Sort Meif You Can:
How to Sort Dynamic Data

Aris Anagnostopould$, Ravi Kumaf, Mohammad Mahdiah and Eli Upfaf**

! Sapienza University of Rome, Rome, 00185, Italyi s@s. br own. edu
2 Yahoo! Research, Sunnyvale, CA 94089, USA.
{ravi kumar , mahdi an}@ahoo-i nc. com
3 Brown University, Providence, R1 02912, US@Al. i @s. br own. edu

Abstract. We formulate and study a new computational model for dynataia.
In this model the data changes gradually and the goal of amitiign is to com-
pute the solution to some problem on the data at each time wbeler the con-
straint that it only has a limited access to the data each #weé¢he data is con-
stantly changing and the algorithm might be unaware of tikeseges, it cannot
be expected to always output the exact right solution; werdegested in algo-
rithms that guarantee to output an approximate solutiopahticular, we focus
on the fundamental problems of sorting and selection, wtiherérue ordering of
the elements changes slowly. We provide algorithms witlioperance close to
the optimal in expectation and with high probability.

1 Introduction

In the classic paradigm, an algorithm received all the irgithe start of the compu-
tation and computed a function of that input. As computingamee more interactive,
researchers developed the theory of online algorithmssiag on the tradeoff between
the timely availability of the input and the performancelod @lgorithm. In this paper
we study another important aspect of online, interactivemating: computing and
maintaining global information on a data set that is cortitashanging While algo-
rithms and models to study dynamic data have been in vogueyank formulates and
studies a new model of computing in the presence of congtalnéinging data.

For concreteness we present our work through one specifigation, the popular
online voting website BixI§i x. com), owned by Yahoo!; this partially inspired us to
study the particular problem of sorting. We comment latemame general applications.
The Bix website hosts online contests for various themels aa¢he most entertaining
sport or the most dangerous animal or the best presidemtialnee, in which users
vote to select the best amongst a pre-specified set of caadidéor a given contest,
Bix displays a pair of candidates to a user visiting the wetznd asks the user to rank-
order this pair. As the contest progresses, Bix aggregétésegairwise comparisons
provided by users to pick the leader (or the top few leaddrf)eocontest thus far; the
goal is to reflect the current aggregated opinion as faithfid possible. For simplicity,
we will ignore issues such as malicious user behavior andhas®ach user is able to

* Part of this work was done while the author was at Yahoo! Rekea
** Supported in part by NSF award DMI-0600384, ONR Award NO@&I0607, and Yahoo!
Faculty Research Grant.

compare any pair of candidates. In fact, we will assume seimgimore general: each
user has access to the global total order (“the public opifjiand when Bix shows a
pair of candidates, the user consults this total order tk-cader the given pair.

There are two factors that make this setting both intergstird challenging. First,
as the contest progresses, users’ voting patterns mighgehaerhaps slowly, at an
aggregate level. This can be caused by an intrinsic shifulslip opinion about the
candidates or factors external to the contest. While onaatsassume there is a fixed
total order that the contest is trying to uncover, it is reedse to assume that the total
order changes slowly over time. Second, whenever a usés thisir website, Bix has
to choose a pair of candidates to show to the user in ordeidio thle comparison. A
visiting user is thus a valuable resource and hence Bix hgsltciously utilize this by
showing a pair of candidates that yields the most value. Watethis is not a trivial
problem: for example, it is not hard to show that asking they &g rank a random pair
of candidates is quite “wasteful” and leads to consideralggker guaranteés.

One way to model the above scenario is as follows. We haved setlements and
an underlying total ordex?, at timet, on the elements. The ordering slowly changes
over time and we model the slow change by requiring that ta@gé fromr* andz!*!
is local. The goal is to design an algorithm that, at any pioititme, tracks the top few
elements of the underlying total order or more generallyntaims a total ordef® that
is close tor!. The only capability available to the algorithm is pairwmemparison
probes: at any time, given one or more pair of elements, it can obtain the pagwis
ranking of them according to the underlying total order eatiy in effect, (i.e.,r?).
Clearly, there is a tradeoff between the number of probdstrabe made at timeand
the quality of7? (e.g., if the number of probes is large enough, thénr= 7t is easily
achievable.)

Another motivation for the sorting problem is that of rankim settings such as
web search, recommendation systems, and online ad seleAtisignificant factor in
ranking is the use of historic data. However, what may haenlaegood ranking in the
past may not remain so perpetually, and the ranking changdgzically gradual over
time (e.g., the query “vacation spots” might connote défety depending on the time
of the year). The ranking system would like to track the cliaggerception of ranking
by selecting what feedback (in the form of clicks) to requesi the user. In addition
to the above applications, which are mostly in the Interraehdin, the problem has
applications in sociology under the topic of the method difed comparisons” in the
measurement of social values [5, Ch57].

Of course, except for the aforementioned motivations ferdbrting problem, sim-
ilar issues arise in scenarios other than sorting. Condideexample, a web crawler,
whose goal is to track the highest quality pages on the webnbtion of quality, how-
ever, is (slowly) time-varying and the crawling algorithwhich is usually resource-
constrained, has only limited access to the web graph at amy im time. The goal
of the crawler would then be to track pages whose qualityasarably close to the

* In the language of the model defined in Section 2, this algarieads to a guarantee ©{n?)
for the Kendall tau distance (only a constant factor bettantan oblivious algorithm that
always outputs the same ranking), whereas we are able teva¢h{n Inlnn).

5 We thank Matthew Salganik for pointing out this application

current best. Another graph application is maintainingirgutables with fastest (least
congested) routes. The load on routes changes graduallyharrouter receives new
information on route’s load only when a packet is sent altwag toute. Yet another set-
ting can be that of a company that wants to track popular boetavork users with lots
of friends, so as to use this information for viral marketiBgcial networking systems
such as Facebook allow to query and find the contacts of a gisen(unless the user
explicitly disallows) but limit the number of queries so agptevent abuse. Overall, our
setting is fairly general and can capture real-life scasasiich as continually updated
remote databases, hashing, load balancing, polling, etc.

A general framework. The nature of the problems described above suggests the fol-
lowing general framework to study dynamic data. Leand) be (possibly infinite)
universe of objects. Lef : &« — V be a function. Letd : &4 x Y — R* and

d :V xV — RT be pairwise distance function&l! € U is the object at time
while V¢ € V will be the estimate of the output of functighat timet.

(1) We have an implicit sequence of obje€ts, U2, ... such thatd(U!, Ut*!) is
small, that is, the object changes slowly over time. The gbaran be arbitrary, or
stochastic (which is the case that we consider in this paper)

(2) At eacht, portions of the object/* can be accessed by a certain number of
probes.

(3) The goal is to output a sequericé, V2, . .. such that for each d'(f(U*), V1)
is small, that is, we have a good approximation to the fumabicthe true object at each
pointin time.

In the case of the Bix sorting problem that is the main focuhisfpaperl/ =V =
Sy, the set of permutations onelementsd = d’ is the Kendall tau distance, arfdis
the identity function. For the selection problems we haw this the set of elements,
d’ is the absolute rank difference between two elements faadn element. The slow
changing of the objects in (1) is captured by permitting, sayy pairwise exchanges
(corresponding to Kendall distance fand the access to the object in (2) is captured
by rank-ordering a given pair of elements according to theesu total order. Even
though in this paper we only focus on ranking and selectioblems, this framework
applies to many other settings as well, such as graph ahgasifl].

Related work. Models for dealing with dynamic and uncertain data have leeden-
sively studied in the algorithmic community, from variousqts of view. This includes
the multi-arm bandit algorithms that deal with explore-eitradeoffs, online algo-
rithms that deal with future information, dynamic graphaithms that deal with fast
updates in response to graph changes, data stream algetitiamndeal with limited
computational resources such as space, stochastic oatiomzalgorithms, etc. How-
ever, none of these captures the two crucial aspects of theadrenario: the slow
changing of the underlying object and the probe model of sixgponly a limited por-
tion of the object to an algorithm. We are only aware of oneepthiork that studies
similar tradeoffs, namely the work of Slivkins and Upfal [#jhich studies them in the
more restricted setting of the multi-armed bandit model.

Our results. For the problem of maintaining a sorted order using a singleg@at each
time step when the permutation changes slowly and randondyndoere the notion of
distance is Kendall tau (number of pairwise disagreemgwesgive an algorithm that
guarantees that for every time stephe distance between the underlying true ordering
and the ordering maintained by the algorithm is at n@&t InInn), in expectation
and with high probability. This builds upon an algorithmtthas a distance guarantee
of O(nlnn), in expectation and with high probability. We also showsaf) lower
bound on the expected distance between the true orderintharader maintained by
any algorithm.

To show the upper bound result, we first develop an algoritiahis based on pe-
riodically running the quicksort algorithm on the data. V¢& guicksort-specific prop-
erties to show that this algorithm can guarantee a distah¢¥oln). We then give
a more sophisticated algorithm that runs a copy of the aboigksort-based algorithm
in parallel with multiple copies of faster though less aetar‘local quicksorts.” These
local quicksorts will be able to give us the desired distaguarantee 0O (n lnlnn)
in the first few runs; however, their weakness is that theyiccaacumulate the errors
and lead to considerably worse distance guarantees laiswEakness is overcome by
occasionally resetting the algorithm using the slower kgoct, which is run in parallel.

We then consider selection problems: finding an element éfengank. We pro-
vide algorithms that track the target elements to withiriagise 1. The basic idea is
similar to the one we used for sorting: we adapt a static @lyarto the online setting
by repeated executions. Furthermore, to ensure that thé returned is always close
to the true value, we decompose the algorithm into two piEethat are executed in-
dependently and in parallel, where the slower process peephe data structures that
the faster process uses over and over to compute the outputhé special case of
finding the minimum element, we give a simpler algorithm bydalong the evolution
of the process as a Markov chain.

2 Sorting Dynamic Elements

Consider a seV = {us,...,u,}. Throughout most of this paper, our focus is on the
problem of sorting the elements bf. In a static setting, where the correct ordering of
the elements ol is given by a permutation, there are numerous well-known sorting
algorithms that can find the permutatienafter comparingD(nlnn) pairs inU [2].

We are interested in a dynamic setting, where the true argarichanges over time.
To make this precise, consider a discretized time horizdh tifne steps indexed by
positive integers. Let! be the true ordering at time We assume that the true ordering
changes gradually, and we model this by assuming that foyeve 1, 7 is obtained
from 7t~ by swapping a random pair ebnsecutivelements.

Our objective is to give an algorithm that can estimate the tirderingrt. Unlike
the familiar notion of algorithms that terminate in finiteng, the algorithms we study
run for ever; we often refer to them psotocols In every time step, the algorithm can
select two elements df to compare. The ordering of these two elements according
to 7t is given to the algorithm, and then the algorithm computesstiimater? of the
true ordering. The algorithm has memory, that is, it is a#ddvto store any information,
and the information will be carried over to the next time stdpte that our definition

assumes that the rate of comparisons performed by the @gois equal to the rate of
change in the true ordering (i.e., one swap and one compapisibe per time step).
This assumption is merely for simplicity: all our resultsnkaén the more general set-
ting where corresponding to every change in the true ordettre algorithm is allowed
to perform a number of comparisons given by a paramg{grcan be more or less than
1); the proofs are essentially exactly the same, with theatieunultiplied by functions
of 4. Furthermore, notice that we did not impose any constraingither the amount
of memory required by the algorithm or its running time. Véhslich constraints seem
natural in practice, it turns out that the running time areltftemory are not major con-
cerns, at least for the algorithms that we propose in thiepd@gso, we need to specify
whether the algorithm knows the initial ordering. For convenience, we assume that
the algorithm knowsr!, although our results hold without this assumption as fvell.

Notice that unlike in the static setting where the algorittan find the permutation
m after finite time, in the dynamic setting the algorithm cawareexpect to find the
exact true ordering’. Therefore, we need a way to measure how close the estimate is
to the true ordering. For this purpose, we use the claskieadiall taudistance function
between permutations. For a permutatione writex <. y if « is ordered beforg ac-
cording to permutatiom. The Kendall tau distand€ T (7, 7o) between permutations
1 andms is defined as follows:

KT(Trlvﬂ-Q) = |{($,y) T <g YN Y <ny $}|

The maximum Kendall tau distance between two permutatiang in fact the dis-
tance between two random permutationg)is?). In fact, no algorithm can guarantee
that in every time step the distance betweérand7® is less tharO(n) (Section 2.1).
Our main result in Section 2.3 shows that there is an algorttiat can guarantee with
high probability that this distance is at m@3tn In In n). We start with an easier result
of O(nlnn) in Section 2.2, which will be used in our main result.

2.1 Lower Bound

We first prove an2(n) lower bound on the expected Kendall tau distance between the
estimated order computed by any algorithm for our problechtae actual order at any
timet.

Theorem 1. For everyt > n/8, KT(7t, 7') = £2(n) in expectation and whp.

Proof. Consider the time interval = [t — n/8,t]. Let B be the set of items involved
in any comparison by the algorithm in this intervelB| < n/4. Let B = U \ B. At
any timer € I, the elements oB are adjacentin™ to up ton/2 elements in3. Thus,
foranyr € [t — n/8,t], there are at least/4 pairs of adjacent elements &f in 77,
each of these pairs is swapped with probabitity,, wherec > 0 is a constant. Thus,
during the intervalt — n/8,t] the expected number of pairs i that are swapped
is (¢/32)n. The expected number of pairs that are swapped and then sdidyzzk

& We only need to be careful to requite> n Inn in our upper bounds (Theorems 2 and 3) if
the algorithm does not know".

" We say that an event holds “with high probability”, abbrésthwhp., if it holds with proba-
bility at leastl — n~° for some constant, for sufficiently largen.

is O(c*n*/n*) = O(1). Since no element oB is involved in any comparison the
algorithm cannot identify swapped between pair&irimplying the result. a

2.2 Algorithm with O(n Inn) Distance Guarantee

In this section we first give an algorithm that guaranteeddahewing: for every time
stept, the distance between the orderingsand is O(n In n), with high probability.
We will use this result in the next section to get an improvedrid ofO(n Inlnn).

The algorithm proceeds in phases, where each phase coofisSts: Inn) time
steps (in expectation and whp.). In each phase, the algoritihs a randomized quick-
sort algorithm to sort all elements. At any time step, th@atgm outputs the ordering
that is obtained at the end of theest phase. Notice that since this algorithm outputs the
same permutation fap(n In n) steps, it cannot provide a distance guarantee better than
O(nlnn). The following theorem shows that the distance guarantéeisfalgorithm
is in fact©(n Inn) whp.

Theorem 2. For everyt, KT (7", 7*) = O(nlnn) in expectation and whp.

Before proving the above theorem, we note that in our algorjtthe quicksort
algorithmmay notbe replaced by an arbitrary(n In n) sorting algorithm. The reason
being, in our setting, the algorithm can receive inconsisdata (since the true ordering
is changing), and such inconsistencies can lead to largesarrgeneral. In the case of
quicksort, we will use its specific properties to argue thatihconsistencies can result
in only a small number addditionalerrors (these errors will correspond to the Beh
the following proof).

Proof (of Theorem 2)Consider one phase of the algorithm from titgeo ¢;. We have
thatt; — o = ©(nlnn), in expectation and whp.

To bound the Kendall tau distance we have to bound the nunfltai (u;, u;)
that are ordered differently in the two permutatiégésndr®. We divide these pairs into
two disjoint sets A and B, where the sefl contain the pairs for which the algorithm’s
order at timet; is in accordance with the true ordering at some time poitt, t1):

A= {(u“u]) | Up <zt1 Uj, Ui >gtr uj,EIt S [to,tl) S.tu; <t Uj},
and the seB3 contains the pairs for which there was a disagreement battieealgo-
rithm’s order estimate (at timg) and the true order throughout the execution of the
algorithm in this phase:
B= {(ul,uj) | Uq <stq uj,Vt S [to,tl) U; > gt uJ}
SinceKT (7!, ") = |AU B| = |A| + | B|, Lemmas 1 and 2 will complete the proof.
O

First we bound the cardinality of by the running time of the algorithm.

Lemmal. |A| = O(nlnn) in expectation and whp.

Proof. For the set4, note that if we letd’ be the set of pairs for which the true order
changed iffto, ¢1), that is,

A = {(ui,uj) | Uq <jt1 uj,EIt S [to,tl) S. tu; > ¢ Uj},
then we have thatl C A’. Now notice that since the true order of the paif, u;)
was swapped durindo, t1), it has to be the case that at some pointint,), the pair

(u;, u;) was chosen to swap. Since only one pair swaps its orderingcht imestep
and sincet; — t9p = O(nlnn) in expectation and whp., we have thal] < |A'| <
t1 — to = O(nlnn) in expectation and whp. O

For the setB the counting is more involved. By definition, for a p&ir;, ;) € B
we have that,; > u; according to the true ordering durig, ¢;], however, at; the
algorithm concluded otherwise. This means that during dntae recursive calls of
the quicksort algorithm, elements andu; belonged to the same subarray that was
then sorted, a pivot elemenj, was chosenw, # u;,u;), and after element; was
compared with all the elements of the subarray, the resudtwyac v, andu; > uy.
For this to have happened, the elemeptvould have to be swapped widachof the
elementsy; andu; at least once while it was a pivot. After the element terminates
being a pivot, the algorithm’s perception of the orderingneenu,; andu; does not
change. (Note that the above arguments crucially rely orfiattethat the algorithm is
quicksort.)

From the previous discussion we see that if we can bound timdeuof swaps of
the pivot elements during the period they were acting astpitben we will be able
to bound the number of pairs in the g8t Since the probability that a pivot element is
chosen at a given time step is small (at niyst), we expect the seB to be small. We
prove this formally below.

Lemma?2. |B| = O(nlnn) in expectation and whp.

Proof. We will charge the error due to pdjt;, u;) to the corresponding pivat;,. Let
X, be the number of steps that elementvas a pivot duringdto, ¢1); note thatX; < n.
Let & be the event that

ZXi < c¢onlnn, (1)
i=1

for some constant, > 0. Since the running time of quicksorti®(n Inn) in expecta-
tion and whp. £ holds whp. Also, the running time of quicksorti&n?) in the worst
case. The event& will only contribute a negligible (inverse polynomial) aomtt to the
calculations below; therefore, for ease of exposition, viltagndition on& being true
for the rest of the proof.

SinceX; < nand}_ X; < conlnn, by convexity,>" X? is maximized ifco Inn
of the X;’s are equal tor and the rest are equal to 0. Hence,

Z X2 < ¢on’lnn. (2)

i=1

Let Y; be the number of steps that elemeémtas a pivot element and it was chosen to
swap. GivenX;, we have that; ~ Binomial(X;, p) wherep = 2/n (with the exception

of the case that the pivot is or becomes the first or last eleinghe order, in which
casep = 1/n). We argued earlier that for the pdit;, v;) to become misordered, the
corresponding pivot was swapped with battandw;. Therefore, if a pivot swapped
times, then it could have led to at mdst misordered pairs. We can then bound the

number of pairs in the seB by S 2 >r Y2 > |B|. The proof is complete if we
upper bound&[S]. Now,

E[S] = E Xn:YQ =E |E zn:Yf Xi|| =E ZH:E[YfIXJ]
=E|) (Var[Y;|Xi] + EY;|Xi]*)| =E Z(Xip(l—p)JrX?pQ)]

i=1 i=1

- - (1),(2)
=E |p(1-p) ZXi + p? ZXE] < (2¢0(1 = p) +4co)Inn < ¢y lun,
i=1 i=1

for some constant; > 0.

To bound the probability that the sBtis large, first note that give;’s, theY;’s
are independent binomial random variables. We apply Azsnm&quality and finish
the proof® For some sufficiently large constant > 0, we have

2c3n?1n’*n\ ()
Pr(S — E[S] > conlnn) < exp <— eh n) < p2ea/en

Z?:l X72

The following lemma is also proved similarly and will be udatkr. The proof will
appear in the full version of the paper.

Lemma 3. Given an element;, the number of pairéu;,, u;) that the permutations®:
and 7% rank differently is bounded bylnn in expectation and whp., for some con-
stanté and sufficiently larges.

2.3 Main Result

Now we present a more complicated protocol that maintainsrest of O(n In1nn).
The main idea is that after the quicksort execution, whicé ttuits running time has
as a result an error @¥(n In n), the rank of each element in the algorithm’s estimate is
within O(Inn) of its actual rank. Thus, by performing sever@l(f./ Inn)) local sorts

in blocks of sizem = ©(lnn) we can correct the ordering. The total running time is
O(n/Inn) - (Inn)Inlnn, therefore after all the sorts terminate the total errot kgl
bounded byO(nInlnn).

There are some issues that we have to address though. Ficgt,edements might
have moved to neighboring blocks, we make the blocks oveitgpthus allowing the
comparison of all neighboring elements (see Figure 1)t Miessort the firstm ele-
ments. From the resulting order we maintain the fitg of the elements. The second
half of the block is sorted along with the next/2 elements. Again we maintain the
firstm /2 elements and proceed in the same way.

8 The following is a consequence of Azuma’s inequality [3]séie thah) < X; < d; are
independent random variables, anddet " | X;. Then

Pr(S —E[S] > \) <exp (—2)\2/Zn: d?) .

BlOCkH,l

Fig. 1. The set of elements ordered according:t6, and the partition into blocks.

Second, while we would like to sequentially execute a fullafdocal quicksorts
after the termination of the previous one so as to maintaénetiior ofO(n Inlnn),
eventually elements will move far. Thus it is necessary tcasmomnally execute a full
quicksortto recover the global order. The problem, howesdnat during the execution
of the global quicksort the error will becomen n. Therefore, we use the following
idea: execute two sets of quicksorts independently. Dulia@dd timesteps we execute
a regular quicksort, and after its termination we restarineSection 2.2. The previous
analysis applies to this case as well with the differenceithavery step there are two
pairs whose order swaps. During the even steps, we exeetetbf©(n/ lnn) quick-
sorts on overlapping blocks of length = ©(In n). The input to the set of quicksorts is
the output of the last full quicksort that has terminatedeAthe termination of the set
of quicksorts we rerun them, again with the same input. Tlogiwcesses are executed
independently with their own data structures. In every tatep, the “output” of the pro-
tocol is the output of the latest successfully completedtgquicksorts. In Figure 2 we
present a schematic representation of the algorithm. Tda&f pf the following theorem
will appear in the full version of the paper.

Theorem 3. For everyt, KT(7t, nt) = O(nInInn) in expectation and whp.

Full quicksort
cnlnn anlnn

. eomlnm
m

cymlnm Set of ,% block quicksorts
Block quicksort

to t ty iy

Fig. 2. The periods of the execution of the sorting algorithm.

3 Sdection Problems

As we mentioned earlier, the dynamic data setting can caeveral scenarios. In
this section we illustrate this by providing two more exae®plFirst we show a simple
algorithm for finding the element with minimum rank; for arfgirealistic application
of this setting, consider the social-network example presein the introduction. We
then present a more general algorithm that can be used tohinelément of a given
rank. By combining this algorithm with the previous resuitsorting, one can find the
top-k ranked elements.

3.1 Findingthe Minimum

Assume the same dynamic perturbation model as before whehgair swaps in every
time step with probabilityy/(n — 1), wherea > 0 is a constantq = 1 in the simplest
case). Instead of sorting all the elements we only want imeast the smallest element.
The following simple algorithm outputs at any given step lment that is either the
minimum or very close to minimum. The algorithm maintains gurrent minimum es-
timatem and in every step compares it with an elementhosen uniformly at random
from all the elements. Ifi; < m, it replacesn with u;. The basic idea to prove the
following theorem is to model the process as a Markov cha@tajts omitted in this
version).

Theorem 4. 4Let m be the rank of the estimate at timeln the steady stat®r(m; >
i) < (1%&) ', andE[m,] =1+ a.

3.2 Finding the Element of a Given Rank

In this section we give an algorithm for solving the probleffinding the element of
rankk for k = 1,2,...,n. Givenk, our goal is to find an element that minimizes the
distancent(u;) — k|, wherert(u;) is the rank ofu; at timet. Fork = 1 the problem
is that of finding the minimum, while fok = [n/2] the problem is that of finding the
median. To make the exposition clearer we present the cdlse ofedian; the algorithm
and the proof can be easily generalized for &nifigure 3 is a dynamic version of the
median algorithm in [3], with a few modifications to adaptittur dynamic setting. As
in the case of the elaborate sorting algorithm, we run tworitlgms in an interleaved
manner. In the odd steps we prepare a(seéhat will contain the median in any step
of the next execution of the while loop. In the even steps wethe set” computed
in the previous step to output the median estimate. Durirgting phase of the sét,
the output estimate is the elemgntomputed in the previous run of the sorting. kgt
be the last time point of the first period. We show that theedéhce in the rank of the
element returned by the algorithm is negligible.

Theorem 5. Let i be the output of algorithm Median. For every time> ¢, = O(n)
we have thaPr (|7 (i) — 2| =0) > 1 —o(1), andE [|n (i) — 2|] = o(1).

Proof. The proof is based on the proof of the static version preserite example,
in [3]; we will outline only the modification specific to the dgmic case.

1. Algorithm Median{V)

2. Input: A set of elementg&/
3. while(true)

4 Executein odd steps:

5

Pick a (multi-)sef? of -=1— elements fronU chosen independently uniformly at

random with replacement

6. quicksortR)

7. Letd be the &1— — v/n)th smallest element in the sorted gt

8 Letu be the 51— + /n)th smallest element in the sorted et

9 By comparing every element lii to d andwu, compute the set
C={zeU:d<z<u}andthenumbet; = |{z € U :z < d}|

10. Executein even stepsusing the set C' computed last

11. quicksort()

12. i — ([n/2] — €3 + 1)th element in the sorted order 6f

13. end while

Fig. 3. Algorithm for computing the median.

We patrtition time into periods of lengt®(n), where each period corresponds to
a full execution of steps 4-9 in Figure 3. (Executing the &dt of steps 4-9 (odd
time steps) requires tim@(n) while the set of steps 10-12 (even time steps) requires
9(\/ﬁln2 n), whp.) In the odd time steps of a period we compute & skt be used to
compute the median in the next period. In the even time stepsse the sef' computed
in the previous period.

We first note that the length of each period is linear with Ipgbbability, therefore
in a given period the rank of a given element (and in partictiat of the median)
changes by a constant in expectation. Furthermore, with pigbability no element
moves more thanln n places during a period, for some constant

The analysis of the static case as presented in [3] redugeeving that the follow-
ing two facts (adapted to our case) hold whp.:

1. The setC computed at a given period contains all the elements thatadians
during the next period.

2. |C| = O(y/n1nn) whp.
With a similar argument as the one used in [3] and taking imant that the rank
of elementd during two periods does not change more thaim n whp., we have that
in order to maintainc’ (d) < [n/2] it suffices that at mosizi— — /n samples inR
had rank smaller tha# — 2clnn, when they were selected. We defiXg = 1 if
theith sample had rank smaller thgn— 2cInn, and O otherwise. Then we have that
Pr(X; =1) =1 -2 andE [} X;] = 2. We can apply a Chernoff
bound and obtain:

_n
72Inn

|R|

Pr ZX’KM%_\/E :Pr(ZXi—E{ZXi] <138—\/ﬁ)

A similar argument shows that we maintain théfu) > [n/2] throughout the
execution of the entire period, therefore, the Getreated at step 8 will contain whp.
all elements that are medians in the next period.

Next we need to show th&f'| = O(y/n Inn). The argument must take into account
that the elements change ranks and is similar to the onefjesépted. The reader can
refer to [3] for the type of events that need to be defined andaveot repeat here the
details. Thug>' can be sorted i) (y/n In 1) time.

We have now established that whp'| = O(y/nlnn) and that it contains all ele-
ments that are medians during the next period. Since sartistgp 8 take®(,/n In? n)
steps, the probability that either the median at the begmaof a sorting phase, or the
O(Inn) pivots that it is compared to during the sorting move durlmggorting phase is
bounded byO(In® n/+/n). Thus, with probabilityl — O(In® n/\/n) the sorting returns
the correct median at that step. The probability that theiamechange place during the
next sorting round (before a new median is computed) is bedibgtO((/n In® n) /n).
Thus, at any given step, with probability— o(n~'/2*¢) the algorithm returns the cor-
rect median. The expectation result is obtained by obsgthiat when the output is not
the correct median, its distance to the correct median Is Wigh probabilityO(ln n).

O

4 Conclusions

In this paper we study a new computational paradigm for dyoalhg changing data.
This paradigm is rich enough to capture many natural problémat arise in online
voting, crawling, social networks, etc. In this model theadgradually changes over
time and the goal of an algorithm is to compute some propdtityty probing, under
the constraint that the amount of access to the data at eaehstiep is limited. In
this simple framewaork, we consider the fundamental proBlefrsorting and selection,
where the true ordering slowly changes over time and theritihgo can probe the true
ordering once each time step using a pair of elements it @sd¥e obtain an algorithm
that maintains, at each time step, an ordering that is at M@sin In n)—Kendall-tau
distance away from the true ordering, with high probahikigr selection problems, we
provide algorithms that track the target element to withétahce 1. Revisiting classical
algorithmic problems in this paradigm will be an interegtdirection for future line of
research [1].

References

1. A. Anagnostopoulos, R. Kumar, M. Mahdian, and E. Upfal. nBiyic graph algorithms.
Manuscript, 2009.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéitroduction to Algorithms MIT
Press, 2001.

3. M. Mitzenmacher and E. UpfalProbability and Computing Cambridge University Press,
2005.

4. A. Slivkins and E. Upfal. Adapting to a changing enviromnd he Brownian restless bandits.
In Proc. 21st Annual Conference on Learning The@ages 343—-354, 2008.

5. L. L. Thurstone.The Measurement of Valueghe University of Chicago Press, 1959.

