = C̄T C̄ and P⊥

C =
(I − PC). In general, in the rest of the section, PX and P⊥

X

refer to the projection matrices that correspond to clustering
matrix X.

We can then state the problem as finding the projections
of the form PR = R̄R̄T and PC = C̄T C̄ that minimize
‖A − PRAPC‖2

F , under the constraint that R̄ and C̄ are of
the form that we described previously.

Let R∗ and C∗ be the optimal co-clustering solution, R̂∗

and Ĉ∗ be the optimal one-sided clusterings, and R̂ and Ĉ
be the one-sided row and column-clusterings that are α-
approximate to the optimal ones. We have

∥

∥

∥
A − R̂M̂R

∥

∥

∥

2

F
≤ α2

∥

∥

∥
A − R̂∗M̂∗

R

∥

∥

∥

2

F
, (11)

and
∥

∥

∥
A − M̂CĈ

∥

∥

∥

2

F
≤ α2

∥

∥

∥
A − M̂∗

CĈ∗
∥

∥

∥

2

F
. (12)

We can write

A = PR̂A + PR̂
⊥A

= PR̂APĈ + PR̂APĈ
⊥ + PR̂

⊥APĈ + PR̂
⊥APĈ

⊥,

and thus

A − PR̂APĈ = PR̂APĈ
⊥ + PR̂

⊥APĈ + PR̂
⊥APĈ

⊥.

Then,

‖A − PR̂APĈ‖2
F

=
∥

∥

∥
PR̂APĈ

⊥ + PR̂
⊥APĈ + PR̂

⊥APĈ
⊥
∥

∥

∥

2

F

=
∥

∥

∥PR̂APĈ
⊥ + PR̂

⊥(APĈ + APĈ
⊥)
∥

∥

∥

2

F

(a)
=
∥

∥

∥
PR̂APĈ

⊥
∥

∥

∥

2

F
+
∥

∥

∥
PR̂

⊥(APĈ + APĈ
⊥)
∥

∥

∥

2

F

=
∥

∥

∥PR̂APĈ
⊥
∥

∥

∥

2

F
+
∥

∥

∥PR̂
⊥APĈ + PR̂

⊥APĈ
⊥
∥

∥

∥

2

F

(b)
=
∥

∥

∥
PR̂APĈ

⊥
∥

∥

∥

2

F
+
∥

∥

∥
PR̂

⊥APĈ

∥

∥

∥

2

F

+
∥

∥

∥
PR̂

⊥APĈ
⊥
∥

∥

∥

2

F
,

where equalities (a) follows from the Pythagorean theorem
(we apply it to every column separately and the square of
the Frobenius norm is just the sum of the column lengths
squared) and the fact that the projection matrices PR̂ and PR̂

⊥

are orthogonal to each other, and equality (b) again from the
Pythagorean theorem and the orthogonality of PĈ and PĈ

⊥.
Without loss of generality we assume that

∥

∥

∥
PR̂APĈ

⊥
∥

∥

∥

2

F
≥
∥

∥

∥
PR̂

⊥APĈ

∥

∥

∥

2

F

(otherwise we can consider AT). Then,

‖A − PR̂APĈ‖2
F
≤ 2

(

∥

∥

∥
PR̂APĈ

⊥
∥

∥

∥

2

F
+
∥

∥

∥
PR̂

⊥APĈ
⊥
∥

∥

∥

2

F

)

= 2

(

∥

∥

∥PR̂APĈ
⊥ + PR̂

⊥APĈ
⊥
∥

∥

∥

2

F

)

= 2
∥

∥

∥
APĈ

⊥
∥

∥

∥

2

F

= 2 ‖A − APĈ‖2
F

,

(13)

where the first equality follows once again from the Pythagorean
theorem. By applying Equations (12) and (13) we get

‖A − PR̂APĈ‖2
F
≤ 2 ‖A − APĈ‖2

F

≤ 2(1 + ε′) ‖A − APĈ∗‖2
F

.
(14)

It remains to show that the error of the optimal one-sided
clustering is bounded by the error of the optimal co-clustering:

‖A − APĈ∗‖2
F

(a)

≤ ‖A − APC∗‖2
F

=
∥

∥

∥
APC∗

⊥
∥

∥

∥

2

F

≤
∥

∥

∥
APC∗

⊥
∥

∥

∥

2

F
+
∥

∥

∥
PR∗

⊥APC∗

∥

∥

∥

2

F

(b)
=
∥

∥

∥
APC∗

⊥ + PR∗
⊥APC∗

∥

∥

∥

2

F

=
∥

∥

∥A − APC∗ + PR∗
⊥APC∗

∥

∥

∥

2

F

=
∥

∥

∥
A − (I − PR∗

⊥)APC∗

∥

∥

∥

2

F

= ‖A − PR∗APC∗‖2
F ,

(15)

where (a) follows from the fact that PĈ∗ corresponds to the
optimal column-clustering, and (b) follows from the Pythagorean
theorem and the orthogonality of PC∗ and PC∗

⊥.
Combining Equations (14) and (15) gives

‖A − PR̂APĈ‖2
F
≤ 2α2 ‖A − PR∗APC∗‖2

F .

Thus we can obtain a
√

2α-approximation to the optimal
co-clustering solution, under the Frobenius norm.

We can now use Theorems 1 and 3 and obtain the following
corollaries.

Corollary 3. For any constant values of k, ` there ex-

ists an algorithm that returns a (k, `)-co-clustering that is

a (
√

2 + ε)-approximation to the optimum, for any ε > 0,
under the |‖·‖|2 norm.

Corollary 4. For any k, ` there is an algorithm that re-

turns a (k, `)-co-clustering that is a 24
√

2-approximation to

the optimum, for any ε > 0.

5.3 Solving the (k, 1)-Co-Clustering
In this section we show how we can solve exactly the prob-

lem in the case that we only want one column-cluster (note
that this is different from the one-sided clustering; the latter
is equivalent to having n column-clusters). While this case
is not of significant interest, we include it for completeness
and to show that even in that case the problem is nontriv-
ial (although it is polynomial). In particular, while we can
solve exactly the problem under the Frobenius norm, it is

not clear whether we can solve it for all the norms of the
form of Equation (3).

First we begin by stating a simple result for the case that
A ∈ R

m×1. Then the problem is easy, for any metric of the
form of Equation (3).

Lemma 1. Let A ∈ R
m×1 and consider any norm |‖·‖|p.

There is an algorithm that can (k, 1)-cluster matrix A opti-

mally in time O(m2k) and space O(mk).

Proof sketch. The idea is the following: A is just a
set of real values, and (k, 1) clustering A corresponds to
the partition of those values into k clusters. Note that if
the optimal cluster contains points ai and aj then it should
contain also all the points in between. This fact implies
that we can solve the problem using dynamic programming.
Assume that the sorted values of A are {a1, a2, . . . , am}.
Then we can define C(i, r) the optimal r-clustering solution
of {a1, . . . , ai}. Knowing C(j, r − 1) for j ≤ i allows us to
compute C(i, r). The time required is O(m2k) and the space
needed is O(mk). Further details and the complete proof are
omitted.

We now use this lemma to solve optimally for general A,
under the norm ‖·‖F . The algorithm is simple. Assume
that A = {aij} and let µi = 1

n

∑n
j=1 aij be the mean of

row i. Also write aij = µi + εij , and note that for all i we
have

∑n
j=1 εij = 0. The algorithm then runs the dynamic-

programming algorithm on the vector of the means and re-
turns the clustering produced.

Algorithm 2 Co-Cluster(A,k, 1)

Require: Matrix A ∈ R
m×n, number of row-clusters k.

1: Create the vector v = (µ1, µ2, . . . , µm), where µi =
1
n

∑n
j=1 aij .

2: Use the dynamic-programming algorithm of Lemma 1
and let I be the resulting k-clustering.

3: return (I, {1, . . . , n}).

Theorem 6. Let A ∈ R
m×n. Let I be the clustering pro-

duced under the ‖·‖F norm. Then I has optimal cost. The

running time of the algorithm is O(mn + m2k).

Proof. Let us see the cost of a given cluster. For nota-
tional simplicity, assume a cluster containing rows 1 to r.
The mean of the cluster equals

µ =
1

rn

r
∑

i=1

n
∑

j=1

aij =

r
∑

i=1

µi,

and let

S =
r
∑

i=1

µi = rµ.

The cost of the cluster is

r
∑

i=1

n
∑

j=1

(aij − µ)2 =
r
∑

i=1

n
∑

j=1

a2
ij + rnµ2 − 2µ

r
∑

i=1

n
∑

j=1

aij

=
r
∑

i=1

n
∑

j=1

(µi + εij)
2 +

nS2

r
− 2

S

r
nrµ

=
r
∑

i=1

n
∑

j=1

µ2
i +

r
∑

i=1

n
∑

j=1

ε2
ij

+ 2
r
∑

i=1

µi

n
∑

j=1

εij − nS2

r

= n
r
∑

i=1

µ2
i +

r
∑

i=1

n
∑

j=1

ε2
ij −

nS2

r
,

since
∑r

j=1 εij = 0, for all i.

Therefore, the cost of the entire clustering I = {I1 . . . , Ik}
equals

n
m
∑

i=1

µ2
i +

m
∑

i=1

n
∑

j=1

ε2
ij − n

∑

I∈I

S2
I

mI
, (16)

where mI is the number of rows in cluster I and SI =
∑

i∈I µi.
Consider now the one-dimensional problem of (k, 1) clus-

tering only the row means µi. The cost of a given cluster is
(again assume the cluster contains rows 1 to r):

r
∑

i=1

(µi − µ)2 =
r
∑

i=1

µ2
i + rµ2 − 2µ

r
∑

i=1

µi

=

r
∑

i=1

µ2
i − S2

r
.

Thus the cost of the clustering is

m
∑

i=1

µ2
i −

∑

I∈I

S2
I

mI
.

Compare the cost of this clustering with that of Equation (16).
Note that in both cases the optimal row-clustering is the one

that maximizes the term
∑

I∈I

S2
I

mI
, as all the other terms are

independent of the clustering. Thus we can optimally solve
the problem for A ∈ R

m×n by solving the problem simply
on the means vector. The time needed to create the vector
of means is O(mn), and by applying Lemma 1 we conclude
that we can solve the problem in time O(mn + m2k).

6. HARDNESS OF THE OBJECTIVE FUNC-
TION

In this section, we show that the problem of co-clustering
an m× n matrix A is NP-hard when the number of clusters
on the column side, is at least nε, for any ε > 0. While
there are several results in the literature that show hardness
of similar problems [28, 15, 5, 26], we are not aware of any
previous result that proves the hardness of the co-clustering
for the objectives that we study in this paper.

Theorem 7. The problem of finding a (k, `) co-clustering

for a matrix A ∈ R
m×n is NP-hard for (k, `) = (k, nε) for

any k ≥ 2 and any ε > 0, under the `1 norm.

Proof. The proof contains several steps. First we reduce
the one-sided k-median problem (where k = n/3) under the
`1 norm to the (2, n/3)-co-clustering when A ∈ R

2×n. We
reduce the latter problem to the case of A ∈ R

m×n and
(k, n/3), and this, finally, to the case of (k, nε)-co-clustering.
We now proceed with the details.

Megiddo and Supowit [23] show that the (one-sided) k-
median problem is NP-hard under the `1 norm in R

2. By
looking carefully the pertinent proof we can see that the
problem is hard even if we restrict it to the case of k =
n/3+o(n) (n is the number of points). Let us assume that we
have such a problem instance of n points {aj}, j = 1, . . . , n
and we want to assign them into ` clusters, ` = n/3 + o(n),
so as to minimize the `1 norm. Specifically, we want to
compute a partition J = {J1, . . . , J`} of {1, . . . , n}, and
points µ1, . . . , µ` such that the objective

∑

J∈J

∑

j∈J

‖aj − µj‖1 (17)

is minimized.
We construct a co-clustering instance by constructing the

matrix A where we set Aij = aji, for i = 1, 2 and j =
1, . . . , n:

A =

[

A11 A21 · · · An1

A12 A22 · · · An1

]

,

which we want to (2, `)-co-cluster. Solving this problem
is equivalent to solving the one-sided clustering problem.
To provide all the details, there is only one row-clustering,
I = {{1}, {2}}, and consider the column-clustering J =
{J1, . . . , J`}. and the corresponding center matrix M ∈
R

2×`. The cost of the solution equals

∑

I,J

∑

i∈I
j∈J

|Aij − MIJ |

=
∑

J∈J

∑

j∈J

|aj1 − M1J | + |aj2 − M2J | (18)

Note that this expression is minimized when (M1J , M2J) is
the median of the points aj , j ∈ J , in which case the cost
equals to that of Equation (17). Thus a solution to the
co-clustering problem induces a solution to the one-sided
problem. Therefore, solving the (2, `)-co-clustering problem
in R

2×n is NP-hard.
The next step is to show that it is hard to (k, `)-co-cluster

a matrix for any k and ` = n/3 + o(n). This follows from
the previous (2, `)-co-clustering in R

2×n, by adding to A
rows of some value B, where B is some large value (say
B > 2mn max |aij |):

A =

A11 A21 · · · An1

A12 A22 · · · An1

B B · · · B
...

...
. . .

...
B B · · · B

.

Indeed, we can achieve a solution with the same cost as
Equation (18) by the same column partitioning J and a
row partitioning that puts each of rows 1 and 2 to each own
cluster and cluster the rest of the rows (where all the values
equal B) arbitrarily. Notice that this is an optimal solution
since any other row-cluster will place at least one value aij

and B in the same co-cluster, in which case the cost just

of that co-cluster will be at least |B − |aij ||, which is larger
than that of Equation (18).

The final step is to reduce a problem instance of finding

a (k, `′)-co-clustering of a matrix A′ ∈ R
m×n′

, with `′ =
n′/3 + o(n′) to a problem instance of finding a (k, `)-co-
clustering of a matrix A ∈ R

m×n, with ` = nε, for any
ε > 0.

The construction is similar as before. Let A′ = {A′
ij}.

Define n = (`′ + 1)1/ε and let A ∈ R
m×n. For 1 ≤ j ≤ n′

(assume that ε is sufficiently small so that n ≥ n′), define
Aij = A′

ij and for any j > n′, define Aij = B, where B is
some sufficiently large value, (e.g., B > 2mn max |aij |):

A =

A′
11 A′

12 · · · A′
1d B B · · · B

A′
21 A′

22 · · · A′
2d B B · · · B

...
...

. . .
...

...
...

. . .
...

A′
m1 A′

m2 · · · A′
md B B · · · B

.

Now, we only need to prove that the optimal solution of a
(k, `′ + 1) = (k, nε)-co-clustering of A corresponds to the
optimal solution of the (k, `′)-co-clustering of A′.

Assume that the optimal solution for matrix A′ is given
by the partitions I′ = {I ′

1, . . . , I
′
k} and J ′ = {J ′

1, . . . ,J ′
`′}.

The cost of the solution is

C′(I′,J ′) =
∑

I∈I′

J∈J ′

∑

i∈I
j∈J

∣

∣A′
ij − MIJ

∣

∣ ,

where MIJ is defined as the median of the values {A′
ij ; i ∈

I, j ∈ J}.
Let us compute the optimal solution for the (k, `′ +1)-co-

clustering of A. First note that we can compute a solution
(I,J) with cost C′(I′,J ′). We let I = I′, and for J =
{J1, . . . ,J`′+1) we set Jj = J ′

j for j ≤ `′, and J`′+1 = {n′ +
1, n′+2, . . . , n}. For the centering matrix M we have MIJj =
M ′

IJj
for j ≤ `′ and MIJ`′+1

= B. The cost C(I,J) of the
co-clustering equals

C(I,J) =
∑

I∈I
J∈J

∑

i∈I
j∈J

|Aij − MIJ |

=
∑

I∈I
J∈J

∑

i∈I
j∈J

|Aij − MIJ |

=
∑

I∈I
J∈J ′

∑

i∈I
j∈J

|Aij − MIJ | +
∑

I∈I

∑

i∈I
j∈J`′+1

|Aij − MIJ |

=
∑

I∈I′

J∈J ′

∑

i∈I
j∈J

∣

∣A′
ij − M ′

IJ

∣

∣ +
∑

I∈I

∑

i∈I
j∈J`′+1

|B − B|

= C′(I′,J ′).

Now, we have to show that the optimal solution to the
co-clustering problem has to have the above structure, that
is, if J = {J1, J2, . . . , J`′+1} are the column-clusters, then
it has to be the case that, modulo a permutation of cluster
indices, Jj = J ′

j for j ≤ `′ and J`′+1 = {n′ + 1, . . . , n} and
I = I′. Suppose not, then we consider two cases. The first is
that there exists a column A?j for j > n′ that is put into the
same cluster (say cluster J) as a column A?y for y ≤ `′. In
this case we show that the resulting co-clustering cost will be
much more than c(Iopt

1 , Iopt
2). To show this, just consider the

error from the two coordinates A1j and A1y , for instance.
The value of the center for this row, is some M1J = x.

Now, if x > B/2, then since (trivially) A1y < B/4, we have
that |A1y − x| > B/4 > C′(I′,J ′). On the other hand if
x ≤ B/2 then |A1j − x| > B/4 > C′(I′,J ′). Thus the cost
of this solution is much larger than the cost of the optimal
solution.

Assume now that this is not the case. Then we can assume
that there exists a column-cluster containing all the columns
greater than n′: J`′+1 = {n′ + 1, . . . , n} (there can be more
than one clusters but this will only increase the total cost),
and note that the cost of the corresponding co-clusters is
0. Thus the total cost is equal to the cost of the (k, `′)-co-
clustering of the submatrix of A, i = 1, . . . , m, j = 1, . . . , n′.
This is exactly the original problem of co-clustering matrix
A′. Thus, the solution (I,J) is optimal.

Note that `′ + 1 = nε. Thus, solving the (k, `′ + 1) =
(k, nε)-co-clustering problem on the new matrix gives us a
solution to the original k-median problem. Hence the (k, `)-
co-clustering problem under the `1 norm is NP-hard, for any
k > 1 and ` = nε.

Note that while we showed hardness for the `1 norm, our
reduction can show hardness of co-clustering from hardness
of one-sided clustering. So, for example, hardness for the
k-means objective [9] implies hardness for the co-clustering
under the Frobenius norm.

7. DISCUSSION AND FUTURE WORK
In this paper we consider the problem of co-clustering.

We obtain the first algorithms for this problem with prov-
able performance guarantees. Our algorithms are simple and
achieve constant-factor approximations with respect to the
optimum. We also show that the co-clustering problem is
NP-hard, for a wide range of the input parameters. Finally,
as a byproduct, we introduce the k-meansp problem, which
generalizes the k-median and k-means problems, and give a
constant-factor approximation algorithm.

Our work leads to several interesting questions. In Sec-
tion 6 we showed that the co-clustering problem is hard if
` = Ω(nε) under the `1 norm. It seems that the hardness
should hold for any `p norm, p ≥ 1. It would also be inter-
esting to show that it is hard for any combination of k, `. In
particular, even the hardness questions for the (2, 2) or the
(O(1), O(1)) cases are, as far as we know, unresolved. While
we conjecture that these cases are hard, we do not have yet
a proof for this. As we noted at the end of Section 6 the
NP-hardness of the k-median problem in low-dimensional
Euclidean spaces (and with small number of clusters) would
give further hardness results for the co-clustering problem.
During our research in the pertinent literature we were sur-
prised to discover that while there are several publications
on approximation algorithms for k-means and k-median in
low-dimensional Euclidean spaces their complexity is still
open, especially when the number of clusters is o(n). Thus
any hardness result in that direction would be of great in-
terest.

Another question is whether the problem becomes easy
for matrices A having a particular structure. For instance,
if A is symmetric, and k = `, is it the case that the opti-
mal co-clustering is also symmetric? The answer turns out
to be negative, even if we are restricted to 0/1-matrices,
and the counterexample reveals some of the difficulty in co-

clustering. Consider the matrix

A =

1 1 0
1 1 1
0 1 1

 .

We are interested in a (2, 2)-co-clustering, say using ‖·‖F .
There are are three symmetric solutions, I = J = {{1, 2}, {3}},
I = J = {{2, 3}, {1}}, and I = J = {{1, 3}, {2}}, and
all have a cost of 1. Instead, the nonsymmetric solution
(I,J) = ({{1}, {2, 3}}, {{1, 2}, {3}}), has cost of

√
3/4.

Therefore, even for symmetric matrices, one-sided cluster-
ing cannot be used to obtain the optimal co-clustering.

A further interesting direction is to find approximation
algorithms for other commonly used objective functions for
the co-clustering problem. It appears that our techniques
cannot be directly applied to any of those. As we mentioned
before, the work by Dhillon et al. [4] unifies a number of
such objectives and gives an expectation maximization style
heuristic for such merit functions. It would be interesting to
see if given an approximation algorithm for solving the clus-
tering problem for a Bregman divergence, we can construct
a co-clustering approximation algorithm from it. Another
objective function for which our approach is not immedi-
ately applicable is Equation (3) using the residual definition
of Equation (2). For several problems this class of objective
functions might be more appropriate than the one that we
analyze here.

Finally one can wonder what happens when the matrix to
be clustered has more than two dimensions. For example,
what happens when A ∈ R

m×n×o? Is there a version of our
algorithm (or any algorithm) that can solve this problem?

8. REFERENCES
[1] D. Agarwal and S. Merugu. Predictive discrete latent

factor models for large scale dyadic data. In Proc. of

the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 26–35,
2007.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM

Journal on Computing, 33(3):544–562, June 2004.

[3] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate
clustering via core-sets. In Proc. of the 34th Annual

ACM Symposium on Theory of Computing, pages
250–257, 2002.

[4] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and
D. S. Modha. A generalized maximum entropy
approach to Bregman co-clustering and matrix
approximation. Journal of Machine Learning

Research, 8:1919–1986, 2007.

[5] N. Bansal, A. Blum, and S. Chawla. Correlation
clustering. Machine Learning, 56(1-3):89–113, 2004.

[6] Y. Cheng and G. M. Church. Biclustering of
expression data. In Proc. of the 8th International

Conference on Intelligent Systems for Molecular

Biology, pages 93–103, 2000.

[7] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum
sum-squared residue co-clustering of gene expression
data. In Proc. of the 4th SIAM International

Conference on Data Mining. SIAM, 2004.

[8] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In Proc. of

the 7th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages
269–274, 2001.

[9] P. Drineas, A. M. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering large graphs via the singular
value decomposition. Machine Learning, 56(1-3):9–33,
2004.

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern

Classification. Wiley Interscience, 2000.

[11] U. Feige and S. Kogan. Hardness of approximation of
the balanced complete bipartite subgraph problem,
2004.

[12] B. Gao, T. Liu, X. Zheng, Q. Cheng, and W. Ma.
Consistent bipartite graph co-partitioning for
star-structured high-order heterogeneous data
co-clustering. In Proc. of the 11th ACM Conference on

Knowledge Discovery and Data Mining, pages 41–50,
2005.

[13] S. Gollapudi, R. Kumar, and D. Sivakumar.
Programmable clustering. In Proc. 25th ACM

Symposium on Principles of Database Systems, pages
348–354, 2006.

[14] J. A. Hartigan. Direct clustering of a data matrix.
Journal of the American Statistical Association,
67(337):123–129, 1972.

[15] S. Hassanpour. Computational complexity of
bi-clustering. Master’s thesis, University of Waterloo,
2007.

[16] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Computing Surveys,
31(3):264–323, 1999.

[17] K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems
using the primal-dual schema and Lagrangian
relaxation. Journal of the ACM, 48(2):274–296, 2001.

[18] M. Jambyu and M. O. Lebeaux. Cluster Analysis and

Data Analysis. North-Holland, 1983.

[19] J. Kleinberg. An impossibility theorem for clustering.
In Advances in Neural Information Processing Systems

15, pages 446–453, 2002.

[20] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein.
Spectral biclustering of microarray data: Coclustering
genes and conditions. Genome Research, 13:703–716,
2003.

[21] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear
time (1 + ε)-approximation algorithm for k-means
clustering in any dimensions. In Proc. of the 45th

IEEE Symposium on Foundations of Computer

Science, pages 454–462, 2004.

[22] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: A survey.
IEEE Transactions on Computational Biology and

Bioinformatics, 1(1):24–45, 2004.

[23] N. Megiddo and K. J. Supowit. On the complexity of
some common geometric location problems. SIAM

Journal on Computing, 13(1):182–196, 1984.

[24] N. Mishra, D. Ron, and R. Swaminathan. On finding
large conjunctive clusters. In Proc. of the 16th Annual

Conference on Computational Learning Theory, pages
448–462, 2003.

[25] N. Mishra, D. Ron, and R. Swaminathan. A new
conceptual clustering framework. Machine Learning,
56(1-3):115–151, 2004.

[26] R. Peeters. The maximum edge biclique problem is
NP-complete. Discrete Applied Mathematics,
131(3):651–654, 2003.

[27] K. Puolamäki, S. Hanhijärvi, and G. C. Garriga. An
approximation ratio for biclustering. CoRR,
abs/0712.2682, 2007.

[28] R. Shamir, R. Sharan, and D. Tsur. Cluster graph
modification problems. Discrete Applied Mathematics,
144(1-2):173–182, 2004.

[29] H. Takamura and Y. Matsumoto. Co-clustering for
text categorization. Information Processing Society of

Japan Journal, 2003.

[30] A. Tanay, R. Sharan, and R. Shamir. Biclustering
algorithms: A survey. In E. by Srinivas Aluru, editor,
In Handbook of Computational Molecular Biology.
Chapman & Hall/CRC, Computer and Information
Science Series, 2005.

[31] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

[32] J. Yang, H. Wang, W. Wang, and P. Yu. Enhanced
biclustering on expression data. In Proc. of the 3rd

IEEE Conference on Bioinformatics and

Bioengineering, pages 321–327, 2003.

[33] J. Yang, W. Wang, H. Wang, and P. S. Yu.
delta-clusters: Capturing subspace correlation in a
large data set. In Proc. of the 18th International

Conference on Data Engineering, pages 517–528, 2002.

[34] H. Zhou and D. P. Woodruff. Clustering via matrix
powering. In Proc. of the 23rd ACM Symposium on

Principles of Database Systems, pages 136–142, 2004.

