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opinion formation in the scientific literature

» classic works in social science,

economics...

» simplistic models of

agent interactions

Reaching a Consensus
MORRIS H. DeGROOT*

Consider a group of individuals who must act together 85 8 team or  distribution over @ for which the probability of any
it measurable set A is X4, piFy(4). Some of the writers
previously mentioned have suggested representing the
oy dritsuin overall opinion of the o bv a probability distribution
coimions. o process o the form T e [13] has called such a
linear an pmmn poal.” The difiuty in

using an opinion pool to represent the consensus of
the group s, of course. in choosing sitable weights

sublective probability distribution for the unknown value of some

reach agreer 2 common subjective
for the parameter by pooling their individu

e is explicitly
ibution tha i ronched s oxliitly dotormined. The modelcan it
be applied 1o problems of reaching a consensus when the opinion of

the parameter rather than as a probability distribution.
1. INTRODUCTION

Consider a group of k individuals who must act

together as . team or committee, and suppose that each (1 FO1C

Threshold Models of Collective Behavior'

Mark Granoveter MIcROMOTIVES ano

State Uniersity of New York at Stony Brook
MACRO&BEeHAVIOR

Models of collective behavior are developed for situations where
actors have two alermfives and the coss und/or benefis of cach
n how many other actors choose which alternative. The key

Concept 1s that of hreshokd” the mumber o proportion of othe
who must make one decision before a given actor does so; this is the
point where net benefitsbegin to exceed net costsfo thl particular
ctor. Beginning with a frequency distribution of thresholds,
Thodel alloy calelation of v wltimate o “equilirium” number
making exch, decison "The stability of squilbrium results against
yorious possble changes in threshold disributons is considred.
Stress I placed on the importance of exact dscributons fo outcomes
Groups it simila average preferences may genera ate very difterent

it is haardous 0 nfer individual disposiions from

te outcomes or to assume that behavior was

il sgreedupon norms. Sugested pplcations e it
behavior, innovation and rumor diffusion, stril migra-
tion. T ‘measurement, Taisiicatios, and verlication are G-

cussed.

BACKGROUND AND DESCRIPTION OF THE MODELS
Because sociological theory tends to explain behavior by institutionalized
norms and values, the study of behavior inexplicable in this way occupies
. peripheral posion i aystematic theory: Work in the bl which




opinion formation research today

P> renewed interest in opinion formation in various scientific domains
including computer science

why?
> availability of large-scale social network data Ewittery®
» applications: THE FILTER

— recommender systems, BUBBLE

— viral marketing, A

— political campaigning...

. . . epublicicom
» emerging social concerns: RS heren

— political polarization,

— teenage mental health...



social interactions today



overview

» the DeGroot and Friedkin—Johnsen (FJ) models (consensus)
— definition of the DeGroot and Friedkin-Johnsen (FJ) models
— properties

» other opinion formation models (disagreement & polarization)
— biased assimilation and bounded confidence

— geometric models

» algorithmic interventions for moderating opinions
— polarization and disagreement indices
— efficiently estimating user opinions and indices
— maximizing opinions / minimizing polarization and disagreement

— emergence of echo chambers



the DeGroot and Friedkin—Johnsen (FJ) models



models of opinion formation

» individuals’ opinions are influenced by their peers
> how to model the opinion-formation process in a social network?

» one way is to model influence as information cascades
— a discrete entity (action, meme, virus) propagates in a network

— cascade is modeled using the independent-cascade model

» opinion-formation models follow a continuous weighted-averaging process



opinion formation by weighted averaging

P at each time step, each individual updates their opinion as a weighted average
of the opinions of their neighbors

P the process continues until convergence



models of opinion formation

a basic model  [DeGroot, 1974].

» we consider a weighted graph modeling a social network

> weight wj; represents influence of node j on i (i trusts )

> at time t, node / has opinion x, initally x,-(o) € [0,1]

1

» node / updates their opinion by

t
(£41) _ 2l G)eE wig”

X
1 .
Zj\(i._/’)eE Wij




models of opinion formation

a basic model  [DeGroot, 1974].

» we consider a weighted graph modeling a social network

> weight wj; represents influence of node j on i (i trusts )

> at time t, node / has opinion x, initally x,-(o) € [0,1]

1

» node / updates their opinion by

t
(t+1) _ 2| (i)<eE WUXJ( )

X
1 .
Zj\(i._/’)eE Wij

what do you expect to happen?
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models of opinion formation

a basic model  [DeGroot, 1974].

» we consider a weighted graph modeling a social network

> weight wj; represents influence of node j on i (i trusts )

> at time t, node / has opinion x, initally x,-(o) € [0,1]

1

» node / updates their opinion by

t
(t+1) _ 2| (i)<eE WUXJ( )

X
1 .
Zj\(i._/’)eE Wij

what do you expect to happen?

» under certain conditions all nodes converge to having the same opinion
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the properties of the DeGroot model

DeGroot example

t
(t+1) _ 22| (ij)eE Winj( :

X
1 e
22| (ij)eE Wi
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the properties of the DeGroot model

DeGroot example

0.167 0.167
NG
(t+1) 22| (i)eE Wi f \
X; =
22| (ij)eE Wi
0. 167 " oer

0.167
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the properties of the DeGroot model

do the opinions of all nodes contribute to the final (common) opinion?

1 0
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the properties of the DeGroot model

do the opinions of all nodes contribute to the final (common) opinion?

0 0
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the properties of the DeGroot model

furthermore, convergence is not guaranteed!

1
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the properties of the DeGroot model

furthermore, convergence is not guaranteed!

0
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the properties of the DeGroot model

furthermore, convergence is not guaranteed!

1

some intuition on convergence:

recall: node i/ updates their opinion by x,.(t+1) =

define matrix W so that Wj; = wj;; then
b x(t+1) — px(t)

» W is row stochastic

t
ZJ'\(I'J)EE WUXJ( ) where Zj wj =1
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic

a graph is aperiodic if the maximum common divisor of the length of its cycles is 1
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic

a graph is aperiodic if the maximum common divisor of the length of its cycles is 1

e

our graph from before:
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic
a graph is aperiodic if the maximum common divisor of the length of its cycles is 1

our graph from before:
0 0.200

‘/70.200

0.200
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic
a graph is aperiodic if the maximum common divisor of the length of its cycles is 1

our graph from before:

0.200 0
-«
0 T ‘/VO
0.200
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic
a graph is aperiodic if the maximum common divisor of the length of its cycles is 1

our graph from before:
0 0.200

‘/70.200

0.200
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic

it is easy to fix oscillations: a loop will do
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic
it is easy to fix oscillations: a loop will do

0 0
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the properties of the DeGroot model

convergence

lemma
let G be strongly connected; then the DeGroot process converges if and only if

G is aperiodic

it is easy to fix oscillations: a loop will do

0.182 0.182
«—>
— ‘/VO.182
0.182
0.182
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the properties of the DeGroot model

convergence

let G be convergent; what is the consensus value? [Golub and Jackson, 2010]
suppose there is a vector v of agent influence, i.e.,

(Iim th(0)> =v'x for all j

t—o0 J

since lim_oo Wix(®) = lim,_,o, WH(Wx(©),
then v Wx(® = v7x() and so v W = vT (under mild assumptions)
Tx(0)

in other words, the consensus opinion is v )

where v is a left-eigenvector of W with eigenvalue 1

27



the Friedkin-Johnsen model

general model of opinion formation
(1) = x(1)g(1)
> (D) — (O Wz(t) 4 g(t) X (Dg(t)

common setting:
> () — WD) 4 g
but now ||W| <1

thus, node / updates its expressed opinion by

t
(t+1) S+ 2 (j)eE Wffzj( :

Z;
L4225 (1 j)eE Wi

[Friedkin and Johnsen, 1990]

s stays fixed: innate opinions

z changes: expressed opinion

28



the Friedkin-Johnsen model

0.1 0.5

0.1

0.4
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the Friedkin-Johnsen model

0.1 0.5

0 a

01 0.4
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the Friedkin-Johnsen model

0.1 0.5
% 0.289
0.451
7 317 o4l
} 0562

01 0.4

1
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the Friedkin-Johnsen model

what does this variant of FJ converge to? [Friedkin and Johnsen, 1990]
recall

» Z(t""l) — Wz(t) +s
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the Friedkin-Johnsen model

what does this variant of FJ converge to?
recall

> z(t+) — wz(t) 4+
so

| g Z(l) = WZ(O) +s

[Friedkin and Johnsen, 1990]
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the Friedkin-Johnsen model

what does this variant of FJ converge to? [Friedkin and Johnsen, 1990]
recall

> 2(tH) = Wzt 4 g
so

> z() = Wz 4+
> 2z = Wz 45 = W(WzO +5)+s=W?20 + Ws+s= W20 4 (W +1)s

34



the Friedkin-Johnsen model

what does this variant of FJ converge to? [Friedkin and Johnsen, 1990]
recall

> 2(tH) = Wzt 4 g
so

> z() = Wz 4+
> 2z = Wz 45 = W(WzO +5)+s=W?20 + Ws+s= W20 4 (W +1)s
> 203 = W3z20) 4 (W2 + W + )s
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the Friedkin-Johnsen model

what does this variant of FJ converge to? [Friedkin and Johnsen, 1990]
recall

> 2(tH) = Wzt 4 g
so

| 2 Z(l) — WZ(O) +s
> 2z = Wz 45 = W(WzO +5)+s=W?20 + Ws+s= W20 4 (W +1)s
> 203 = W3z20) 4 (W2 + W + )s

therefore,

20D = Wiz (WL W2 W2 W+ D)s

since |[W| <1, 2t ZX (1 —w) s
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the Friedkin-Johnsen model

0.1 05



the Friedkin-Johnsen model

0.1 05

01 0.4

0.1

0.1

\0.2

;

/0.6\

05

¢ 0.8

0.4

|

1

0.4
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the Friedkin-Johnsen model

0.1 05
V\ 289
0.451
0 317 0. 48\4
¢ 0.562
0.4

0.1

0.1

0.1

\ 289

i

0 317

05

0.451

/

‘ 0.562

0. 48\4

0.4
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other opinion formation models

40



the bounded-confidence model

[Deffuant et al., 2000, Krause, 2000]

» individuals only interact and update their opinions if the difference between their

existing opinions is smaller than a threshold
» this threshold models “openness to discussion”

> larger ¢ produce consensus, while smaller ¢ produce polarized opinions
0.25 0.4

» the model can be thought as a form
of selective exposure /
» result: for certain values of ¢
the bounded-confidence model can lead —

0.3

to polarization
0.65
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the bounded-confidence model

[Deffuant et al., 2000, Krause, 2000]

» individuals only interact and update their opinions if the difference between their

existing opinions is smaller than a threshold
» this threshold models “openness to discussion”

» larger ¢ produce consensus, while smaller ¢ produce polarized opinions

0.317 0.317
» the model can be thought as a form
of selective exposure
» result: for certain values of €
the bounded-confidence model can lead
to polarization 0.317
0.65
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the bounded-confidence model

» when does this model reach consensus? [Krause, 2000]
» define /(i,x) = {j : |x; — xj| <€}

» sufficient cond. for consensus: /(i, x(t)) N /(j, x(t)) # 0 for all i,;, all t > to for some ty

0.25 0.4 0.25 0.4
)\< )\<
0.3 0.3
0.65 c=0.21 0.6
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the bounded-confidence model

» when does this model reach consensus? [Krause, 2000]
» define /(i,x) = {j : |x; — xj| <€}

» sufficient cond. for consensus: /(i, x(t)) N /(j, x(t)) # 0 for all i,;, all t > to for some ty

0.317 0.317 0.362 0.362
0.317 0.362
0.65 c=0.21 0.362
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the bounded-confidence model — simulation results
[Hegselmann et al., 2002]

€=0.3

15P

45



the biased-assimilation model

[Lord et al., 1979]

biased assimilation:

people who hold strong opinions on complex social issues are likely to examine relevant empirical
evidence in a biased manner. they are apt to accept “confirming” evidence at face value while
subjecting “dis-confirming” evidence to critical evaluation, and as a result to draw undue support for
their initial positions from mixed or random empirical findings.

46



the biased-assimilation model

[Dandekar et al., 2013]

> modify degroot’'s model to explicitly incorporate biased assimilation

v

homophily not enough for polarization

» update opinion x; € [0, 1] of node i after interacting with neighbors

B
WiiXj + X; S

Xj < 3 -
wii +x; si + (di — x;)P (1 — s7)

where, s; is the average opinion of the neighbors of /, d; is the weighted degree of /,

and [ is a bias parameter
» model becomes equivalent to the degroot model for 5 =0

» result: for § > 1, the biased-assimilation model is polarizing

47



the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS

X <

x = 0.100 s=05
Emm—

w=0,3=0.1

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS

X <

x = 0.500 s =05
Emm—

w=0,3=0.1

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS
X <

x = 0.500 s =05

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS
X <

x = 0.500 s =05
Emm—

w=0,3=0.1

x = 0.500 s =05
Eamm—

w=20,0=0.9

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS
X <

x = 0.500 s =05
Emm—

w=0,3=0.1

x = 0.500 s =05
Eamm—

w=20,0=0.9
x = 0.49 s=05

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS
X <

x = 0.500 s =05
Emm—

w=0,3=0.1

x = 0.500 s =05
Eamm—

w=20,0=0.9
x = 0.000 s=0.5

w+ xPs+ (1 —x)P(1—s)
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the biased-assimilation model
a single agent in a fixed environment:

s wx + xPs
w+ xPs+ (1 —x)P(1—s)
— s=05
x =000 x=0900 =01
—
—
w=0,3=0.1 w=0,5=2

x = 0.500 s =05
Eamm—

w=20,0=0.9
x = 0.000 s=0.5
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the biased-assimilation model
a single agent in a fixed environment:

s wx + xPs
w+ xPs+ (1 —x)P(1—s)
— s=05
x =000 x=0900 =01
—
—
w=0,3=0.1 w=0,5=2

x = 0.500 s =05
Eamm—

w=20,0=0.9
x = 0.000 s=0.5
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the biased-assimilation model
a single agent in a fixed environment:

s wx + xPs
w+ xPs+ (1 —x)P(1—s)
_ s=0.>5
x =000 x=0900 =01
—

—
w=0,6=01 =0,0=2
x=0500  S=05 x=09o1  s=04

—
w=0,3=0.9 w=0,8=2

x = 0.000 s=0.5
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the biased-assimilation model
a single agent in a fixed environment:

WX—I—XBS

— .
T W Bs+ (1-x)P(1—5s)

x = 0.500 s =05

x = 0.900 s=0.1

—>
—>
w=0,=0.1 w=0,5=2
x—0500 $5=05 x=1000  5=01
—>
w=0,3=0.9 w=0,8=2

x = 0.000 s=0.5
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the biased-assimilation model
a single agent in a fixed environment:

s WX—I—XBS
w+ xPs+ (1 —x)P(1—s)
_ s=0.5
x =000 x=0900 =01
—>
—>
w=0,8=0.1 w042
x—0500 $5=05 x=1000  5=01
—>
w=0,3=0.9 w=0,8=2
x=0000 S=05 x=089 =04
—>
w=0,8=5 w=0,5=2

58



the biased-assimilation model
a single agent in a fixed environment:

WX+xﬁs

H .
x W+X55+(1—X)8(1_5)

x = 0.500 s=05

x = 0.900 s=0.1

—
—
W:O7/8:0.1 W:O’6:2

x = 0.500 s=0.5 x = 1.000 s=01
Y S
W:Oaﬂzo.g W:O7ﬁ:2

x = 0.000 s=05 x = 0.000 s=0.1
Y S
w=0,8=5 w=200=2
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beyond neighbour averaging

[Hazla et al., 2019]

population of agents with unit-length opinions in R9.

intervention v on agent with opinion u:

u+ (u,v)v
[lu+ (u, v)v|

interesting quirk: v and —v have the same effect.
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beyond neighbour averaging

[Hazla et al., 2019]

example: 500 agents u; sampled uniformly from the sphere u; 4 = 0 in R*, with [|u;|| =1

that is, ugl) = (uj1, uio, ui 3, 0)

intervention:

v=(3,0,0,), where az%,ﬁzx/l—oﬂ

1 1
ul? + <U(- )7V>V = ((1+ B)uj1, ui2, ui3, afuj)
opinion on new product is represented by 4th coordinate, which is initially O for all agents
agents form opinion with respect to 4th coordinate

in addition, agents get polarized with respect to the 3 first coordinates
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beyond neighbour averaging

[Hazla et al., 2019]

-1 -0.75 -05 -025 0 025 05 075 1
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beyond neighbour averaging

[Hazla et al., 2019]

-1 -0.75 -05 -025 0 025 05 075 1

63



beyond neighbour averaging

[Hazla et al., 2019]

-1 -0.75 -05 -025 0 025 05 075 1
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recap

» the DeGroot and Friedkin—Johnsen (FJ) models
— convergence

— consensus

» other opinion formation models
— bounded confidence (e-threshold for updates)
— biased assimilation (DeGroot with reweighted updates, favoring similar opinions)

— geometric model (opinions in R")
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properties of the Friedkin—Johnsen (FJ) model

66



Friedkin—Johnsen (FJ) model: brief reminder

» network given by a graph G = (V, E, w)
P each user i has an innate opinion s; and an expressed opinion z;

» model proceeds in rounds, with the following updating rule for expressed opinions:

t
(1) _ St 2 (ij)eE Wif'zj( )

' B 1+Zj|(i,j)€E Wij

P equilibrium expressed opinions are given by z* = lim;_ z(t) = (I+L1)"1s

where L is a Laplacian matrix associated with the social network

67



property of the expressed opinions
» other justifications for the update rule of expressed opinions?

()
(t+1) _ Si T 2| (ij)eE Wi

' B 1+Zj|(i,j)eE Wij
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property of the expressed opinions
» other justifications for the update rule of expressed opinions?

(1)
ey _ 5 2271 (1j)<E Wii%
' L+ 251 j)ee Wi

» for user /, consider the cost function

— first term corresponds to conflict between internal and expressed opinion

— second term corresponds to /'s conflict with their neighbors
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property of the expressed opinions

» other justifications for the update rule of expressed opinions?

(1)
ey _ 5 2271 (1j)<E Wii%
' L+ 251 j)ee Wi

» for user /, consider the cost function

— first term corresponds to conflict between internal and expressed opinion

— second term corresponds to /'s conflict with their neighbors

» if user / sets z,-(tﬂ)
(t+1)

the choice of z;

to minimize this cost function,

is the same as in the update rule above
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the price of anarchy in opinion formation

» how bad is forming your own opinion? [Bindel et al., 2015]
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the price of anarchy in opinion formation
» how bad is forming your own opinion? [Bindel et al., 2015]
» in the FJ model, each node is independently minimizing their own cost
a(z)=(z—-sP+ > wiz—z)
Jl1(iJ)EE

this results to a Nash equilibrium
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the price of anarchy in opinion formation
» how bad is forming your own opinion? [Bindel et al., 2015]
» in the FJ model, each node is independently minimizing their own cost
(@) =(z—sy+ >, wiz—z)
Jl(ij)eE
this results to a Nash equilibrium

P> what instead if we ask to optimize the social cost

c(y) = Z ci(yi)

(%
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the price of anarchy in opinion formation
» how bad is forming your own opinion? [Bindel et al., 2015]
» in the FJ model, each node is independently minimizing their own cost
(@) =(z—sy+ >, wiz—z)
Jl(ij)eE
this results to a Nash equilibrium

P> what instead if we ask to optimize the social cost

c(y) = Z ci(yi)
(%
» theorem ([Bindel et al., 2015])

price of anarchy (ratio of costs) is at most 9/8 for any undirected graph G
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the price of anarchy in opinion formation
» how bad is forming your own opinion? [Bindel et al., 2015]
» in the FJ model, each node is independently minimizing their own cost
(@) =(z—sy+ >, wiz—z)
Jl(ij)eE
this results to a Nash equilibrium

P> what instead if we ask to optimize the social cost
c(y) = Z ci(yi)
iev
» theorem ([Bindel et al., 2015])

price of anarchy (ratio of costs) is at most 9/8 for any undirected graph G

= this result is for undirected networks;

for directed networks the price of anarchy can be much higher
75



the price of anarchy in opinion formation — example  [Bindel et al., 2015]

Nash cost =3 % 2% (1/4)*> =3/8 Opt cost =2 ((1/3)%+(1/6)) +2x(1/6)>=1/3

. Nashcost 3/8 9
Price of anarchy = ——— = — = =
Optcost 1/3 8
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quantities of interest in the Friedkin-Johnsen model

P given the equilibrium expressed opinions z* and innate opinions s,

we can study more complex phenomena in the network

» we can quantify polarization, disagreement, etc.

7



quantities of interest in the Friedkin-Johnsen model

sum of opinions S=>icvZ

sum of opinions: sums all user opinions — relevant for marketing campaigns
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quantities of interest in the Friedkin-Johnsen model

. . _ E3

sum of opinions S=> vz

polarization index P = Ziev(zi* _ 2)2
polarization: the variance of the opinions, where z = ‘—1| > icy Zi is average opinion
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=>icvZ
polarization index P =z —2)?
controversy index C=Ycv(z)?

controversy: measures extremity of opinions, can also be viewed as radicalization
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=>icvZ
polarization index P =z —2)?
controversy index C=Ycv(z)?

if z* is mean-centered, i.e., Zz =) . z" = 0, controversy C and polarization P are identical
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quantities of interest in the Friedkin-Johnsen model

sum of opinions
polarization index
controversy index

internal-conflict index

S = Zievzfs
P=Yev(z -2
C= ZIEV(Z;k)z

T= Ziev(zi* - 5i)2

internal conflict: measures tension between users’ innate and expressed opinions
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=> vz

polarization index P = Ziev(zi* — 2)2
controversy index C=Ycv(z)?
internal-conflict index =z —si)?
disagreement index D= Z(i,j)eE wij(zF — Zf)z

disagreement:

measures the tension between neighbors in the network;
sometimes called external conflict
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=> vz

polarization index P = ZIEV(Z/* _ 2)2
controversy index C= Ziev(sz)z
internal-conflict index =3z —si)?
disagreement index D= E(i,j)eE wii(zF — zf)z
polarization-disagreement index Ipg=P~+D

polarization-disagreement: combination of polarization and disagreement, useful for analysis
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=>icvZ
polarization index P =z —2)?
controversy index C=Ycv(z)?
internal-conflict index Z=>ev(zr —si)?
disagreement index D=3 yee Wiz —z)?
polarization-disagreement index Ipg=P~+D
conservation law of conflict: Z+ 2D + C = sTs [Chen et al., 2018]
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=> vz
polarization index P =3 vz —2)?
controversy index C=Ycv(z)?

internal-conflict index 7 =3, (z/ — s)?

disagreement index D =" (2" — z)?

using z* = (/ + L)~'s, we can express these measures as quadratic forms
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=Y vz =17z =17(/ + L)~ !s
polarization index P =z —2)? =sT(/+ L)1/ = U1 + L) 1s
controversy index C=Ycv(z)? =sT(/+ L) %s

internal-conflict index 7 =Y, (z/ — s;)? =sT(/+ L) 1L2(1+ L) 1s

disagreement index D =37 (27 —z/)? =sT(/+ L) 'L/ +L)"s

where 1 is the all-ones vectors, / is the identity matrix, L is the graph Laplacian,

. . .. = _ i *
s is the vector of innate opinions, and Z = [y Yicv Z
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quantities of interest in the Friedkin-Johnsen model

sum of opinions S=Y vz =17z =17(/ + L)~ !s
polarization index P =z —2)? =sT(/+ L)1/ = U1 + L) 1s
controversy index C=Ycv(z)? =sT(/+ L) %s

internal-conflict index 7 =Y, (z/ — s;)? =sT(/+ L) 1L2(1+ L) 1s

disagreement index D =37 (27 —z/)? =sT(/+ L) 'L/ +L)"s

where 1 is the all-ones vectors, / is the identity matrix, L is the graph Laplacian,
s is the vector of innate opinions, and Z = ‘%' Yoicv

all these matrices are positive semidefinite
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algorithmic interventions for moderating opinions
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interventions

» examples for interventions: a timeline algorithm changes the network structure, an
adversary makes people change their innate opinions, ...

90



interventions

» examples for interventions: a timeline algorithm changes the network structure, an
adversary makes people change their innate opinions, ...

» formal way to study this: define an optimization problem, where:
— the objective function encodes the desired goal

— the constraints encode the “power” of the intervention
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interventions

» examples for interventions: a timeline algorithm changes the network structure, an
adversary makes people change their innate opinions, ...

» formal way to study this: define an optimization problem, where:
— the objective function encodes the desired goal

— the constraints encode the “power” of the intervention

> example: a social network provider wants to minimize polarization and disagreement
by changing the network structure [Musco et al., 2018, Zhu et al., 2021]

> example: an adversary wants to maximize the disagreement and has the power to
change k user opinions [Chen and Racz, 2021, Gaitonde et al., 2020]
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interventions: literature overview

> what to optimize

— minimize price of anarchy

— maximize sum of opinions

increase disagreement

» what properties to modify
— innate or expressed opinions
— graph weights

— graph structure

[Bindel et al., 2015]

reduce polarization and disagreement [Matakos et al., 2017, Musco et al., 2018|

[Gionis et al., 2013, Tu and Neumann, 2022]
[Chen and Racz, 2021, Gaitonde et al., 2020]

[Gionis et al., 2013, Matakos et al., 2017]
[Abebe et al., 2018]

[Bindel et al., 2015, Musco et al., 2018]
[Zhu et al., 2021, Racz and Rigobon, 2022]
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opinion maximization in social networks

» select k nodes to set their expressed opinion to z = 1 so as [Gionis et al., 2013]

to maximize the sum of opinions

S:Zz,-*

ieVv

— motivation: lobbying for a cause or campaign
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opinion maximization in social networks

» select k nodes to set their expressed opinion to z = 1 so as

to maximize the sum of opinions

S = Z z
iev
— motivation: lobbying for a cause or campaign

» GREEDY gives (1 — 1/e) approximation
» objective function is monotone and submodular
» technical observation: consider an absorbing random walk,

with absorbing states the nodes that correspond to the innate

opinions; then z7 is can be interpreted as the expected value

at absorption, when starting a random walk in node i

[Gionis et al., 2013]
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minimizing polarization and disagreement in social networks

» focus on minimizing the following indices: [Musco et al., 2018]

— polarization: P =", (z — 2)?

— disagreement: D = 37, g wy(z) — z)?

— polarization-disagreement: 7,4, = P + D
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minimizing polarization and disagreement in social networks

» focus on minimizing the following indices: [Musco et al., 2018]
— polarization: P =", (z — 2)?

wi(zf — z})?

— disagreement: D =} {

ij)eEE
— polarization-disagreement: 7,4, = P + D

P constraint: we can decrease the innate opinions within a given budget and /¢;-distances,
s—¢|[t <Bands <s

ie.,

P result: optimizing these indices is convex and can be solved in polynomial time
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minimizing polarization and disagreement in social networks

» focus on minimizing the following indices: [Musco et al., 2018]
— polarization: P =", (z — 2)?
. o 2
— disagreement: D =}, - p wij(z — z])
— polarization-disagreement: 7,4, = P + D

P constraint: we can decrease the innate opinions within a given budget and /¢;-distances,

ie, [s—s§|f <Bands' <s

P result: optimizing these indices is convex and can be solved in polynomial time

> what if we can change the graph topology with a fixed number of edges?
— minimizing 7,4 is convex
— thus, it can be solved with standard-convex optimization methods

— when one of the terms P or C is weighted differently, problem is not convex
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analyzing the impact of filter bubbles on social network polarization

» study the interplay between users and a network administrator [Chitra and Musco, 2020]

» the dynamics proceed in iterations — in each iteration
— the users adjust their expressed opinions according to the FJ model
— the network administrator slightly adjusts the network to minimize

disagreement D until convergence

P intuition: network administrators want less disagreement, as this implies “happier” users
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analyzing the impact of filter bubbles on social network polarization

» study the interplay between users and a network administrator [Chitra and Musco, 2020]

» the dynamics proceed in iterations — in each iteration
— the users adjust their expressed opinions according to the FJ model
— the network administrator slightly adjusts the network to minimize

disagreement D until convergence
P intuition: network administrators want less disagreement, as this implies “happier” users
P it is shown experimentally that polarization increases

P authors suggest this explains why recommender systems increase polarization and

introduce filter bubbles
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analyzing the impact of filter bubbles on social network polarization

Polarization with Network Admin (Reddit) Disagreement with Network Admin (Reddit) Polarization with Network Admin (Twitter) Disagreement with Network Admin (Twitter)

02 04 02 0 06

2 6 s 06 0s 0
€, constraint on changes to network by network administrator ¢, constraint on changes 10 network by network administrator &, constraint on changes to network by network administrator &, constraint on changes to network by network administrator

(a) Change in polarization, Red-  (b) Change in disagreement,Red-  (c) Change in polarization, Twit- (d) Change in disagreement,
dit network dit network ter network Twitter network

[Chitra and Musco, 2020]
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conclusion, limitations, reflections
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summary

P opinion formation in social networks is an active area of research

— work both in mathematical modeling and computational social science

> we reviewed common opinion-formation models
— DeGroot and Friedkin-Johnsen models, other opinion formation models

— discussed properties of the models and measures of interest

» discussed how polarization may emerge from these models

— e.g., emergence of echo chambers
> reviewed interventions for moderating opinions

» no discussion on misinformation and disinformation
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challenges, limitations

> validation of the mathematical models is very challenging
— models are often too simplistic, e.g., opinions in [0,1], opinions are updated by

a simple weighted-averaging operation

— lack of complete and unbiased data
often access data to a single social-media platform, e.g., twitter

data is biased: representativeness, US politics, impact of bots

— models involve parameters that are difficult to estimate in practice

> models use mostly network structure, and ignore language analysis

— this makes them language-independent, but incorporating language can help greatly
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ethical issues on interventions

a common intervention action is to aim to reduce polarization, or increase diversity,

by making judicious recommendations

Q: is it ethical to tamper with users' feed?

Q: can such methods facilitate manipulation?

A: Ul, user control, and transparency needs to be addressed separately

A: content prioritization and recommendation algorithms are already in place, and they

are mainly aiming at increasing engangemnnt and monetization

are not transparent

are not offering control to the users

do not have built-in ethical specifications
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