
Analysis of Charikar’s Greedy Approximation Algorithm for

Densest Subgraph

Aris Anagnostopoulos

We are given a simple undirected graph G = (V,E). In graph community detection, the goal is
to discover subsets of nodes that are connected highly connected with each other.

An extreme example of a community is a clique: A subset of nodes S ⊆ V in which each of the(|S|
2

)
edges among the nodes of S exist.

Yet, trying to find cliques in a graph is not very useful for community detection, as it is very
restrictive. Furthermore, finding a clique of maximum size is not only NP-hard, but also very hard
to approximate: essentially it cannot be approximated better than a factor of

√
|V |.

Therefore we will relax the definition of a community. There are many ways to do this. Here
we will choose one of them: Given a set of nodes S ⊆ V , we define its sparsity to be:

f(S) =
|E(S)|
|S|

,

where E(S) = {{u, v} ∈ E : u ∈ S, v ∈ S}, is the set of edges of G with both endpoints in S.
We also define degS(v) = |{{v, u} ∈ E : u ∈ S}|, to be the degree of node v restricted to the

nodes in S.
Then notice that f(S) is also half the average degree among the nodes in S:∑

v∈S degS(v)

|S|
=

2 |E(S)|
|S|

.

We can now define the problem of finding the densest subgraph: Find a set S ⊆ V that maxi-
mizes f(S).

It turns out that there exists an algorithm based on linear programming that solves optimally
this problem in polynomial time. Here instead we will see a simple and elegant greedy algorithm,
which provides a 2-approximation to the optimal solution.

1

1.Function GreedyDensestSubgraph(G)
2. Input: G = (V,E): Simple undirected graph
3.Output: A set of nodes S ⊆ V
4. S ← V
5. SG ← V
6. while |S| > 1
7. v = argminv∈S degS(v)
8. S ← S \ {v}
9. if f(S) ≥ f(SG)
10. SG ← S
11. end if
12. end while
13. return SG

In words, the algorithm starts with S being the entire set V and it keeps removing from the
graph induced by S a node with minimum degree, until S remains with one node. It then returns
the set S that during the execution had the highest density.

Note that SG is the returned solution, and let S∗ be optimal solution to the problem, and
OPT = f(S∗). Then we have:

Theorem 1. Algorithm GreedyDensestSubgraph is a 2-approximation algorithm, that is,

f(SG) ≥ 1

2
OPT.

Proof. The problem when we analyze approximation algorithms is that we do not know what is
the optimal solution. Therefore, typically what we do is to provide an upper bound on the value
of the optimal solution. To this end we first show the following.

Claim 2. For each v ∈ S∗ we have that degS∗(v) ≥ OPT.

Let’s try to prove the claim. From the fact that S∗ is optimal, we have that

|E(S∗)|
|S∗|

≥ |E(S∗ \ {v})|
|S∗ \ {v}|

.

If we remove v from S∗, then we remove degS∗(v) edges from E(S∗). Therefore we obtain that

|E(S∗)|
|S∗|

≥ |E(S∗)| − degS∗(v)

|S∗| − 1
.

If we simplify this expression we obtain Claim 2.
The next step is to show a lower bound for the output of our solution. Let v0 be the first node

of S∗ that we remove from S during the execution of the algorithm and let S0 be the set S just
before we removed v0 from S. In particular, we have that S∗ ⊆ S0.

We will now compare the value f(S0) with OPT. We have

f(S0) =
|E(S0)|
|S0|

=
1
2

∑
v∈S0

degS0
(v)

|S0|
.

2

But the next node that we removed from S0 was v0, which means that for each v ∈ S0 we have
that degS0

(v) ≥ degS0
(v0). Therefore, we obtain

f(S0) ≥
1
2

∑
v∈S0

degS0
(v0)

|S0|
=

1
2 |S0| · degS0

(v0)

|S0|
=

1

2
degS0

(v0) ≥
1

2
degS∗(v0) ≥

1

2
OPT,

where the second-to-last inequality follows from the fact that S∗ ⊆ S0 and the last inequality follows
from Claim 2, after noticing that v0 ∈ S∗.

Now, we notice that by the definition of our solution SG, we have that f(SG) ≥ f(S0): SG is
the best among all the intermediate solutions including S0. This conclude the proof.

3

