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Abstract

We compare the long-term, steady-state performance of a variant of the standard Dynamic
Alternative Routing (DAR) technique commonly used in telephone and ATM networks, to the
performance of a path-selection algorithm based on the “balanced-allocation” principle [3, 16];
we refer to this new algorithm as the Balanced Dynamic Alternative Routing (BDAR) algorithm.
While DAR checks alternative routes sequentially until available bandwidth is found, the BDAR
algorithm compares and chooses the best among a small number of alternatives.

We show that, at the expense of a minor increase in routing overhead, the BDAR algorithm
gives a substantial improvement in network performance, in terms both of network congestion
and of bandwidth requirement.

1 Introduction

Fast, high bandwidth, circuit switching telecommunications systems such as ATM and telephone
networks often employ a limited path-selection algorithm in order to fully utilize the network
resources while minimizing routing overhead. Typically, between each pair of nodes in the network
there is a dedicated bandwidth for communication; namely, no more than a certain fixed number
of calls can be simultaneously active between each pair of nodes. This dedicated bandwidth is
chosen in order to satisfy the demand for communication between these stations. Only when
this bandwidth is exhausted does the admission control protocol try to find an alternative route
through intermediate nodes. To minimize overhead and routing delays, the protocol checks just
a small number of alternative routes; if there are no free connections available on any of these
alternatives, then the call or communication request is rejected. Implementations that use this
technique include the Dynamic Alternate Routing (DAR) algorithm used by British Telecom [7],
and AT&T’s Dynamic Nonhierarchical Routing (DNHR) algorithm [1].

A common feature in these (and other) currently implemented protocols is the sequential ex-
amination of alternative routes. Only when the algorithm examines a route and finds it cannot be
used is an alternative one examined. The criteria for when a route can or should be used, and the
method in which the alternative route is selected have been the subject of extensive research, in
particular, in the context of British Telecom’s DAR algorithm [6, 7, 8]; see Kelly [9] for an extensive
survey.
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Dynamic routing can be viewed as a special case of the online load balancing problem, where the
load (incoming calls or requests) may be assigned to one or more servers (network links), and jobs
(communication requests) can be scheduled only on specific subsets (paths) of the set of servers,
as defined by the network topology. In this paper we study the impact of replacing the sequential
searches of the routing algorithm by a version of the balanced-allocation principle. The basic idea is
as follows: Instead of sequentially choosing alternative options (in our case, paths) until a desirable
one is found, in the balanced-allocation regime the algorithm randomly chooses and examines a
number of possible options, and assigns the job at hand to the option which appears to be the best
at the time of the assignment.

A number of papers have demonstrated the advantage of the application of the balanced-
allocation principle [2, 3, 4, 16, 17] for standard load balancing problems, where jobs require only
one server and can be executed by any server in the system. This research has shown that balanced
allocations usually produce a very substantial improvement in performance, at the cost of a small
increase in overhead: Since several alternatives are examined even when the first alternative would
have been satisfactory, the complexity of the routing algorithm is increased. But, as has been
shown before and as we also demonstrate in the present context, examining even a very small num-
ber of alternative (thus increasing overhead by a very small amount) can offer great performance
improvements.

The idea of employing the balanced-allocation principle to the problem of dynamic network
routing as described in this paper was first explored in [11]. In this context the goal is to reduce
system congestion and minimize the blocking probability, that is, the probability that a call request
is rejected. The main difficulty in applying and analyzing the balanced-allocation principle in a
network setting is in handling the dependencies imposed by the topology of the network. The
preliminary results in [11] show that the advantage of balanced allocations is so significant that it
holds even in the presence of a set of dependencies.

The performance of a routing protocol can be analyzed in a static (finite, discrete time) or
in a dynamic (infinite, continuous time) setting. The static case has been extensively studied
in [10], extending and strengthening the results in [11]. In this paper we consider the continuous-
time case. The analysis of the continuous-time case suggested in [11] was based on applying
Kurtz’s density-dependent jump Markov chain technique, following the supermarket model analysis
in [16, 17]. However, since the argument in [11] is incomplete, we present here a different analysis.
Our results concern the long-term behavior of large networks employing a routing protocol based
on the balanced-allocation principle. The main tools we employ are a Lyapunov drift criterion
used to establish the existence of a stationary distribution for the BDAR routing protocol, and
a continuous-time extension of the technique in [3], used to analyze the stationary behavior of a
network.

Balanced allocations have also been studied in the context of queueing networks, where analo-
gous results (under different asymptotic regimes than the ones in this paper) are obtained in [16,
21, 12, 20], among others.

1.1 Model Description and Main Results

In the types of networks considered in this paper, a logical link or “bandwidth” is reserved between
each pair of stations, and an alternative route is only used when this logical link has already been
exhausted. We model such a network as the complete graph G = (V,E) with |V | = n vertices
(stations) and |E| = N =

(n
2

)

edges (links).
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The input to the system is a sequence of call requests, which are assumed to arrive at Poisson
times: New calls onto each link (i.e., between each pair of nodes) arrive according to a Poisson
process with rate λ, all arrival streams being independent. Similarly, the duration of a call is
independent of all arrival times all other call durations, and it is exponentially distributed with
mean 1/µ.

The routing algorithm has to process the calls on-line, that is, the tth request is either assigned
a path or rejected before the algorithm receives the (t + 1)th request. Once a call is assigned to
a path, that path cannot be changed throughout the duration of the call. We assume that each
edge has a capacity of 3B circuits (one circuit can transmit one call), where 1/3 of this capacity
is reserved for direct calls (namely it will only be used for call requests between these two nodes),
and the rest is reserved for being used as part of an alternative route between two stations.

As in most of our results we consider large networks with a number n of nodes growing to
infinity, we will also assume that the capacity parameter B may vary with n. Specifically, we
assume that B = Bn is nondecreasing in n, and we also allow the possibility B = ∞.

The goal in designing an efficient routing protocol is to assign routes to the maximum possible
number of call requests without violating the capacity constraints on the edges. We will compare
the performance of the following two protocols:

The d-Dynamic Alternative Routing (DAR) algorithm works as follows. When a new call request
arrives, it tries to route the call through the direct (one-link) path. If there are no available circuits
on the direct path, then the algorithm sequentially chooses alternative routes of length two, without
replacement, and assigns the call to the first available path. Up to d such choices are made, and
they are made at random. If no possible path is found, then the request is rejected.

The d-Balanced Dynamic Alternative Routing (BDAR) algorithm also assigns a new call request
to the direct path if there are available circuits. If not, then the algorithm chooses d length-two
alternative paths at random, with replacement, and compares the maximum load among them (in
the exact sense that we describe later). Then the call is assigned to the path with the minimum
load. As before, if there is no path with free circuits among these d choices, then the call is rejected.

Consider some link e between two stations u and v, with a capacity of 3B circuits, from which B
are reserved for routing calls between u and v. The rest of the 2B circuits, which are reserved for
alternative paths, are further split into two. B circuits are reserved for routing calls with u as one
of the endpoint station communicating, and B circuits for calls with v as the endpoint.

The model described so far, together with one of the two protocols above, induces a continuous-
time stochastic process describing the behavior of the network. As we show below, this system
(for fixed n) converges to a stationary regime exponentially fast. For our purposes, the main
performance measure is the minimum required bandwidth that ensures that, under the stationary
distribution of the network, the blocking probability (i.e., the probability that a new call is rejected)
is appropriately small.

In this paper our main goal is to compare the performance of the DAR algorithm with that
of BDAR. It is clear that BDAR’s performance is dominated by its performance on alternative
(length-two) routes. Therefore, in order to simplify the analysis, we consider a variant of BDAR,
called BDAR*, which ignores the direct links and services each call only via an alternative route,
making use only of the 2B alternative connections of each edge. In other words, we assume that
each edge has capacity 2B and all of it is dedicated to alternative routes. We show that even
though the BDAR* policy ignores the direct links, it has superior performance compared to DAR.
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The following result illustrates this superiority by exhibiting explicit asymptotic bounds on
their bandwidth requirements. It follows from the results in Theorems 5 and 6.

Theorem 1. Assume that all the edges have a capacity of 3B circuits.
Under the DAR policy, edge capacity

B = Ω

(
√

lnn

d ln lnn

)

, as n→ ∞

is necessary to ensure that, under the stationary distribution, a new call is not lost with high
probability.

On the other hand if we perform the BDAR* policy (thus ignoring the B direct links), edge
capacity

B =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

, as n→ ∞

suffices to ensure that, under the stationary distribution, a new call is not lost with high probability.

In the above result and throughout the paper, we say that a limiting statement holds “with
high probability” (abbreviated “whp.”) if it holds with probability that is at least 1 − 1/nc for
some constant c > 0. For example, when we say that a random variable “Xn = O(lnn) whp.” we
mean that there are positive constants C and c such that Pr(Xn ≤ C lnn) ≥ 1 − 1/nc for all n
large enough. Similarly, “Xn = o(ln n) whp.” means that there is a c > 0 such that, for all ε > 0,
Pr(Xn ≤ ε lnn) ≥ 1 − 1/nc for all n large enough.

Note that the result of Theorem 1 is exactly analogous to that obtained in [10] in the discrete-
time case.

2 Analysis of Balanced-Allocation Routing

This section presents the main contribution of this paper, a steady state analysis of the performance
of the BDAR* routing algorithm. The network is a complete graph with n nodes and N =

(

n
2

)

undirected edges. New calls arrive at Poisson times with rate λ and their durations are exponentially
distributed with mean 1/µ, as described earlier. As it turns out, an important parameter in the
analysis of the network load is the ratio ρ = λ/µ.

2.1 Unbounded capacities

We first analyze the maximum load on edges when the algorithm is used on a network with un-
bounded edge capacity, corresponding to B = Bn = ∞. Consider some ordering of the edges, and
let

Γ = {(e, e′) : e, e′ ∈ E, e < e′, e adjacent to e′},

be the set of edge pairs that are adjacent to each other. For every pair of adjacent edges (e, e′) ∈ Γ,
let ce,e′(t) denote the number of calls at time t that use edges e and e′ (recall that every alternate
path consists of two links). Then the above model induces a continuous-time Markov process
Φ = {Φ(t) : t ≥ 0}, evolving on the state space

Σ = N
N(n−2),

4



where
Φ(t) = (ce,e′(t))(e,e′)∈Γ.

For an edge e = (u, v) we define also `e,v(t) to be the number of calls at time t that use edge e and
have node v as an endpoint:

`e,v(t) =
∑

e′:
(e′,e)∈Γ, v not
adjacent to e′

ce′,e(t) +
∑

e′:
(e,e′)∈Γ, v not
adjacent to e′

ce,e′(t),

and we also define `e(t) to be its combined load at time t, that is,

`e(t) = `e,v(t) + `e,u(t)

=
∑

e′:(e′,e)∈Γ

ce′,e(t) +
∑

e′:(e,e′)∈Γ

ce,e′(t).

Assume that a call arrives at time t on edge e = (u, v). Algorithm BDAR* selects d nodes
uniformly at random with replacement, from V \{u, v}. Name these nodes {wi} for i = 1, 2, . . . , d,
and the corresponding edges eui = (u,wi) and evi = (wi, v). The call is then assigned to the path
(eui , e

v
i ) corresponding to the minimum i satisfying

max{`eu
i ,u(t−), `ev

i ,v(t−)} = min
j=1,2,...,d

max{`eu
j ,u(t−), `ev

j ,v(t−)}.

In the above expression, and throughout the entire paper, f(t−) denotes the left-side limit of
function f at t, namely limδ↓0 f(t− δ). Note that instead of selecting the minimum i satisfying the
above expression, we can choose any Markovian rule. Finally, we define

Mv
≥i(t) =

∑

e:e incident to v

(`e,v(t) − i+ 1)+

Lv
≥i(t) =

∑

e:e incident to v

1{`e,v(t)≥i},

where 1E denotes the indicator function of event E . In words, Lv
≥i(t) counts the number of edges

incident to node v with at least i calls with v as an endpoint at time t, and Mv
≥i(t) counts the

excess above i at time t on edges incident to v, of calls that have node v as an endpoint. Trivially
we have Lv

≥i(t) ≤Mv
≥i(t).

As we show next, this Markov process has a stationary distribution πn to which it converges
exponentially fast, regardless of the initial state of the network. We then prove a high probability
bound on the maximum load on any edge in the system under this stationary distribution.

The process Φ evolves on Σ according to the model described above. This evolution is formalized
by the transition semigroup {P t : t ≥ 0} of Φ, where P t(c, c′) is simply the probability that Φ is
in state c

′ at time t given that it was in state c at time zero, P t(c, c′) = Pr(Φ(t) = c
′ |Φ(0) = c).

Our first result shows that Φ has a stationary (or invariant) distribution to which it converges
exponentially fast. It is stated in terms of the “Lyapunov function” V (x) which is defined as
1+(total number of active calls in state x ∈ Σ):

V (x) = V ({ce,e′ : (e, e′) ∈ Γ}) = 1 +
∑

(e,e′)∈Γ

ce,e′ (1)

5



Theorem 2. Assume that the BDAR* algorithm is used on a network with n nodes, each of which
has infinite capacity. Then the induced Markov process Φ has a unique invariant distribution πn,
and, moreover, for any initial state x ∈ Σ, the distribution of Φ(t) converges to πn exponentially
fast, namely there is a constant γ < 1, such that

sup
y
|P t(x, y) − πn(y)| ≤ V (x)γt, for all t ≥ 0 and all x ∈ Σ.

Proof. Our proof uses the Lyapunov drift criterion for the exponential ergodicity of a continuous
time Markov process [13, 5, 14]. To state our main tool, we recall a few definitions, adapted to our
case of countable state space.

The generator A of the process Φ is a linear operator on functions F : Σ → R defined by

AF (x) = lim
h↓0

E(F (Φ(h)) |Φ(0) = x) − F (x)

h

whenever the above limit exists for all x ∈ Σ. The explosion time of Φ is defined as

ζ = sup
n
Jn,

where
J0 = 0, Jn+1 = inf{t ≥ Jn : Φ(t) 6= Φ(Jn)}

(J0, J1, . . . are the jump times of the Markov process). We say Φ is nonexplosive if Pr(ζ =
∞|Φ(0) = x) = 1 for any starting state x.

The following theorem follows from the more general results in [14, 5], specialized to the case
of a continuous-time Markov process with a countable state space.

Theorem 3. [14, 5] Suppose a Markov process evolving on a countable state space that is non-
explosive, irreducible (with respect to the counting measure on Σ) and aperiodic. If there exists a
finite set C ⊂ Σ, constants b <∞, β > 0 and a function V : Σ → [1,∞), such that,

AV (x) ≤ −βV (x) + b1C(x) x ∈ Σ , (2)

then the process is positive recurrent with some invariant probability measure π, and there exist
constants γ < 1, D <∞ such that

sup
y
|P t(x, y) − π(y)| ≤ DV (x)γt, for all t ≥ 0 and all x ∈ Σ.

It is easy to verify that the process is ψ-irreducible and aperiodic, with the maximal aperiodicity
measure ψ being the counting measure on Σ.1 Also the process is nonexplosive since the number of
new calls in a given interval has a Poisson distribution with a finite mean; therefore, the probability
of infinite number of transitions in a finite interval is 0.

To show that the drift criterion (2) can be satisfied, we use the Lyapunov function V (x)=1+(total
number of active calls in state x) defined in (1) above.

In order to compute AV we notice that when a new call enters the system, it increases the
loads of two edges by 1, hence the value of V by 1, and when a call terminates the value of V

1This follows along the lines of the arguments in Chapters 4 and 5 of [15]. In particular, note that all sets {y} ∈ Σ
are ν1-small and P 1(x, y) > 0 for all x, y ∈ Σ so that in fact Φ is irreducible and strongly aperiodic.
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decreases by 1. Therefore, new calls are generated with rate λN and calls are terminated at a rate
µ(V (x)−1). The probability that in a time interval h there are 2 or more new calls or terminations
of calls is o(h).2 Using these observations we can compute AV :

AV (x) = lim
h↓0

V (x) + λN · h− µ · (V (x) − 1) · h+ o(h) − V (x)

h

= λN − µV (x) + µ

We define

C =

{

x ∈ Σ : V (x) <
2λ

µ
N + 2

}

,

which is clearly finite, and in order to analyze the drift condition we distinguish between the
following two cases:

• x ∈ C:

AV (x) = λN − µV (x) + µ ≤ −
µV (x)

2
+ λN + µ

• x ∈ Σ\C:

AV (x) = λN − µV (x) + µ ≤
µV (x)

2
− µV (x) = −

µV (x)

2
.

Thus, the drift condition holds for β = µ/2 and b = λN + µ.

Having shown the existence of an invariant limiting distribution πn, we now analyze the maxi-
mum load on the edges under this distribution.

Theorem 4. Consider a network with n nodes, and let πn be the invariant distribution of the
induced Markov process under the BDAR* policy with unbounded edge capacity. Under πn, the
maximum number of calls in any edge is bounded whp. by

2 ln lnn

ln d
+ o

(

ln lnn

ln d

)

, as n→ ∞.

Proof. In order to compute the maximum edge load under the stationary distribution, we start
observing the system at some time point and study its transient behavior; we then use the results
to deduce the properties of the invariant distribution. In particular, we show that there exists a
T = O

(

n ln lnn
lnd

)

, such that for any state of the system at time τ − T that has sufficiently large
probability (we will be more exact later), whp. at time τ the maximum number of calls on any
edge is

2 ln lnn

ln d
+ o

(

ln lnn

ln d

)

.

The high level idea is the following. We partition the time period T into ln ln n
ln d + o

(

ln ln n
ln d

)

periods of length O(n). Roughly, we argue that at the end of the ith period, whp., for each node,
the number of incident edges with load greater than i is at most 2αi. The αi’s decrease doubly
exponentially, so at the end of the last period we will be able to deduce that there are no edges with

2Here and in the next expression with the notation o(h) we mean that f is o(h) if limh→0
f(h)

h
= 0. In the rest of

the text o(n) has the usual meaning.
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more than ln ln n
ln d load towards each direction, whp. The challenge is to handle the dependencies,

as the number of calls during some period depends on the number of calls of the previous periods.
We now proceed with the details.

We first define the sequence of values {αi}, which decrease doubly exponentially:

ακ =
(n− 2)ρ

κ
where κ = eρ · d−1

√

2ρ · 4d

αi =
2ρ · 4d · αd

i−1

(n− 2)d−1
for i > κ and αi−1 ≥

1

4
· d

√

25

ρ
(n− 2)d−1 · lnn

αi∗ = 50 ln n i∗ is the smallest i for which αi−1 <
1

4
· d

√

25

ρ
(n− 2)d−1 · lnn

αi∗+1 = 10

Solving the recurrence we get for κ ≤ i < i∗,

αi+κ = (2ρ · 4d)
di−1
d−1 ·

(ρ

κ

)di

(n− 2) =
1

d−1
√

2ρ · 4d
·

[

ρ · d−1
√

2ρ · 4d

κ

]di

(n − 2)

=
1

d−1
√

2ρ · 4d
·
n− 2

edi

(3)

and for the i∗

αi∗−1 <
d

√

2

ρ
nd−1 lnn

which gives

i∗ =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

.

Next we define T = n(i∗ − κ + 3) = O
(

n ln lnn
lnd

)

and an increasing sequence of points in time:
Let tκ−1 = τ −T and for i ≥ κ, ti = ti−1 +n, so that the end of the last period, ti∗+2, is the current
time τ .

Let E denote the event “at time tκ−1 = τ − T there are at most (1 + ε)Nρ calls in the system,”
for some constant ε > 0, and let

Ci = {∀v ∈ V, t ∈ [ti, τ ] : Lv
≥i(t) ≤ 2αi}.

We show by induction that for i = κ, . . . , i∗ + 1

Pr(Ci | E) ≤
2i

n2
. (4)

Initially we prove the following lemma, which we use throughout the proof.

Lemma 1. Let A and B be events such that Pr(B) ≥ 1 − n−c for some constant c, for n large
enough. Then for any constant ζ > 0 we have

Pr(A |B) ≤ (1 + ζ)Pr(A),

for sufficiently large n.
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Proof. We have

Pr(A |B) =
Pr(A,B)

Pr(B)
≤

Pr(A)

Pr(B)
≤

1

1 − n−c
Pr(A) ≤ (1 + ζ)Pr(A).

Now we examine the base case of Relation 4. Let Cv
i be the event

Cv
i = {∀t ∈ [ti, τ ] : Lv

≥i(t) ≤ 2αi},

and J v be the event “no more than 2λ(n − 1)T calls are generated with node v as an endpoint
during [τ − T, τ ].” We need to bound the probability of J v, so we prove the following lemma.

Lemma 2. For sufficiently large n, we have

Pr(J v | E) < n−4.

Proof. Node v has n − 1 incident links, on each of which new calls are generated according to a
Poisson process with rate λ, independently of the other links. Therefore, the number of new calls
with v as an endpoint during T steps is distributed according to a Poisson(λ(n − 1)T ). So by
applying a Chernoff bound for the Poisson distribution3 we get that

Pr(J v) ≤
e−λ(n−1)T (eλ(n − 1)T )2λ(n−1)T

(2λ(n − 1)T )2λ(n−1)T

= e−λ(n−1)T+2λ(n−1)T+2λ(n−1)T ln(λ(n−1)T )−2λ(n−1)T ln(2λ(n−1)T )

= e−λ(n−1)T (2 ln 2−1)

< n−4,

for sufficiently large n. To complete the proof, we use the fact that the number of new calls during
[τ − T, τ ] is independent of event E .

We now have

Pr(Cκ | E) ≤ nPr(Cv
κ | E)

≤ nPr(Cv
κ | J

v, E) + nPr(J v | E).
(5)

By Lemma 2, the second term is bounded by n · n−4, and we now bound the first term. Condi-
tioning on J v, we have at most 2λ(n− 1)T new jobs during [tκ−1, τ ], say at times {t̂j}. Let also t̂0
be the time point tκ. Then

Pr(Cv
κ | J

v, E) ≤

2λ(n−1)T
∑

j=0
t̂j≥tκ

Pr(Lv
≥κ(t̂j) > 2ακ | J

v, E). (6)

3Assume that X is distributed according to a Poisson distribution with rate λ. Then (see, for example, [19, page
416])

Pr(X ≥ i) ≤
e−λ(eλ)i

ii
.
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Let us compute the number of calls in the system with node v as an endpoint at time t̂j . These
calls can be separated to calls that were in the system before time tκ−1 (let x be their number),
and calls that arrived after tκ−1 (say y).

In order to compute x, we can notice that each of the x calls remains in the system until time t̂j
with probability e−µ(t̂j−tκ−1). Since t̂j ≥ tκ = tκ−1 + n, the probability that a such call survives is
bounded by e−nµ. So,

Pr(x > 0 | E) ≤ (1 + ε)Nρe−nµ <
1

n7
,

and we conclude that conditioning on event E , x = 0 with probability at least 1−n−7, for sufficiently
large n.

In order to bound y, the number of calls arrived after time point tκ−1, we prove the following
lemma.

Lemma 3. Consider a period Π and a given node v. The number of calls having node v as an
endpoint that were generated during Π and are in the system at the end of Π is distributed according
to a Poisson distribution with rate bounded by ρ(n− 1), independently of E.

Proof. Let ∆ be the duration of the period Π, and let Y be a random variable counting the number
of calls that were generated during Π, had v as an endpoint and are in the system at the end of Π.
Node v has n−1 incident links on each of which new calls are generated with rate λ, independently
of each other. The duration of each call is exponentially distributed with parameter µ. This process
is an infinite server Poisson queue [18, page 18] in which the number of calls at the end of the period
is distributed according to a Poisson distribution with rate

λ(n− 1)∆p,

where

p =

∫ ∆

0

e−µ(∆−x)

∆
dx =

1

µ∆

(

1 − e−µ∆
)

≤
1

µ∆
.

So Y is distributed according to a Poisson distribution with rate at most λ(n − 1)/µ = ρ(n − 1).
Notice also that since Y does not depend on any event prior of Π, the distribution of Y conditioned
on E is still Poisson with the same rate.

By applying this lemma, we have that y is bounded by a Poisson(ρ(n − 1)). So, from the
Chernoff bound, we conclude that y ≤ 2ρ(n − 2) with probability at least 1 − n−7, for sufficiently
large n.

The probability that at time t̂j there are more than 2ρ(n− 2) calls with node v as an endpoint
is bounded by

Pr(x > 0 ∨ y > 2ρ(n − 2) | E),

which, using the previous facts, can be bounded by 2n−7.
Notice now that if node v has fewer than 2ρ(n − 2) calls at time t̂j, then

Lv
≥κ(t̂j) ≤

2ρ(n− 2)

κ
= 2ακ.

Hence, for all t̂j ≥ tκ we have

Pr(Lv
≥κ(t̂j) > 2ακ | E) ≤ 2n−7,
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and by making use of Lemma 1, we get

Pr(Lv
≥κ(t̂j) > 2ακ | J

v, E) ≤ 2 · 2n−7 ≤ 4n−7. (7)

Combining Relations (5), (6), (7), Lemma 2, and the fact that T = O(n2), we get that

Pr(Cκ | E) ≤ n · 2λ(n− 1) · n2 · 4n−7 + n · n−4 ≤ n−2,

for large enough n, which completes the base case (i = κ) of Relation (4).
For the induction step we assume that

Pr(Ci−1 | E) ≤
2(i− 1)

n2
. (8)

Assume now that at time t a new call enters the system. Then the call is routed through an
edge with (new) load greater or equal to i if in all the d alternative paths at least one of the two
edges had load at least i − 1. More concretely, let G denote the event “a new call is generated
at time t with v as an endpoint,” and let u be the other endpoint and (wj , j = 1, . . . , d) be the
intermediate nodes of the queried alternative paths.

We then have

Pr(Mv
≥i(t) > Mv

≥i(t−) |Φ(t−),G)

≤ Pr(Mv
≥i(t) > Mv

≥i(t−) ∨Mu
≥i(t) > Mu

≥i(t−) |Φ(t−),G)

≤ Pr(∀j ∈ {1, . . . , d} : `(v,wj)(t−) ≥ i− 1 ∨ `(u,wj)(t−) ≥ i− 1 |Φ(t−),G)

≤

(

Lv
≥i−1(t−) + Lu

≥i−1(t−)

n− 2

)d

,

therefore,

Pr(Mv
≥i(t) > Mv

≥i(t−) | E ,G,∀z ∈ V : Lz
≥i−1(t−) ≤ 2αi−1) ≤

(

2 · 2αi−1

n− 2

)d
4
= qi. (9)

Notice that for i = κ+ 1, . . . , i∗ we have

qi ≤
αi

2ρ(n − 2)
. (10)

We now define
Fi = {∀v ∈ V : Mv

≥i(ti) < αi}

and prove Lemmata 4 and 6, that allow us to conclude that Pr(Ci | E) ≤
2i

n2
, and establish Rela-

tion (4).

Lemma 4. Under the inductive hypothesis

Pr(Fi | Ci−1, E) ≤
1

n2

11



Proof. First we apply Lemma 3 for the interval Π = [tκ−1, ti−1] and we deduce that the number of
calls with v as an endpoint that were generated during Π and remained until time ti−1 follows a
Poisson distribution with mean bounded by ρ(n − 1). Hence, with a Chernoff bound, we get that
with probability at least 1−n−3 there are at most 2ρ(n− 1) such calls. If we condition on event E ,
then the total number of calls in the system at time ti−1 with node v as an endpoint is at most

(1 + ε)Nρ+ 2ρ(n − 1)

with probability at least 1 − n3. The probability that each of these calls stays in the system until
time ti is bounded by e−nµ (recall that ti−ti−1 = n), so the probability, conditioned on the event E ,
that some of the calls that were in the system up to time ti−1 and had v as an endpoint, stays in
the system until time ti is bounded by

n−3 + [(1 + ε)Nρ+ 2ρ(n − 1)]e−nµ < 2n−3

for sufficiently large n. By applying Lemma 1 and making use of the induction hypothesis (Equa-
tion (8)) we deduce that the probability that some of those calls stay in the system conditioned
on the events Ci−1 and E is bounded by 4n−3. To analyze the number of the remaining calls that
were created during the period [ti−1, ti], we make use of Lemma 5 which completes the proof of this
one.

Lemma 5. Consider a period Π and a given node v. Conditioning on Ci−1 and E, the number of
new calls that increased Mv

≥i when they were generated, and remained until the end of Π is less

than αi, with probability at least 1 − 1
n7 .

Proof. Let Y be the number of calls that were generated during Π, had v as an endpoint and are
in the system at the end of Π. By applying Lemma 3 we get that conditioned on E , Y follows a
Poisson distribution with rate bounded by ρ(n − 1).

Let now Z be the number of calls in the system at the end of Π whose arrival resulted in the
increase of Mv

≥i. Denote with Hk the event {Y = k} and let {t̃j}
k
j=1 be the time of the arrival of

the jth call that exists in the system at the end of Π. We can then write

Pr(Z > r | E , Ci−1) =
∑

k

Pr(Z > r | E , Ci−1,Hk) ·Pr(Hk | E , Ci−1).

We now fix k and we consider the random variables {Zj}
k
j=1, where

Zj = 1 if Mv
≥i(t̃j) > Mv

≥i(t̃j−)

and ∀z ∈ V : Lz
≥i−1(t̃j−) ≤ 2αi−1.

From Relation (9) we get that
Pr(Zj = 1 | E) ≤ qi,

so, since (induction hypothesis (4)) Pr(Ci−1 | E) ≥ 1− 2(i− 1)/n2, we can apply Lemma 1 and get

Pr(Zj = 1 | E , Ci−1) ≤ (1 + ζ)qi, (11)

for some constant ζ (say 0.05), independently of all the previous Zj . Notice now that conditioning
on events Ci−1, and Hk, we have

Z =

k
∑

j=1

Zj .

12



Hence

Pr(Z > r | E , Ci−1) =
∑

k

Pr





k
∑

j=1

Zj > r

∣

∣

∣

∣

∣

E , Ci−1,Hk



 · Pr(Hk | E , Ci−1).

Again by Lemma 1, we get
Pr(Hk | E , Ci−1) ≤ 2Pr(Hk | E).

So by the fact that the distribution of Y conditioned on E is Poisson with rate at most ρ(n − 1),
and by Relation (11), we can finally conclude that

Pr(Z > r | E , Ci−1) ≤ 2
∑

k

Pr(Binomial(k, (1 + ζ)qi) > r) ·Pr(Poisson(ρ(n− 1)) = k)

≤ 2Pr(Poisson((1 + ζ)ρqi(n− 1)) > r).

We now distinguish the following two cases:

Case 1: For i ≤ i∗, by using Equation 10 we get that (1 + ζ)ρqi(n− 1) ≤ 1.1αi/2 for ζ = 0.05, and by
applying the Chernoff bound, we get that the probability that the number of calls is higher
than αi is bounded by

2
e−

1.1αi
2 (e1.1αi

2 )αi

ααi

i

≤ 2e−0.147αi .

For i < i∗ we have from the definition of αi

2e−0.147αi = 2e
−0.147

2ρ·4dαd
i−1

(n−1)d−1

= 2e
−0.147

2ρ·4d 2
ρ nd−1 ln n

(n−1)d−1

= o

(

1

n7

)

,

while for i = i∗ we get

e−0.147αi = 2e−0.147·50 ln n

= o

(

1

n7

)

.

Case 2: For i = i∗ + 1, using Equation (9) we get that

(1 + ζ)ρqi(n− 1) ≤ (1 + ζ)
4d · αd

i−1

(n− 2)d
ρ(n− 1) = (1 + ζ)

(4 · 50 ln n)d

(n− 2)d
ρ(n− 1),

and we get the high-probability result with the Chernoff bound.

Lemma 6. Under the inductive hypothesis

Pr(Ci | Fi, Ci−1, E) ≤
1

n2

13



Proof. First we compute

Pr(Fi, Ci−1 | E) = Pr(Ci−1 | E) ·Pr(Fi | Ci−1, E)

≥

(

1 −
i− 1

n2

)

·

(

1 −
1

n2

)

,

by Relation (8) and Lemma 4, so

Pr(Fi, Ci−1 | E) ≥ 1 −
1

n
.

So, by Lemma 1 we get
Pr(J v | Fi, Ci−1, E) ≤ 2Pr(J v | E)

and finally, by using Lemma 2, we conclude

Pr(J v | Fi, Ci−1, E) ≤ 2n−4. (12)

Hence, we can get

Pr(Ci | Fi, Ci−1, E) ≤ n · Pr(Cv
i | Fi, Ci−1, E)

≤ n · Pr(Cv
i | J

v,Fi, Ci−1, E) + n ·Pr(J v | Fi, Ci−1, E)
(13)

We have a bound for the second term, so we want to bound the first one. For that, we write (recall
that {t̂j} are the times of the arrivals of the new calls with node v as an endpoint)

Pr(Cv
i | J

v,Fi, Ci−1, E) ≤ Pr(∃t̃ ∈ [ti, τ ] : Lv
≥i(t̃) > 2αi | J

v,Fi, Ci−1, E)

≤ Pr(∃t̃ ∈ [ti, τ ] : Mv
≥i(t̃) > 2αi | J

v,Fi, Ci−1, E)

≤

2λ(n−1)T
∑

j=1
t̂j≥ti

Pr(Mv
≥i(t̂j) > 2αi | J

v,Fi, Ci−1, E)
(14)

Conditioning on event Fi, we have Mv
≥i(t̂j) > 2αi only if Mv

≥i increased by at least αi during the

interval [ti, t̂j ]. Therefore, by applying Lemmata 1, 4, and 5, we get

Pr(Mv
≥i(t̂j) > 2αi | Fi, Ci−1, E) <

2

n7
.

We combine this result with Relation (12) and Lemma 1 and we have

Pr(Mv
≥i(t̂j) > 2αi | J

v,Fi, Ci−1, E) <
4

n7
. (15)

If we combine Relations (13), (14), and (15), we get the result.
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Having proven Lemmata 4 and 6 we can now show that Pr(Ci | E) ≤ 2i/n2:

Pr(Ci | E) = Pr(Ci | Ci−1, E) ·Pr(Ci−1, E)

+ Pr(Ci | Ci−1, E) ·Pr(Ci−1, E)

≤ Pr(Ci | Ci−1, E) +
2(i− 1)

n2

= Pr(Ci | Ci−1,Fi, E) ·Pr(Fi | Ci−1, E)

+ Pr(Ci | Ci−1,Fi, E) ·Pr(Fi | Ci−1, E) +
2(i− 1)

n2

≤
1

n2
+

1

n2
+

2(i− 1)

n2

=
2i

n2

We have therefore shown that the event Ci∗+1 holds whp., which implies that for every node v,
after the (i∗ + 1)th period, there will be no more than 2αi∗+1 = 20 incident edges with load more
than i∗ + 1. We will now bound the probability that in the next interval ([ti∗+1, ti∗+2], the last
interval of T ) there will be an incident edge of v with load more than i∗ + 3, conditioning on the
event Ci∗+1. For this to happen, we must have at least 2 new calls to be routed using one of the 20
high-loaded edges. The probability that two specific new calls use these edges is at most

(

20 + 20

n− 2

)2d

= O

(

1

n4

)

, (16)

since d ≥ 2. The expected number of calls with v as an endpoint is λ(n − 1)n, since (n − 1) links
are connected to v in each of which new calls are generated with rate λ, while the total length
of the interval is n. This implies that whp. there will be O(n2) new calls in the whole period.
By combining this fact with Equation (16), applying Lemma 1, and summing for all the nodes we
conclude that at the end of period T there will be no edges with load more than i∗ + 3 whp.

We now consider the stationary distribution πn, and show that under it

Pr

(

`max ≤
ln lnn

ln d
+ o

(

ln lnn

ln d

))

= 1 − o

(

1

n

)

.

where
`max = max

e=(u,v)∈E
max{`e,u, `e,v}

denotes the maximum number of calls on any edge, in the stationary regime (`e,u is the number of
calls with u as an endpoint routed through edge e in the stationary regime). Recall that Φ(t) is
the state of the system at time t, and consider the following partitioning of the state space, Σ, of
the underlying Markov process:

• S1 =

{

x : V (x) ≤ (1 + ε)Nρ, `max ≤
ln lnn

ln d
+ o

(

ln lnn

ln d

)}

,

that is, states in which the total number of calls in the system is at most (1 + ε)Nρ, and the
maximum load is at most ln ln n

ln d + o
(

ln ln n
ln d

)

.
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• S2 =

{

x : V (x) ≤ (1 + ε)Nρ, `max >
ln lnn

ln d
+ Ω

(

ln lnn

ln d

)}

,

that is, states in which the total number of calls in the system is at most (1 + ε)Nρ, and the
maximum load is at least ln ln n

ln d + Ω
(

ln lnn
lnd

)

.

• S3 = {x : V (x) > (1 + ε)Nρ} ,

that is, states in which the total number of calls in the system is more than (1 + ε)Nρ.

We have shown that

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(

1

n

)

and we can easily show that

Pr(Φ(τ) ∈ S3 |Φ(τ − T ) ∈ S1 ∪ S2) = o

(

1

n

)

Moreover, in the stationary distribution the number of calls in the system has a Poisson distribution
with parameter Nρ. Hence by using the Chernoff bound

∑

i∈S3

(πn)i = o

(

1

n

)

Then we have
∑

i∈S2∪S3

(πn)i =
∑

i∈S2

(πn)i +
∑

i∈S3

(πn)i

The second term is o(1/n), while for the first one

∑

i∈S2

(πn)i =
∑

j

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

+
∑

j∈S3

Pr(Φ(τ) ∈ S2 |Φ(τ − T ) = j) · (πn)j

=
∑

j∈S1∪S2

(πn)j · o

(

1

n

)

+ o

(

1

n

)

= o

(

1

n

)

Therefore,
∑

i∈S2∪S3

(πn)i = o

(

1

n

)

,

which implies that
∑

i∈S1

(πn)i = 1 − o

(

1

n

)

and completes the proof of the theorem.
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2.2 Bounded Capacities

In this section we use the analysis of the BDAR* algorithm for unbounded capacities to compute
the bandwidth requirement B (< ∞) that ensures that a new call is not lost whp.

Theorem 5. Assume that all the edges have capacity B circuits which can be a function of n.
Then, if we perform the BDAR* policy, edge capacity

B =
ln lnn

ln d
+ o

(

ln lnn

ln d

)

, as n→ ∞

ensures that under the stationary distribution a new call is not lost whp.

Proof. The result for finite B follows from the proof of Theorem 2 which concerns unbounded
capacity. Since the Markov process is finite and aperiodic there exists a stationary distribution.
Moreover, the analysis for the unbounded case still holds for finite B as long as B/2 ≤ i∗ + 1.

A new call between nodes u and v will be rejected if in all the d choices, either the edge incident
to node u is used in routing i∗ + 1 = ln lnn/ ln d+ o(ln lnn/ ln d) calls with node u as an endpoint,
or the edge incident to node v is used in routing i∗ + 1 calls with node v as an endpoint. With
probability at least 1− o(n−1), for each node, the number of incident edges with load at least i∗ +1
is at most 2αi∗+1. Therefore, the probability for a call to be rejected is no more than

o

(

1

n

)

+

(

2αi∗+1 + 2αi∗+1

n− 2

)d

= o

(

1

n

)

since αi∗+1 = 10.

3 Lower Bound on the Performance of the DAR Algorithm

To demonstrate the advantage of the balanced-allocation method we prove here a lower bound on
the maximum channel load when requests are routed using the DAR algorithm. This bound shows
an exponential gap between the capacity required by the balanced-allocation algorithm and the
capacity required by the standard DAR algorithm for the same stream of inputs.

Recall from Section 1.1 that we consider a complete network of n nodes and N =
(

n
2

)

edges.
Requests for connections between a given pair arrive according to a Poisson process with rate λ,
the duration of a connection has an exponential distribution with expectation 1/µ. Edges have
capacities of 3B circuits, B are used for direct connections, and the remaining 2B are used for
alternative routes with the capacity reserved for alternative routes furthermore split into two, so
that B circuits are used for alternate paths with one node of the edge as an endpoint and B for
calls with the other node as an endpoint.

Theorem 6. Assume that all the edges have capacity 3B circuits which can be a function of n.
Then, if we perform the DAR policy, edge capacity

B = Ω

(
√

lnn

d ln lnn

)

, as n→ ∞

is necessary to ensure that under the stationary distribution a new call is not lost whp.
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Figure 1: A call is generated on edge e at time t.

Proof. We will compute a lower bound on the probability P = P (B), that a request arriving at an
arbitrary time t is rejected.

We consider first the probability P1 that the new call is not routed through the direct link.
The process of routing calls through the direct link is an M/M/B/B loss system (Poisson arrival,
exponential service time, B servers—corresponding to the B direct links, up to B customers in the
system—corresponding to up to B calls that can be routed through the direct links). Applying
Erlang’s loss formula (e.g., [9]),

P1 =
(λ/µ)B

B!

(

B
∑

i=0

(λ/µ)B

i!

)−1

≥ e−λ/µ (λ/µ)B

B!
. (17)

Since the arrival is Poisson, it is independent of the state of the queue at the time of arrival,
hence the probability that a given pair (v,w) had a request during interval Π = [t− 1, t] that could
not be routed by the direct link is

Palternate = (1 − e−λ)P1.

Next we lower bound the probability P2 that a request generated at time t that failed to use
the direct link e = (v, z), fails also to be routed by an alternative path (i.e., all the d attempts to
find a nonsaturated alternative path do not succeed). In fact, we will restrict our discussion to the
probability that in each of these d routes the first edge (v, ui) on the alternate route was saturated
for alternate paths with endpoint v (Figure 1).

In order to estimate the probability P2, we compute a lower bound for the probability P (ei, t),
that an arbitrary edge ei = (v, ui) was carrying, at time t, B alternate paths with endpoint v (and
thus blocked for any other alternate path starting at v). For this we study the evolution of the
system during period Π = [t− 1, t]. We will lower bound the probability P (ei, t) by the probability
that at some point during the interval Π the edge carried B alternate paths with endpoint v, and
that none of these paths terminated during this interval.

The second requirement is easy to evaluate. Since the calls have exponential duration with
parameter µ, every call that is on edge ei at time t− 1, or that is created during Π, will stay in the
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system until time t with probability at least e−µ, and all the calls do not terminate in that interval
with probability at least e−µB .

Let Ci be the event “during the interval Π, B different pairs (v,w1), . . . , (v,wB) try to use edge
ei = (v, ui) as a first choice for alternate path, and for each of these pairs the edge (ui, wj) (the
second edge in the alternate path) was not blocked.” Then,

P (ei, t) ≥ Pr(Ci)e
−µB .

The difficulty in computing Pr(Ci) is bounding the probability that the second edge on the
alternate path is not blocked. The following lemma simplifies this computation.

Lemma 7. Let D be the event “there is a vertex u 6= v that during the interval Π was the center

node for more than c1d
(

λ
µ + λ

)

(n− 1) alternate paths with no endpoint in v.” Then,

Pr(D) ≤ e−c2n,

for some constants c1, c2 > 0.

Proof. There are
(n−1

2

)

possible pairs of vertices not containing v. For each pair the number of
active calls at time t−1 is bounded by a Poisson random variable with parameter λ/µ. The number
of new calls between a given pair during the interval is bounded by Poisson random variable with
parameter λ.

Fix a vertex u. The probability that a given call uses u as a center vertex in an alternate
path is bounded by d/(n− 2), independently of other calls. Thus, the number of alternating paths

through u is stochastically dominated by a Poisson distribution with parameter λ
(

1 + 1
µ

)

dn−1
2 .

Applying the Chernoff bound for u and summing over all n− 1 vertices gives the lemma.

There can be no more than B alternate paths with endpoint v that use a vertex w as a center

node. Thus, conditioning on the event D, no more than c1d
(

λ
µ + λ

)

(n − 1) + B alternate paths

use any vertex w 6= v during the interval Π, and thus, during any time in that interval no more

than 1
B

(

c1d
(

λ
µ + λ

)

(n− 1) +B
)

edges adjacent to w are blocked for alternating paths using w

as a center node.
Focusing back on the edge ei = (v, ui), there is a set Wi of vertices such that the edge from ui

to w ∈ Wi is not blocked for an alternate path with endpoints v and w ∈ Wi throughout the
interval Π. Conditioned on D, we have |Wi| ≥ αn for some constant α > 0.

We can compute

Pr(Ci | D) ≥

(

αn

B

)(

Palternate ·
1

n− 2

)B (

1 − Palternate ·
1

n− 2

)αn−B

= e−O(B2 lnB−B2 ln(λ/µ)). (18)

The above follows from the fact that there are at least αn edges (v,w), w ∈ Wi, that can create
a call during Π with probability Palternate, and select as a first choice for alternate path the path
v − ui − w. Note that in the computation we consider no more than one communication request
for each pair of vertices (v,w), w ∈Wi, in order to avoid further dependencies.

Consider now a request that arrives at time t with endpoint v. The probability that the direct
link for that request is blocked is P1.
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For simplicity, label the d alternative paths that the call generated at time t (between nodes v
and z) as v − ui − z, i = 1, 2, . . . , d, and let Ei be the event “the ith alternative path (v − ui − z)
is blocked.” We want to lower bound the probability P2 = Pr(E1, E2, . . . , Ed) that the request
generated at time t that failed to use the direct link, fails to use all the d alternate paths. Then

P2 ≥ Pr(C1, C2, . . . , Cd) · e
−dµB

≥ Pr(C1, C2, . . . , Cd | D) ·Pr(D) · e−dµB

≥ (1 − e−c2n) · e−dµB ·

d
∏

j=1

Pr(Cj | D, C1, . . . , Cj−1).

Let us try to compute Pr(Cj | D, C1, . . . , Cj−1). Let

Ui = {w ∈Wi : v − ui − w became an active alternate path during Π}

and

Wi = Wi−1\Ui−1 = W1

∖ i−1
⋃

j=1

Uj.

Notice that if the calls (v − ui − w) do not terminate during Π, we have |Ui| = B, so as long as
dB = o(n), conditioned on D, there exists a constant α such that |Wi| ≥ αn, for all i = 1, . . . , d.
We can repeat the calculation of (18) and get that

Pr(Cj | D, C1, . . . , Cj−1) = e−O(B2 ln B−B2 ln(λ/µ)),

since a call in Wi is generated, fails to use a direct route, and uses the alternate path v − ui − z,
independently of events C1, . . . , Ci−1. So, finally, we get that

P2 = e−O(dB2 lnB−dB2 ln(λ/µ)).

Putting everything together we conclude that the probability that the call generated at time t
is rejected is at least

P1 · P2 ≥ e−O(dB2 lnB−dB2 ln(λ/µ)).

Therefore, in order to guarantee that a new call is not lost whp., the bandwidth must be at
least

B = Ω

(
√

lnn

d ln lnn

)

.
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