
Sort Me if You Can:
How to Sort Dynamic Data

Aris Anagnostopoulos1?, Ravi Kumar2, Mohammad Mahdian2, and Eli Upfal3??

1 Sapienza University of Rome, Rome, 00185, Italy.aris@cs.brown.edu
2 Yahoo! Research, Sunnyvale, CA 94089, USA.
{ravikumar,mahdian}@yahoo-inc.com

3 Brown University, Providence, RI 02912, USA.eli@cs.brown.edu

Abstract. We formulate and study a new computational model for dynamicdata.
In this model the data changes gradually and the goal of an algorithm is to com-
pute the solution to some problem on the data at each time step, under the con-
straint that it only has a limited access to the data each time. As the data is con-
stantly changing and the algorithm might be unaware of thesechanges, it cannot
be expected to always output the exact right solution; we areinterested in algo-
rithms that guarantee to output an approximate solution. Inparticular, we focus
on the fundamental problems of sorting and selection, wherethe true ordering of
the elements changes slowly. We provide algorithms with performance close to
the optimal in expectation and with high probability.

1 Introduction
In the classic paradigm, an algorithm received all the inputat the start of the compu-
tation and computed a function of that input. As computing became more interactive,
researchers developed the theory of online algorithms, focusing on the tradeoff between
the timely availability of the input and the performance of the algorithm. In this paper
we study another important aspect of online, interactive computing: computing and
maintaining global information on a data set that is constantly changing. While algo-
rithms and models to study dynamic data have been in vogue, our work formulates and
studies a new model of computing in the presence of constantly changing data.

For concreteness we present our work through one specific motivation, the popular
online voting website Bix (bix.com), owned by Yahoo!; this partially inspired us to
study the particular problem of sorting. We comment later onmore general applications.
The Bix website hosts online contests for various themes such as the most entertaining
sport or the most dangerous animal or the best presidential nominee, in which users
vote to select the best amongst a pre-specified set of candidates. For a given contest,
Bix displays a pair of candidates to a user visiting the website and asks the user to rank-
order this pair. As the contest progresses, Bix aggregates all the pairwise comparisons
provided by users to pick the leader (or the top few leaders) of the contest thus far; the
goal is to reflect the current aggregated opinion as faithfully as possible. For simplicity,
we will ignore issues such as malicious user behavior and assume each user is able to

? Part of this work was done while the author was at Yahoo! Research.
?? Supported in part by NSF award DMI-0600384, ONR Award N000140610607, and Yahoo!

Faculty Research Grant.

compare any pair of candidates. In fact, we will assume something more general: each
user has access to the global total order (“the public opinion”) and when Bix shows a
pair of candidates, the user consults this total order to rank-order the given pair.

There are two factors that make this setting both interesting and challenging. First,
as the contest progresses, users’ voting patterns might change, perhaps slowly, at an
aggregate level. This can be caused by an intrinsic shift in public opinion about the
candidates or factors external to the contest. While one cannot assume there is a fixed
total order that the contest is trying to uncover, it is reasonable to assume that the total
order changes slowly over time. Second, whenever a user visits their website, Bix has
to choose a pair of candidates to show to the user in order to elicit the comparison. A
visiting user is thus a valuable resource and hence Bix has tojudiciously utilize this by
showing a pair of candidates that yields the most value. Notethat this is not a trivial
problem: for example, it is not hard to show that asking the user to rank a random pair
of candidates is quite “wasteful” and leads to considerablyweaker guarantees.4

One way to model the above scenario is as follows. We have a setof n elements and
an underlying total orderπt, at timet, on the elements. The ordering slowly changes
over time and we model the slow change by requiring that the change fromπt andπt+1

is local. The goal is to design an algorithm that, at any pointin time, tracks the top few
elements of the underlying total order or more generally, maintains a total order̃πt that
is close toπt. The only capability available to the algorithm is pairwisecomparison
probes: at any timet, given one or more pair of elements, it can obtain the pairwise
ranking of them according to the underlying total order currently in effect, (i.e.,πt).
Clearly, there is a tradeoff between the number of probes that can be made at timet and
the quality ofπ̃t (e.g., if the number of probes is large enough, thenπ̃t = πt is easily
achievable.)

Another motivation for the sorting problem is that of ranking in settings such as
web search, recommendation systems, and online ad selection. A significant factor in
ranking is the use of historic data. However, what may have been a good ranking in the
past may not remain so perpetually, and the ranking changes are typically gradual over
time (e.g., the query “vacation spots” might connote differently depending on the time
of the year). The ranking system would like to track the changing perception of ranking
by selecting what feedback (in the form of clicks) to requestfrom the user. In addition
to the above applications, which are mostly in the Internet domain, the problem has
applications in sociology under the topic of the method of “paired comparisons” in the
measurement of social values [5, Ch. 7].5

Of course, except for the aforementioned motivations for the sorting problem, sim-
ilar issues arise in scenarios other than sorting. Consider, for example, a web crawler,
whose goal is to track the highest quality pages on the web. The notion of quality, how-
ever, is (slowly) time-varying and the crawling algorithm,which is usually resource-
constrained, has only limited access to the web graph at any point in time. The goal
of the crawler would then be to track pages whose quality is reasonably close to the

4 In the language of the model defined in Section 2, this algorithm leads to a guarantee ofO(n2)
for the Kendall tau distance (only a constant factor better than an oblivious algorithm that
always outputs the same ranking), whereas we are able to achieveO(n ln lnn).

5 We thank Matthew Salganik for pointing out this application.

current best. Another graph application is maintaining routing tables with fastest (least
congested) routes. The load on routes changes gradually, and the router receives new
information on route’s load only when a packet is sent along that route. Yet another set-
ting can be that of a company that wants to track popular social network users with lots
of friends, so as to use this information for viral marketing. Social networking systems
such as Facebook allow to query and find the contacts of a givenuser (unless the user
explicitly disallows) but limit the number of queries so as to prevent abuse. Overall, our
setting is fairly general and can capture real-life scenarios such as continually updated
remote databases, hashing, load balancing, polling, etc.

A general framework. The nature of the problems described above suggests the fol-
lowing general framework to study dynamic data. LetU andV be (possibly infinite)
universe of objects. Letf : U → V be a function. Letd : U × U → R

+ and
d′ : V × V → R

+ be pairwise distance functions.U t ∈ U is the object at timet
while V t ∈ V will be the estimate of the output of functionf at timet.

(1) We have an implicit sequence of objectsU1, U2, . . . such thatd(U t, U t+1) is
small, that is, the object changes slowly over time. The change can be arbitrary, or
stochastic (which is the case that we consider in this paper).

(2) At eacht, portions of the objectU t can be accessed by a certain number of
probes.

(3) The goal is to output a sequenceV 1, V 2, . . . such that for eacht, d′(f(U t), V t)
is small, that is, we have a good approximation to the function of the true object at each
point in time.

In the case of the Bix sorting problem that is the main focus ofthis paper,U = V =
Sn, the set of permutations onn elements,d = d′ is the Kendall tau distance, andf is
the identity function. For the selection problems we have thatV is the set of elements,
d′ is the absolute rank difference between two elements, andf is an element. The slow
changing of the objects in (1) is captured by permitting, say, only pairwise exchanges
(corresponding to Kendall distance of1) and the access to the object in (2) is captured
by rank-ordering a given pair of elements according to the current total order. Even
though in this paper we only focus on ranking and selection problems, this framework
applies to many other settings as well, such as graph algorithms [1].

Related work. Models for dealing with dynamic and uncertain data have beenexten-
sively studied in the algorithmic community, from various points of view. This includes
the multi-arm bandit algorithms that deal with explore-exploit tradeoffs, online algo-
rithms that deal with future information, dynamic graph algorithms that deal with fast
updates in response to graph changes, data stream algorithms that deal with limited
computational resources such as space, stochastic optimization algorithms, etc. How-
ever, none of these captures the two crucial aspects of the above scenario: the slow
changing of the underlying object and the probe model of exposing only a limited por-
tion of the object to an algorithm. We are only aware of one other work that studies
similar tradeoffs, namely the work of Slivkins and Upfal [4], which studies them in the
more restricted setting of the multi-armed bandit model.

Our results. For the problem of maintaining a sorted order using a single probe at each
time step when the permutation changes slowly and randomly and where the notion of
distance is Kendall tau (number of pairwise disagreements), we give an algorithm that
guarantees that for every time stept, the distance between the underlying true ordering
and the ordering maintained by the algorithm is at mostO(n ln lnn), in expectation
and with high probability. This builds upon an algorithm that has a distance guarantee
of O(n ln n), in expectation and with high probability. We also show anΩ(n) lower
bound on the expected distance between the true ordering andthe order maintained by
any algorithm.

To show the upper bound result, we first develop an algorithm that is based on pe-
riodically running the quicksort algorithm on the data. We use quicksort-specific prop-
erties to show that this algorithm can guarantee a distance of O(n ln n). We then give
a more sophisticated algorithm that runs a copy of the above quicksort-based algorithm
in parallel with multiple copies of faster though less accurate “local quicksorts.” These
local quicksorts will be able to give us the desired distanceguarantee ofO(n ln lnn)
in the first few runs; however, their weakness is that they could accumulate the errors
and lead to considerably worse distance guarantees later. This weakness is overcome by
occasionally resetting the algorithm using the slower quicksort, which is run in parallel.

We then consider selection problems: finding an element of a given rank. We pro-
vide algorithms that track the target elements to within distance 1. The basic idea is
similar to the one we used for sorting: we adapt a static algorithm to the online setting
by repeated executions. Furthermore, to ensure that the result returned is always close
to the true value, we decompose the algorithm into two processes that are executed in-
dependently and in parallel, where the slower process prepares the data structures that
the faster process uses over and over to compute the output. For the special case of
finding the minimum element, we give a simpler algorithm by modeling the evolution
of the process as a Markov chain.

2 Sorting Dynamic Elements
Consider a setU = {u1, . . . , un}. Throughout most of this paper, our focus is on the
problem of sorting the elements ofU . In a static setting, where the correct ordering of
the elements ofU is given by a permutationπ, there are numerous well-known sorting
algorithms that can find the permutationπ after comparingO(n lnn) pairs inU [2].
We are interested in a dynamic setting, where the true ordering π changes over time.
To make this precise, consider a discretized time horizon with time steps indexed by
positive integers. Letπt be the true ordering at timet. We assume that the true ordering
changes gradually, and we model this by assuming that for every t > 1, πt is obtained
from πt−1 by swapping a random pair ofconsecutiveelements.

Our objective is to give an algorithm that can estimate the true orderingπt. Unlike
the familiar notion of algorithms that terminate in finite time, the algorithms we study
run for ever; we often refer to them asprotocols. In every time stept, the algorithm can
select two elements ofU to compare. The ordering of these two elements according
to πt is given to the algorithm, and then the algorithm computes anestimatẽπt of the
true ordering. The algorithm has memory, that is, it is allowed to store any information,
and the information will be carried over to the next time step. Note that our definition

assumes that the rate of comparisons performed by the algorithm is equal to the rate of
change in the true ordering (i.e., one swap and one comparison probe per time step).
This assumption is merely for simplicity: all our results work in the more general set-
ting where corresponding to every change in the true ordering, the algorithm is allowed
to perform a number of comparisons given by a parameterβ (β can be more or less than
1); the proofs are essentially exactly the same, with the bounds multiplied by functions
of β. Furthermore, notice that we did not impose any constraint on either the amount
of memory required by the algorithm or its running time. While such constraints seem
natural in practice, it turns out that the running time and the memory are not major con-
cerns, at least for the algorithms that we propose in this paper. Also, we need to specify
whether the algorithm knows the initial orderingπ1. For convenience, we assume that
the algorithm knowsπ1, although our results hold without this assumption as well.6

Notice that unlike in the static setting where the algorithmcan find the permutation
π after finite time, in the dynamic setting the algorithm can never expect to find the
exact true orderingπt. Therefore, we need a way to measure how close the estimate is
to the true ordering. For this purpose, we use the classicalKendall taudistance function
between permutations. For a permutationπ we writex <π y if x is ordered beforey ac-
cording to permutationπ. The Kendall tau distanceKT(π1, π2) between permutations
π1 andπ2 is defined as follows:

KT(π1, π2) = |{(x, y) : x <π1
y ∧ y <π2

x}| .
The maximum Kendall tau distance between two permutations (and in fact the dis-

tance between two random permutations) isO(n2). In fact, no algorithm can guarantee
that in every time step the distance betweenπt andπ̃t is less thanO(n) (Section 2.1).
Our main result in Section 2.3 shows that there is an algorithm that can guarantee with
high probability that this distance is at mostO(n ln lnn). We start with an easier result
of O(n ln n) in Section 2.2, which will be used in our main result.

2.1 Lower Bound
We first prove anΩ(n) lower bound on the expected Kendall tau distance between the
estimated order computed by any algorithm for our problem and the actual order at any
time t.

Theorem 1. For everyt > n/8, KT (π̃t, πt) = Ω(n) in expectation and whp.7

Proof. Consider the time intervalI = [t − n/8, t]. Let B be the set of items involved
in any comparison by the algorithm in this interval,|B| ≤ n/4. Let B̄ = U \ B. At
any timeτ ∈ I, the elements ofB are adjacent inπτ to up ton/2 elements inB̄. Thus,
for anyτ ∈ [t − n/8, t], there are at leastn/4 pairs of adjacent elements of̄B in πτ ,
each of these pairs is swapped with probabilityc/n, wherec > 0 is a constant. Thus,
during the interval[t − n/8, t] the expected number of pairs in̄B that are swapped
is (c/32)n. The expected number of pairs that are swapped and then swapped back

6 We only need to be careful to requiret ≥ n ln n in our upper bounds (Theorems 2 and 3) if
the algorithm does not knowπ1.

7 We say that an event holds “with high probability”, abbreviated whp., if it holds with proba-
bility at least1− n−c for some constantc, for sufficiently largen.

is O(c2n2/n2) = O(1). Since no element of̄B is involved in any comparison the
algorithm cannot identify swapped between pairs inB̄, implying the result. ut

2.2 Algorithm with O(n lnn) Distance Guarantee
In this section we first give an algorithm that guarantees thefollowing: for every time
stept, the distance between the orderingsπt andπ̃t is O(n ln n), with high probability.
We will use this result in the next section to get an improved bound ofO(n ln lnn).

The algorithm proceeds in phases, where each phase consistsof O(n ln n) time
steps (in expectation and whp.). In each phase, the algorithm runs a randomized quick-
sort algorithm to sort all elements. At any time step, the algorithm outputs the ordering
that is obtained at the end of thelast phase. Notice that since this algorithm outputs the
same permutation forO(n lnn) steps, it cannot provide a distance guarantee better than
O(n ln n). The following theorem shows that the distance guarantee ofthis algorithm
is in factΘ(n lnn) whp.

Theorem 2. For everyt, KT(π̃t, πt) = O(n ln n) in expectation and whp.

Before proving the above theorem, we note that in our algorithm, the quicksort
algorithmmay notbe replaced by an arbitraryO(n lnn) sorting algorithm. The reason
being, in our setting, the algorithm can receive inconsistent data (since the true ordering
is changing), and such inconsistencies can lead to large errors in general. In the case of
quicksort, we will use its specific properties to argue that the inconsistencies can result
in only a small number ofadditionalerrors (these errors will correspond to the setB in
the following proof).

Proof (of Theorem 2).Consider one phase of the algorithm from timet0 to t1. We have
thatt1 − t0 = Θ(n ln n), in expectation and whp.

To bound the Kendall tau distance we have to bound the number of pairs (ui, uj)
that are ordered differently in the two permutationsπ̃t andπt. We divide these pairs into
two disjoint sets,A andB, where the setA contain the pairs for which the algorithm’s
order at timet1 is in accordance with the true ordering at some time pointt ∈ [t0, t1):

A = {(ui, uj) | ui <π̃t1 uj, ui >πt1 uj , ∃t ∈ [t0, t1) s. t.ui <πt uj},
and the setB contains the pairs for which there was a disagreement between the algo-
rithm’s order estimate (at timet1) and the true order throughout the execution of the
algorithm in this phase:

B = {(ui, uj) | ui <π̃t1 uj, ∀t ∈ [t0, t1) ui >πt uj}.
SinceKT(π̃t, πt) = |A ∪ B| = |A| + |B|, Lemmas 1 and 2 will complete the proof.

ut

First we bound the cardinality ofA by the running time of the algorithm.

Lemma 1. |A| = O(n lnn) in expectation and whp.

Proof. For the setA, note that if we letA′ be the set of pairs for which the true order
changed in[t0, t1), that is,

A′ = {(ui, uj) | ui <πt1 uj, ∃t ∈ [t0, t1) s. t.ui >πt uj},
then we have thatA ⊆ A′. Now notice that since the true order of the pair(ui, uj)
was swapped during[t0, t1), it has to be the case that at some point in[t0, t1), the pair

(ui, uj) was chosen to swap. Since only one pair swaps its ordering at each timestep
and sincet1 − t0 = O(n ln n) in expectation and whp., we have that|A| ≤ |A′| ≤
t1 − t0 = O(n lnn) in expectation and whp. ut

For the setB the counting is more involved. By definition, for a pair(ui, uj) ∈ B
we have thatui > uj according to the true ordering during(t0, t1], however, att1 the
algorithm concluded otherwise. This means that during one of the recursive calls of
the quicksort algorithm, elementsui anduj belonged to the same subarray that was
then sorted, a pivot elementuk was chosen (uk 6= ui, uj), and after elementuk was
compared with all the elements of the subarray, the result was ui < uk anduj > uk.
For this to have happened, the elementuk would have to be swapped witheachof the
elementsui anduj at least once while it was a pivot. After the elementuk terminates
being a pivot, the algorithm’s perception of the ordering betweenui anduj does not
change. (Note that the above arguments crucially rely on thefact that the algorithm is
quicksort.)

From the previous discussion we see that if we can bound the number of swaps of
the pivot elements during the period they were acting as pivots, then we will be able
to bound the number of pairs in the setB. Since the probability that a pivot element is
chosen at a given time step is small (at most2/n), we expect the setB to be small. We
prove this formally below.

Lemma 2. |B| = O(n lnn) in expectation and whp.

Proof. We will charge the error due to pair(ui, uj) to the corresponding pivotuk. Let
Xi be the number of steps that elementui was a pivot during[t0, t1); note thatXi ≤ n.
Let E be the event that

n
∑

i=1

Xi ≤ c0n lnn, (1)

for some constantc0 > 0. Since the running time of quicksort isO(n lnn) in expecta-
tion and whp.,E holds whp. Also, the running time of quicksort isO(n2) in the worst
case. The event¬E will only contribute a negligible (inverse polynomial) amount to the
calculations below; therefore, for ease of exposition, we will condition onE being true
for the rest of the proof.

SinceXi ≤ n and
∑

Xi ≤ c0n lnn, by convexity,
∑

X2
i is maximized ifc0 lnn

of theXi’s are equal ton and the rest are equal to 0. Hence,

n
∑

i=1

X2
i ≤ c0n

2 lnn. (2)

Let Yi be the number of steps that elementi was a pivot element and it was chosen to
swap. GivenXi, we have thatYi ∼ Binomial(Xi, p) wherep = 2/n (with the exception
of the case that the pivot is or becomes the first or last element in the order, in which
casep = 1/n). We argued earlier that for the pair(ui, uj) to become misordered, the
corresponding pivot was swapped with bothui anduj. Therefore, if a pivot swappedYi

times, then it could have led to at mostY 2
i misordered pairs. We can then bound the

number of pairs in the setB by S
4
=
∑n

i=1 Y 2
i ≥ |B| . The proof is complete if we

upper boundE[S]. Now,

E[S] = E

[

n
∑

i=1

Y 2
i

]

= E

[

E

[

n
∑

i=1

Y 2
i

∣

∣

∣

∣

Xi

]]

= E

[

n
∑

i=1

E
[

Y 2
i |Xi

]

]

= E

[

n
∑

i=1

(Var [Yi|Xi] + E[Yi|Xi]
2)

]

= E

[

n
∑

i=1

(Xip(1 − p) + X2
i p2)

]

= E

[

p(1 − p)

n
∑

i=1

Xi + p2
n
∑

i=1

X2
i

]

(1),(2)

≤ (2c0(1 − p) + 4c0) lnn ≤ c1 lnn,

for some constantc1 > 0.
To bound the probability that the setB is large, first note that givenXi’s, theYi’s

are independent binomial random variables. We apply Azuma’s inequality and finish
the proof.8 For some sufficiently large constantc2 > 0, we have

Pr(S − E[S] > c2n lnn) ≤ exp

(

−2c2
2n

2 ln2 n
∑n

i=1 X2
i

)

(2)

≤ n−2c2

2
/c1 .

The following lemma is also proved similarly and will be usedlater. The proof will
appear in the full version of the paper.

Lemma 3. Given an elementui, the number of pairs(ui, uj) that the permutationsπt1

and π̃t1 rank differently is bounded bỹc lnn in expectation and whp., for some con-
stantc̃ and sufficiently largen.

2.3 Main Result
Now we present a more complicated protocol that maintains anerror ofO(n ln lnn).
The main idea is that after the quicksort execution, which due to its running time has
as a result an error ofO(n ln n), the rank of each element in the algorithm’s estimate is
within O(ln n) of its actual rank. Thus, by performing several (O(n/ lnn)) local sorts
in blocks of sizem = Θ(lnn) we can correct the ordering. The total running time is
O(n/ lnn) · (lnn) ln lnn, therefore after all the sorts terminate the total error will be
bounded byO(n ln lnn).

There are some issues that we have to address though. First, since elements might
have moved to neighboring blocks, we make the blocks overlapping thus allowing the
comparison of all neighboring elements (see Figure 1). First we sort the firstm ele-
ments. From the resulting order we maintain the firstm/2 of the elements. The second
half of the block is sorted along with the nextm/2 elements. Again we maintain the
first m/2 elements and proceed in the same way.

8 The following is a consequence of Azuma’s inequality [3]. Assume that0 < Xi < di are
independent random variables, and letS =

∑

n

i=1
Xi. Then

Pr(S −E[S] > λ) ≤ exp

(

−2λ2/
n
∑

i=1

d2

i

)

.

Blocki+1

m

Blocki

Fig. 1. The set of elements ordered according toπ̃t0 , and the partition into blocks.

Second, while we would like to sequentially execute a full set of local quicksorts
after the termination of the previous one so as to maintain the error ofO(n ln lnn),
eventually elements will move far. Thus it is necessary to occasionally execute a full
quicksort to recover the global order. The problem, however, is that during the execution
of the global quicksort the error will becomen lnn. Therefore, we use the following
idea: execute two sets of quicksorts independently. Duringthe odd timesteps we execute
a regular quicksort, and after its termination we restart, as in Section 2.2. The previous
analysis applies to this case as well with the difference that in every step there are two
pairs whose order swaps. During the even steps, we execute the set ofΘ(n/ lnn) quick-
sorts on overlapping blocks of lengthm = Θ(ln n). The input to the set of quicksorts is
the output of the last full quicksort that has terminated. After the termination of the set
of quicksorts we rerun them, again with the same input. The two processes are executed
independently with their own data structures. In every timestep, the “output” of the pro-
tocol is the output of the latest successfully completed setof quicksorts. In Figure 2 we
present a schematic representation of the algorithm. The proof of the following theorem
will appear in the full version of the paper.

Theorem 3. For everyt, KT(π̃t, πt) = O(n ln lnn) in expectation and whp.

tf

c1n ln n

2n
m

· c1m ln m

c1n ln n

c1m ln m Set of 2n
m

block quicksorts

Full quicksort

Block quicksort

t0 t1 t2

Fig. 2. The periods of the execution of the sorting algorithm.

3 Selection Problems
As we mentioned earlier, the dynamic data setting can capture several scenarios. In
this section we illustrate this by providing two more examples. First we show a simple
algorithm for finding the element with minimum rank; for a fairly realistic application
of this setting, consider the social-network example presented in the introduction. We
then present a more general algorithm that can be used to find the element of a given
rank. By combining this algorithm with the previous result on sorting, one can find the
top-k ranked elements.

3.1 Finding the Minimum
Assume the same dynamic perturbation model as before where each pair swaps in every
time step with probabilityα/(n− 1), whereα > 0 is a constant (α = 1 in the simplest
case). Instead of sorting all the elements we only want to estimate the smallest element.
The following simple algorithm outputs at any given step an element that is either the
minimum or very close to minimum. The algorithm maintains the current minimum es-
timatem and in every step compares it with an elementui chosen uniformly at random
from all the elements. Ifui < m, it replacesm with ui. The basic idea to prove the
following theorem is to model the process as a Markov chain (details omitted in this
version).

Theorem 4. Letmt be the rank of the estimate at timet. In the steady statePr(mt ≥
i) ≤

(

α
1+α

)i

, andE[mt] = 1 + α.

3.2 Finding the Element of a Given Rank
In this section we give an algorithm for solving the problem of finding the element of
rankk for k = 1, 2, . . . , n. Givenk, our goal is to find an elementui that minimizes the
distance|πt(ui) − k|, whereπt(ui) is the rank ofui at timet. Fork = 1 the problem
is that of finding the minimum, while fork = dn/2e the problem is that of finding the
median. To make the exposition clearer we present the case ofthe median; the algorithm
and the proof can be easily generalized for anyk. Figure 3 is a dynamic version of the
median algorithm in [3], with a few modifications to adapt it to our dynamic setting. As
in the case of the elaborate sorting algorithm, we run two algorithms in an interleaved
manner. In the odd steps we prepare a setC that will contain the median in any step
of the next execution of the while loop. In the even steps we use the setC computed
in the previous step to output the median estimate. During a sorting phase of the setC,
the output estimate is the elementµ̃ computed in the previous run of the sorting. Lett0
be the last time point of the first period. We show that the difference in the rank of the
element returned by the algorithm is negligible.

Theorem 5. Let µ̃ be the output of algorithm Median. For every timet ≥ t0 = O(n)
we have thatPr

(∣

∣π(µ̃) − n
2

∣

∣ = 0
)

≥ 1 − o(1), andE
[∣

∣π(µ̃) − n
2

∣

∣

]

= o(1).

Proof. The proof is based on the proof of the static version presented, for example,
in [3]; we will outline only the modification specific to the dynamic case.

1. Algorithm Median(U)
2. Input: A set of elementsU
3. while (true)
4. Execute in odd steps:
5. Pick a (multi-)setR of n

36 ln n
elements fromU chosen independently uniformly at

random with replacement
6. quicksort(R)
7. Letd be the (n

72 ln n
−√n)th smallest element in the sorted setR

8. Letu be the (n

72 ln n
+
√

n)th smallest element in the sorted setR
9. By comparing every element inU to d andu, compute the set

C = {x ∈ U : d ≤ x ≤ u} and the number̀d = |{x ∈ U : x < d}|
10. Execute in even steps using the set C computed last
11. quicksort(C)
12. µ̃← (bn/2c − `d + 1)th element in the sorted order ofC
13. end while

Fig. 3. Algorithm for computing the median.

We partition time into periods of lengthΘ(n), where each period corresponds to
a full execution of steps 4–9 in Figure 3. (Executing the fullset of steps 4–9 (odd
time steps) requires timeΘ(n) while the set of steps 10–12 (even time steps) requires
Θ(

√
n ln2 n), whp.) In the odd time steps of a period we compute a setC to be used to

compute the median in the next period. In the even time steps we use the setC computed
in the previous period.

We first note that the length of each period is linear with highprobability, therefore
in a given period the rank of a given element (and in particular that of the median)
changes by a constant in expectation. Furthermore, with high probability no element
moves more thanc lnn places during a period, for some constantc.

The analysis of the static case as presented in [3] reduces toproving that the follow-
ing two facts (adapted to our case) hold whp.:

1. The setC computed at a given period contains all the elements that aremedians
during the next period.

2. |C| = O(
√

n lnn) whp.

With a similar argument as the one used in [3] and taking into account that the rank
of elementd during two periods does not change more than2c lnn whp., we have that
in order to maintainπt(d) < dn/2e it suffices that at most n

72 ln n − √
n samples inR

had rank smaller thann2 − 2c lnn, when they were selected. We defineXi = 1 if
the ith sample had rank smaller thann

2 − 2c lnn, and 0 otherwise. Then we have that
Pr(Xi = 1) = 1

2 − 2c ln n
n andE [

∑

Xi] = n
72 ln n − c

18 . We can apply a Chernoff
bound and obtain:

Pr





|R|
∑

i=1

Xi <
n

72 lnn
−
√

n



 = Pr

(

∑

Xi − E

[

∑

Xi

]

<
c

18
−
√

n
)

≤ e−
72 ln n

n
(
√

n− c

18)
2

≤ 1

n3
.

A similar argument shows that we maintain thatπt(u) > dn/2e throughout the
execution of the entire period, therefore, the setC created at step 8 will contain whp.
all elements that are medians in the next period.

Next we need to show that|C| = O(
√

n lnn). The argument must take into account
that the elements change ranks and is similar to the one just presented. The reader can
refer to [3] for the type of events that need to be defined and wedo not repeat here the
details. ThusC can be sorted inO(

√
n ln2 n) time.

We have now established that whp.|C| = O(
√

n ln n) and that it contains all ele-
ments that are medians during the next period. Since sortingin step 8 takesO(

√
n ln2 n)

steps, the probability that either the median at the beginning of a sorting phase, or the
O(ln n) pivots that it is compared to during the sorting move during the sorting phase is
bounded byO(ln3 n/

√
n). Thus, with probability1−O(ln3 n/

√
n) the sorting returns

the correct median at that step. The probability that the median change place during the
next sorting round (before a new median is computed) is bounded byO((

√
n ln2 n)/n).

Thus, at any given step, with probability1 − o(n−1/2+ε) the algorithm returns the cor-
rect median. The expectation result is obtained by observing that when the output is not
the correct median, its distance to the correct median is with high probabilityO(ln n).

ut

4 Conclusions
In this paper we study a new computational paradigm for dynamically changing data.
This paradigm is rich enough to capture many natural problems that arise in online
voting, crawling, social networks, etc. In this model the data gradually changes over
time and the goal of an algorithm is to compute some property of it by probing, under
the constraint that the amount of access to the data at each time step is limited. In
this simple framework, we consider the fundamental problems of sorting and selection,
where the true ordering slowly changes over time and the algorithm can probe the true
ordering once each time step using a pair of elements it chooses. We obtain an algorithm
that maintains, at each time step, an ordering that is at mostO(n ln lnn)–Kendall-tau
distance away from the true ordering, with high probability. For selection problems, we
provide algorithms that track the target element to within distance 1. Revisiting classical
algorithmic problems in this paradigm will be an interesting direction for future line of
research [1].

References
1. A. Anagnostopoulos, R. Kumar, M. Mahdian, and E. Upfal. Dynamic graph algorithms.

Manuscript, 2009.
2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms. MIT

Press, 2001.
3. M. Mitzenmacher and E. Upfal.Probability and Computing. Cambridge University Press,

2005.
4. A. Slivkins and E. Upfal. Adapting to a changing environment: The Brownian restless bandits.

In Proc. 21st Annual Conference on Learning Theory, pages 343–354, 2008.
5. L. L. Thurstone.The Measurement of Values. The University of Chicago Press, 1959.

