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Abstract—The COVID-19 pandemic has significantly reduced
visits to hospitals and clinics, forcing physicians and clinics to
investigate how to move online using telemedicine and home mon-
itoring. Wearable technologies can help by enabling homecare
monitoring if they provide accurate and precise measurements.
The monitoring of cardiac health problems is such an example
and can be managed when patients are residing at home with
the use of wearable cardiac monitoring equipment. Recent studies
indicate that of various COVID-19 related complications, cardiac
abnormalities in particular are associated with a significantly
higher mortality rate. It is therefore important to develop smart
wearables that are able to analyze and interpret the recorded
signal to detect anomalies outside clinical environments where no
external devices are available to analyze and store the signals,
nor healthcare personnel is present to assist the identification
of abnormal heart activity. This paper looks into two different
approaches to enable smart wearables to analyze a high-definition
electrocardiogram arriving from ECG sensors arrays in order
to detect cardiovascular abnormalities. The first approach relies
on techniques that enable the execution of deep-learning models
within an embedded processor. The second approach uses het-
erogeneous multicore embedded processors that accelerate the
execution of the classifiers. Results indicate the benefits of each
approach and the interplay between the performance achieved
in terms of event detection ratio and latency of classification.

Index Terms—Cardiac Arrhythmias, ECG signal classification,
Deep learning, Convolutional neural networks, Wearable Elec-
tronics, Experimental Evaluation

I. INTRODUCTION

Obtaining reliable and useful datasets originating from low-
end devices is one of the main challenges in the IoT domain,
tackled by in-network aggregation and on-the-spot data man-
agement techniques. Yet, as the total number of interconnected
nodes rises, an always increasing amount of barren data is
collected and forwarded to the backend servers for further
processing, which consumes bandwidth. As a result network
resources become saturated by the constantly increasing infor-
mation flow and hardware overprovisioning becomes the only
way of effectively addressing this situation [34].

Medical applications have additional requirements, given
the fact that minimal end-to-end latency, network bandwidth
preservation and enhanced reliability are considered attributes

of paramount importance [5]. In addition, robust data collec-
tion, storage and availability mechanisms, paired with failover
schemes for uninterrupted services even in cases of inter-
mittent cloud connectivity or resource-constrained wearable
devices must also be integrated [6], [8]. As more data traverse
the network, the possibility of errors proportionally rises, since
bit error rate, data transmission latency and packet droppings
are linked to the actual size of the transmitted data. Yet, in an
emergency or safety-critical applications, there is no margin
for errors. When these restrictions are combined with the pre-
requisites for (i) near real-time data processing, (ii) enhanced
end-to-end data security, and (iii) data anonymization and
privacy, formulate a set of challenges in which only radical,
end-to-end solutions can be applied.

Cardiology is the medical branch in which applications
based on wearable monitoring devices appear to thrive. Given
the fact that 47% of all deaths in Europe are related to
cardiovascular diseases [4], [29], it is essential to provide
the means for doctors to closely and efficiently monitor heart
conditions that will save thousands of lives annually [25]. To
identify variations in heart rhythm along with other patterns of
the heart’s electrical impulses, wearables mostly use Electro-
cardiography monitoring (ECG). This technique monitors the
electrical activity of the heart and records electrical impulses
generated by the polarization and depolarization of cardiac
tissue through properly placed electrodes.

Portable ECG devices that provide accurate real-time heart
monitoring and detect sporadic events during doubtful sections
of incidents have the potential to enhance the decision-making
process of doctors from remote. The portable devices that
are available today for providing accurate diagnosis have still
certain limitations that prevent their widespread adoption.

First, currently available portable ECG devices, such
AliveCor Heart Monitor! or the HeartCheck Pen?, rely on
1-3 leads and have limited accuracy due to electromagnetic
noise. Environmental noise from nearby appliances or noise
originating from muscular activity frequently produces abnor-
malities in a recording [21]. One way to address noise is to
increase the number of electrodes that record cardiac activity
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from different heart regions. Of course, the additional ECG
leads will require more energy to operate. Moreover, recording
the signal arriving from multiple sensors will require increase
memory capacity [7]. Under such circumstances, it remains
a challenge to increase accuracy while at the same time also
maintaining the longevity of the portable system.

Second, existing portable ECG devices lack computational
power and have limited battery life to detect abnormal be-
haviour on the spot. Higher-end wearable ECG monitors,
such as QardioCore® and Equivital* do not offer on-the-
spot analysis of the signal. Instead, through a mobile phone,
they wirelessly transmit the recorded signal to a cloud-based
service that analyzes the signal and shares the results with
doctors [22]. It is important to keep in mind that high-
definition recordings that utilize more than six or more elec-
trodes produce large amounts of data. Transmitting these data
from the portable device to the mobile phone and eventually
to the cloud service has an impact on the energy consumption
of both the portable device and the mobile phone. In addition,
the data transferred are usually diagnosed as normal, thus also
wasting the bandwidth within the core network infrastructure.

Given the above observations, it is important to examine
the possibility of creating a new generation of portable ECG
devices that will have the capability to carry out a first-level
analysis of the signal using the available embedded processor.
The device will be therefore in a position to evaluate which
parts of the recorded signals have a significant diagnostic value
and are thus important to store and/or transmit to the cloud.
Avoiding transmitting all the data that do not assist to deliver a
diagnosis will reduce the network resources and consequently
also the battery resources of the portable devices [2].

Today many methods exist to evaluate an ECG recording
that is suitable for execution within an embedded processor.
Unfortunately, these algorithms are characterised by very low
accuracy, leading to a generation of an excessive number of
alerts [36]. The approach of utilizing machine learning tech-
niques [33] or deep neural networks (DNN) [18] have been ex-
amined. These approaches achieve high levels of accuracy for
diagnosing heart abnormalities by utilizing elaborate models
and relying on high-performance computing infrastructures.

One approach to make these models suitable for execu-
tion within low-power embedded processor that has limited
memory capacity is to transform them to low-power variants:
both at the hardware level (e.g., accelerators [10], [13]) and
algorithmic level (e.g., network pruning [20], quantizing the
weights in lower resolution integers [30] or stopping the
inference chain to avoid unnecessary computations [11], [32]).
These solutions remain very close to the original deep neural
network approaches and have a limit in the level of power
consumption reduction they can achieve.

Another approach is to implement these models using
hardware accelerators able to carry out specialized operations
with reduced power consumption and within short periods.
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Examples of such embedded processors that include hardware-
assisted pattern matching modules are the NXP MPC8572E
PowerQUICC III integrated processor or the Intel® Quark™
C1000 system-on-chip. Such systems-on-chips enable the exe-
cution of specific machine learning methods with significantly
reduced power consumption requirements. Although each
hardware-assisted classifier has limited memory capabilities,
a system can be designed that builds upon multiple such
modules to expand the accuracy of the resulting model.

In this study, two different methods for ECG heartbeat
classification within a microcontroller have been evaluated.
The first approach builds upon a hardware-assisted KNN im-
plementation that allows the classification of ECG recordings
with a very short latency and achieving low power efficiency.
The second approach uses a deep convolutional neural network
with residual connections for the arrhythmia classification task
that is optimized to operate within a microcontroller. The
results indicate that arrhythmia detection within low-power
wearable devices can make predictions with reasonable high
precision when compared to the state of the art methods in
the literature of high-end processor architecture.

The rest of the paper is organized as follows. Sec. II
provides an overview of recent results in the relevant literature.
The formulation of the problem and the methodology of the
two approaches investigated are presented in Sec. III. The
experimental evaluation is presented in Sec. IV followed by a
discussion of the results and future work directions in Sec. V.

II. RELATED WORK

The analysis of ECG signals for the diagnosis of heart
diseases has attracted significant attention in the research
community due to its importance. During the past years,
several algorithms have been proposed that can detect heart
arrhythmias as a specific cardiovascular disease [9]. For many
years the use of signal-processing techniques was the predomi-
nant tool for detecting abnormal heartbeats and arrhythmias in
general [36]. More recently, machine-learning approaches have
been used to develop models [33]. Such approaches manage
to achieve higher accuracy than the signal-processing-based
approaches and tend to generate lower numbers of false alerts.
For example, consider the detection of arrhythmias formulated
as a classification problem. Then the k-nearest neighbour al-
gorithm can be applied based on analyzing the () RS-complex
in an ECG. Another approach is to develop artificial neural
networks to classify cardiac anomalies. For example, in [28]
an evolutionary neural system is developed that compared to
a machine-learning-based classifier can achieve a recognition
sensitivity, at a level of 90%. Ptawiak [27] proposes to frag-
ment the ECG signal into windows of 10sec and estimating the
power spectral density to enhance the characteristic features.
In the sequel, the extracted and enhanced features are used
by a revolutionarily effective ensembles of classifiers. The
evaluation of the model indicates that it can identify a total of
17 distinct heart disorders with a precision of 91.40%, which
is the best results obtained to date, to our knowledge. In [39]



the concept of using a l-dimensional convolutional neural-
network model is proposed. In contrast to previous attempts for
designing deep neural network models, the proposed method
does not use any elaborate feature extraction technique. As
a result, classification can be carried out in real-time while
at the same time achieving high accuracy. More recently,
Rajpurkar et al. [31] propose a much deeper convolutional
neural network that is made up of 34-layers. The network
is trained to directly map ECG samples without conducting
any kind of preprocessing or feature extraction to rhythm
classes. The evaluation of the resulting system is carried out in
comparison with experienced cardiologists that examined the
recorded ECG against a broad range of cardiac anomalies. The
results indicate that computerized detection based on a deep
neural network can potentially outperform human cardiologists
in terms of predictive value (precision) and sensitivity.

I[II. METHODOLOGY

An ECG recording is acquired by placing some electrodes
on specific locations on the patient to obtain the correct view
(or lead) of the operation of the heart. ECG devices that are
capable of recording three, six or twelve channel ECGs are
essentially capable of obtaining multiple views of the same
cardiac cycles. The activity of the heart during a beat is based
on a synchronized contraction of the ventricles to fills the
atria. This activity is registered by the electrodes, the so-called
PQRST wave. In more details, the Sinoatrial (SA) node
starts with a deflection that generates the P wave. Then the
Atrioventricular (AV) junction is reached after a small delay
due to the slower tissues. This is the PR segment of the wave
that represents the electrical inactivity. Next, the depolarization
of the ventricles, which are greater than the atria, require more
energy to operate. This is reflected in the much larger QRS
complex in comparison to the P wave. So the first negative
deflection after the P wave defines the ) wave. Immediately
after this, the first positive deflection follows which defines
the R wave. Then the second negative deflection defines the
S wave. Immediately after the depolarization, another wave in
the ECG starts with the next repolarization phase.

The analysis of the PQRST wave and the detection of
arrhythmias is a difficult task due to the high variability of
the heart’s mechanisms. The assessment of cardiac activity is
based on the morphology of the PQRST wave of each heart-
beat. The advancement of medical instrumentation (AAMI)
standard [11] categorizes arrhythmias in two broad classes:
rhythmic arrhythmias that are made up of a series of irregular
beats and (2) morphological arrhythmias that represent a single
abnormal beat. The morphological arrhythmias are further
organized into five classes: the N, S, V, F' and Q). NV includes
beats that result in a QRS complex that is longer than 120 ms
due to a blocked SA node, either in the left or the right bundle
branch, that generates an impulse that does not reach the left
or right ventricle. S includes the so-called supraventricular
ectopic beats (SVEBs) where the P wave is upside-down. V'
includes the so-called ventricular ectopic beats (VEBs) where
the QRS complex is tall and wide. F' is a class made up of

the fusion of normal and V. Finally, all other types of beats,
as well as beats regulated by a pacemaker, form the @ class.
It is therefore evident that the identification of the onset and
offset points and the amplitude measurements of each part are
diagnostically relevant. Moreover, the interval between the PQ)
waves and the PR waves, the QRS width, the QT interval,
the amplitude of QRS, the ST level are also important when
evaluating the cardiac rhythm.

A. Problem Formulation

The ECG arrhythmia detection task is a sequence-to-
sequence task which takes as input an ECG signal that is
decomposed into k fragments denoted as S = [s1, .. ., S], and
outputs a sequence of labels, one for each segment, denoted as
L =ly,...,l], where each l; can take on one of m different
rhythm classes. Based on such a signal S and output sequence
L, a training set is selected in a way such that the following
cross-entropy objective function is optimized:

k
loss(S, L) = %Zlogp(R =1|S)

=1

where p(-) represents the probability that the label [; will be
assigned to the ith segment.

In this paper, a “simplified” arrhythmia detection task is
defined where the sequence of labels are just two: Normal
(the F' class stated above) and Abnormal (the classes N, S
and ). The simplified version of the problem is considered as
a first step towards providing low-latency classification with-
out relying on any external/cloud-based services that require
continuous connectivity.

B. Hardware-assisted Detection

The prototype is based on the Intel® Quark™ SE C1000
system-on-chip, that combines an x86 microcontroller (MCU)
operating at 32 MHz clock speed, with a sensor subsys-
tem and pattern-matching capability through a hardware-
accelerated engine. The hardware-accelerated engine offers
optimized power management and low battery power, enabling
the MCU to learn through pattern recognition and differentiate
appropriate response events in real-time while being more
energy-efficient. The system provides 80 KB SRAM, 384 KB
integrated Flash, and 8 KB OTP.

The Zephyr [12] real-time operating system is used to
develop the firmware. Zephyr OS is developed specifically
for resource-constrained heterogeneous devices. It is released
under the Apache License 2.0. The code controlling the
hardware-accelerated Pattern Matching Engine (PME) inside
the Quark is developed using the Intel® Curie™ ODK?.

The PME can be trained and used on abitrary types of
data. The core technology of the hardware is the so-called
NeuroMem® [38] developed by General Vision Inc. The total
number of labels used is limited to 255. Internally the module
provides a total of 128 neurons that are used to store the model.
During the training phase, each of these neurons is responsible
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for identifying specific aspects of the provided features. Each
neuron uses a 128-byte array to store the selected features.
The PME monitors the activation of the neurons and measures
their influence in characterizing each input signal. Neurons
that do not achieve a minimum influence, they are said to be
“degenerated” and are removed. It is therefore possible that a
smaller number of neurons is used after the end of the training
phase. During the classification of a given signal, the neurons
that have values close to those provided are actived. The
other neurons remain idle. Given the numeric values associated
with the pattern stored in the neuron, the provided signal is
classificed based on the proximity to the patterns stored in the
activated neurons.

The prototype presented here extends the one developed
in [3]. The one used here implements a pre-processing that
organizes the ECG recording in windows of 10 seconds.
The concept is that each window will include at least four
QRS consecutive complex that is required by experts to
classify certain types of arrhythmias (e.g., PVC: Premature
Ventricular Contraction, VF: Ventricular Fibrillation, BII: 2nd
Heart Block) [37].

The recorded ECG trace is analyzed to provide global scalar
and “spatial” parameters and detailed measurements. These
parameters are derived from the representative cycles for each
QRS complex present in the window. The parameters are
used to construct a vector of features — or a pattern — that
is used by the PME. The accuracy of the PME depends on
this vector. However, since points are limited to 128 bytes,
the number of features that can fit is limited. Moreover, the
extraction of the features carried out by the generic x86 MCU
needs to be conducted in real-time. So feature selection is
important for the overall performance of the system, in terms
of accuracy, latency and energy consumption. In this work,
feature extraction is based on the algorithm of Pan and Tomp-
kins [26], probably the most widely used algorithm and also
fast to execute within an embedded processor environment.
The QRS complexes are identified by analyzing the ECG
segments in terms of slope, amplitude, and width. A total
of eleven features are extracted for each segment: number of
ORS complexes included in the window, average R-R interval,
average S amplitude, average R-S amplitude, average R-peak
amplitude, last five R-R intervals. As soon as the features
vector are encoded into a 128-byte array, the hardware-assisted
K-Nearest Neighbor (KNN) implementation classifies them
within a very low latency and achieving low power efficiency.

During the learning/training phase, each 128-byte array
corresponding to the vector of features extracted from the
window of 10 seconds is assigned a label classifying the
ECG beats recorded during the window. If a window includes
at least one abnormal beat, it is characterized as abnormal.
Otherwise, it is characterized as normal.

The byte arrays encoding the features of each 10-second
window make up the training pattern used by the PME to
construct a decision space. The decision space spans up by
128 orthogonal vectors, where each vector is 128-bytes. Thus
the decision space is a 128 axes coordinate system with its

axis limited to integers ranging from 0 to 255.

After the training is completed, during the normal operation,
the PME identifies the &k nearest points for each vector
provided. The distance between two points is calculated using
the Manhattan Distance (also known as rectilinear distance or
Minkowski’s L1 distance). The vector provided is classified
by averaging the labels of the k closest points.

C. Convolutional Neural Network-based Detection

The prototype is based on a lot more powerful processor
from Nordic Semiconductors, the nRF52840 system-on-chip
built around the 32-bit ARM® Cortex™-M4 CPU with the
floating-point unit running at 64 MHz. This allows larger
programs to run on the prototype and with a lot more variables.
Exceptionally low energy consumption is achieved using a
sophisticated on-chip adaptive power management system.

The software is developed using the Segger [35], a real-
time operating system for embedded systems in combination
with the Nordic nRF5 SDK version 17.0.2. The Convolutional
Neural Network (CNN) model is implemented using the
TensorFlow computational library [1].

In contrast to the previous approach, a lightweight feature
extraction method is used here thus requiring minimal pro-
cessing cycles from the MCU. No form of processing is used
that makes any assumption about the signal morphology or
spectrum. In particular, the continuous ECG signal is split
in windows of 10sec and the signal within each window is
normalized to the range [0, 1]. Then the Pan and Tompkins [26]
is applied to identify the R-peaks. For each R-peak identified,
a signal of the length of 12sec is produced, centred on the R-
peak. In this way, each window generates multiple different
segments, depending on the number of R-peaks included in
the period of 10sec. This process ensures that all the extracted
beats have identical lengths which are essential for the proper
execution of the CNN model.

The extracted segments centred on an identified R-peak
are fed into a CNN model that extends the one developed
in [17]. First, a convolutional layer is used to apply a scalar
product with the input fragments using 32 kernels of size five
each. In contrast to CNN models used for image analysis,
the model used here has one dimension. Then a predictor
network is used that is made up of five blocks. Each block
is made up of a convolutional layer, followed by a Rectified
Linear Unit [24] that output only the positive elements of the
input. Subsequently, a skip connection [16] is used and finally
a max-pooling layer of size five and stride two. The output
of the predictor network feeds two fully connected layers
made up of 32 neurons that produce the final predictions.
Finally, a softmax layer is used to convert the output into the
corresponding labels.

During the training phase of the model, for the softmax
layers, cross-entropy is used as a loss function. In addition the
Adam optimization method [19] is used with the learning rate,
beta-1, and beta-2 of 0.001, 0.9, and 0.999, respectively. The
learning rate is decayed exponentially with the decay factor
of 0.75 every 10000 iterations.



The approach followed in this prototype can be considered
the opposite of the previous prototype. Instead of carrying
out a complex pre-processing phase that is used by a fast
classifier, here signals are processed briefly and analyzed by
a deep classifier. This approach has higher requirements in
terms of storing the weights of the kernels used.

IV. EXPERIMENTAL EVALUATION

The two different approaches are evaluated in analyzing,
and interpreting ECG traces through a series of experiments.

A. Data Source

There are various databases available for the evaluation
of computerized diagnosis of heart diseases [14]. Among all
the publicly available datasets, the Massachusetts Institute
of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia
database [23] is the most widely used for ECG signal analysis
and arrhythmia detection since it includes recordings of all
five arrhythmia classes suggested by the AAMI standards [11].
It includes 48 two-channel ECG recordings of 30min each,
digitized using 3601 z and 11-bit resolution to create a total
of 650K records. The recordings are annotated by two cardi-
ologists indicating a total of 90, 585 beats belonging to the N
class, 2,781 for the S class, 7,235 for the V' class and 802
for the F' class.

B. Data Preprocessing

The dataset used is relatively small compared to other use
cases for deep learning, such as natural language processing or
image analysis. Moreover, the N class is significantly larger
than the others. These two issues can potentially lead to
overfitting the model to the training dataset, thus failing to
provide a model that is generic enough. Such a model would
result in assigning beats to the N class with high probability.
Although the accuracy of beats belonging to the N class
would be very high, it would perform poorly for all other
beats belonging to one of the other classes. The problem of
class imbalance is predominant in biological datasets where
the value of a model is connected to the ability to predict rare
events that make up the minority of the total dataset [15].

Among the available methods to solve the class imbalance
problem, here the oversampling method of Adasyn [15] is
used. The dataset is pre-processed in order to identify less
populated classes and introduce additional elements by par-
tially replicating them. The algorithms take special care of
samples for which a large fraction of neighbouring samples
belong to another class. A dataset D made up of n samples
is represented as D = {(z1,y1),--., (Zn,yn)}. The classes
Y = {1, -1} are such that |y; € Y. Then m is the number
of samples beloging to the under-balanced class and m; the
number of over-balanced classes. In this case my < m;.
Clearly ms + m; = n.

The method of Adasyn characterizes a class as under- or
over-balanced using the threshold function d = 7= € [0, 1].
An appropriate threshold value dy, is selected to limit the

maximum class unbalance when d; < d;;,. Given the char-
acterization of each class, the method computes the total
number of new samples that need to be generated based using
G = (m;—my)-B, where 8 € [0, 1]. Here 3 is user defined, for
example if 8 = 1, the resulting dataset is completely balanced.

After identifying the number of new samples that need to be
generated, the k-nearest neighbor algorithm is used to identify
which samples to examine. For each sample z; belonging to
the class, the r; = % i € {1,...,ms}, is computed as an
indication of how isolated the specific sample is from the rest
of the points of the same class. A; is the number of the K
closest neighbours to z;, belonging to the other classes. In
the sequel rl is nornalized by applying ZTSO 7; = 1, where
0< 7y = 7 < 1. One could consider 7; as an indicator

for characterlzmg whether x; is an outlier within the specific
portion of the dataset. The Adasyn methods wants to identify
such samples and generate additional elements by replicating
such samples.

Given the selection of samples that need to be replicated,
the total number of copies is Z?:o g; = G, where g; = 7 - G.
Finally, for each minority sample, the Adasyn method creates
g; samples s; as using the formula s; = x; +r - d;.

C. Performance Measures

In a classification problem with n classes y1,..., Yy, it is
possible to determine the quality of the classifier, in terms of
D; ;, that is the number of dataset’s samples belonging to y;,
but predicted as y;, where 1 < 4,7 < n. In particular given a
generic class: y;, we define:

1) True Positive (TP): y; ;

2) False Positive (FP): > . 2i Yji

3) False Negative (FN): i i Yig
The evaluation of the performance of the methods considered
here is based on the performance metrics used in the relevant
bibliograph (e.g., [28], [31], [33], [36], [39]) which are: Pre-
cision computed as T;;_% and Recall computed as TPT_‘_%.
Remark that precision and recall are computed for each class
separately. So for the simplified arrhythmia detection, we have
2 pairs while for the standard arrhythmia detection we have
4 pairs. It is important to note that the MIT-BIH database
only provides approximate detection point and beat type in
its annotation files. Therefore, a classification provided by
methods considered here needs to be temporally aligned with
the detection points identified in the MIT-BIH database and
the beat type needs to coincide with the annotation provided
by the two doctors.

D. Hardware-assisted Detection

Each ECG 30mun recording is split into 180 windows of
10sec each. The 65% of the resulting windows (i.e., 117
windows) is used for the fraining set and the remaining 35%
windows (i.e., 63 windows) is used for the validation test.
The training set is passed to the Pattern Matching Engine to
be stored as neurons. Then, the validation set is submitted to
the (trained) Pattern Matching Engine to classify each window
into one of the predefined categories.



The experiments indicate that the extraction of some fea-
tures is relatively lightweight, requiring on average between
5ms to 14ms, while some other features (like the detection
of the QRS complex) require on average between 80ms and
131ms. Overall, the average time required to extract all the
features for a single-window is 451ms. The average time re-
quired to classify a single-window is 7ms. The Intel® Quark™
SE 1000 Customer Reference Board is used to measure power
consumption. The consumption of the x86 processor while
performing the feature extraction was measured at 49.25mA
while when the PME was classifying vectors, the consumption
was measured at 53.87mA.

After analyzing all the ECG recording, the average precision
achieved is 88.86% and the average recall is 82.01%. For the
specific case of arrhythmia detection, it is the number of TP
that is most significant as they indicate the number of abnormal
beats that have been properly labelled. In this experiment, the
TP is above 80% in all cases. This is a very promising result
since it is expected that with further fine-tuning, even higher
success rates may be achieved.

Like any other machine learning technique, also here, the
hardware-assisted detection depends on the features extracted.
However, there is a trade-off between the number and type
of features one should consider. It is critical to consider
features that do not involve complicated computations and
as a consequence will take a long processing time to be
extracted. Such complex feature extraction will also increase
the power consumption of the embedded system. Consider for
example the analysis of the signal in the frequency domain.
On the other hand side, features that are simple to extract
may not help identify the specific morphologies of an ECG
segment that will help the model to differentiate it from other
samples. Such features are for example the identification of
the R peaks, or the location of S part. Moreover, one must
consider that due to the memory limitations of the embedded
device there is an inherent limit to the total number of feature
used. Finally, it is also important to assess and validate the
truthfulness of the extraction due to noise inevitably affecting
ECG recordings. Trying to increase the accuracy may require
the amplification of the signal, or the execution of an extraction
function multiple times, or allocating additional memory in
order to increase the window sizes. This entails a very delicate
feature engineering process in order to achieve a balance
between the required memory resources (RAM), the compu-
tational capabilities of the MCU, the energy consumption, the
execution of the classification process within specific latency
constraints and the resulting precision and recall of the model.

E. Convolutional Neural Network approach

Like in the previous case, first each ECG recording is split
into windows of 10sec and the signal is processed to identify
the R-peaks and extract the 12sec fragments centred on each
R-peak. In a way similar to the case of the hardware-assisted
detection model, the resulting segments for each recording
are split into two parts: training (65%) and validation (35%).
The feature extraction of the CNN approach is very simple

and requires less time to execute within the MCU, requiring
an average of 95ms. The Power Profiler Kit from Nordic
Semiconductors is used to measure energy consumption during
the preprocessing of the signal is measured at 11.51mA.

The evaluation starts by measuring the performance of the
simplified CNN model that classifies each ECG segment into
two classes: normal or abnormal. The implementation of the
model was based on the TensorFlow computational library [1]
and then a version suitable for execution within the MCU was
generated using the TensorFlow Lite converter. Finally, the
post-training quantization conversion technique was used to
reduce the model size while also reducing MCU utilisation,
with little degradation in model accuracy. In particular, the
integer quantization optimization strategy was selected that
converted 32-bit floating-point numbers (such as weights and
activation outputs) to the nearest 8-bit fixed-point numbers.
This resulted in a smaller model and increased inferencing
speed, which is valuable when executed within an MCU. The
resulting model has a total of 3786 parameters, each of which
is an unsigned int (32bit), therefore a total of 121152 bits are
required to store it. The final output is 32 bit. The average
precision achieved is 94% and the overall recall is 94.02%.
The average time required to perform the simple preprocessing
phase and execute the model for a single-window is 135ms.
The energy consumption for the execution of the classifier is
measured at the same levels as the preprocessing phase.

The second part of the evaluation looks into the performance
of the complete CNN model that classifies each segment into
four classes: N, S, V, F. The same approach as the one reported
above was followed to generate the optimized model for the
MCU. The resulting model requires a total of 2046720 bits
and the final output is 128 bit. In Tab. I the size of the
model is depicted, along with the output size and the average
execution time for each of the five passes of the model (see
Sec. III-C). The first pass includes also the initial input and
convolution operations, while the fifth pass includes the two
FC, ReLU operations. The complete CNN model requires
additional memory, about 20 times more than the simplified
one. However, in terms of average execution time, the average
time to execute the model for each segment is 246ms. Once
again, energy consumption for the execution of the classifier
remains at the same levels.

Notice that each pass requires about the same number of
bits to execute the 32 kernels of size 5 of each convolution
operation and carry out the max-pooling of size 2 and stride 2
in all pooling layers. On the other hand, the output of each pass
- which becomes the input for the next pass - reduces in size.
This implies that the first pass involves convolution operations
with more parameters than the following ones. As a result, the
average execution time of each pass reduces significantly.

The average precision of the complete model for each of
the 4 classes considered is depicted in Tab. II. The TensorFlow
column refers to the results produced by executing the model
on a desktop computer (i.e., not an MCU) using the “standard”
TensorFlow computational library [1]. The results reported
here are slightly lower than those reported in [17] due to



TABLE I: CNN Layers Profiling

Pass Model size | Output size | Execution Time
1 474624 bit 5984 bit 136 ms

2 867328 bit 2944 bit 61 ms

3 1260288 bit 1408 bit 29 ms

4 1653248 bit 640 bit 14 ms

5 2046720 bit 256 bit 5 ms
Output 128 bit 1 ms

TABLE II: Achieved precision and recall of different models

Tensorflow TLite NQ-Model TLite Q-Model
P R P R P R
N || 83.23 | 99.23 81.19 99.33 80.46 | 99.33
S 99.16 | 83.36 || 98.78 81.33 98.64 80.77
V || 9438 | 98.18 || 96.10 96.00 96.08 95.33
F 97.75 | 72.42 || 93.77 78.40 93.77 78.40

the data augmentation technique used. The column TLite
NQ-Model refers to the conversion of the model using the
TensorFlow Lite support library without carrying out any post-
training quantization conversion technique. The third column
TLite Q-Model refers to the application of the integer quanti-
zation optimization technique on the TLite NQ-Model. Based
on the results depicted in Tab. II, the TLite NO-Model has a
slightly reduced accuracy than the original TensorFlow, while
there is a further minor degradation of accuracy for the TLite
Q-Model. Note that in all cases considered the precision for
the N class is low (80 to 83 %) because the data is unbalanced
towards N beats. This means the model is trained with a lot
of beats classified as N, and this leads to a preference of the
model to classify a beat as N in case of uncertainty, thus
creating many false positive.

V. CONCLUSIONS

In this study, two different methods for ECG heartbeat
classification within a microcontroller have been evaluated.
The first approach builds upon a hardware-assisted KNN im-
plementation that allows the classification of ECG recordings
with a very short latency and achieving low power-efficiency.
The second approach uses a deep convolutional neural network
with residual connections for the arrhythmia classification task
that is optimized to operate within a microcontroller. The
results indicate that arrhythmia detection within low-power
wearable devices can make predictions with reasonable high
precision when compared to the state of the art methods in
the literature of high-end processor architecture.

For the hardware-assisted approach, feature extraction that
is carried out within the generic X86 MCU requires a sig-
nificant amount of time and energy. On the other hand, the
execution of the machine learning algorithm is very fast while
the energy consumption is much lower. As discussed in the
previous section, the number of features that need to be ex-
tracted needs to be carefully considered. On one hand side, the
computational complexity and consequently the requirements
in energy consumption become a limiting factor. On the other
side, including many features that are simple to compute
inevitably increases the memory requirements which also a

limiting factor within the hardware-assisted machine learning
algorithm. In fact, in this work an iterative process was
followed for the selection of features, continuously refining the
code and considering lightweight alternatives. Such a feature
engineering and firmware fine-tuning process in some cases
turned out to be time-consuming.

In contrast to the above, the deep-learning model considered
in this work requires a very short preprocessing of the signal.
On the other hand side, the type of kernels available within the
embedded execution environment is not rich, thus limiting the
types of models that can be supported. Therefore one needs to
interact with the support library, in this work it was Tensorflow
Lite, to design a model that can be transferred within the em-
bedded environment. Moreover, due to the available memory
(RAM) within the MCU, there are also certain limits to the
size of the model. Another critical aspect is the difficulty to
break down the execution of the model into smaller functions.
Within the embedded system various handlers may require the
preemption of the execution to avoid the disruption of certain
functions. As an example consider the network connectivity
based on BLE that requires very precise timing between packet
transmissions thus requiring higher priority. Given that the
execution of the model is considered a black box provided
by the support library, i.e., Tensorflow Lite, this critically
complicates firmware design. Such problems do not exist on
the hardware-assisted prototype since the execution of the
model is done in a very short period, while the extraction of
the feature is implemented using multiple, short, functions that
can be easily preempted to allow the processing of a higher
task by the MCU.

The results of the experimental evaluation indicate that
while the execution of the model to carry out a single classifi-
cation has lower latency than the hardware-assisted detection
model, the time needed to preprocess the recording and carry
out the feature extraction is much shorter thus resulting in an
overall shorted time of execution. As a result, the CNN-based
approach leads to lower energy consumption.

Future work in this area is connected to examining alterna-
tive hardware-assisted modules and evaluate their performance
in comparison to those presented here. It is also important
to investigate potential improvements on the CNN model
by examining alternative designs and layer compositions,
in combination with additional features and different model
optimization techniques. In terms of reducing the execution
time of the deep-learning model, the possibility of using a
smaller sampling rate needs to be considered and also the
possibility of reducing the resolution of the ECG recordings.
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