
Notes on Spectral Methods for Community Detection on Graphs

Aris Anagnostopoulos

1 Some websites

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

https://juanitorduz.github.io/spectral_clustering/

2 Eigenvalues and Eigenvectors

We start with a quick reminder of eigenvectors and eigenvalues.

Definition 1. Given a square matrix A ∈ Rn×n, we call the pair (λ,v), with λ ∈ C and v ∈ Rn\{0}
an (eigenvalue, (right) eigenvector) pair, if the following holds:

A · v = λv.

To compute them, in principle we can write the definition as

(A− λI)v = 0,

which as an equation of v, it has n unknowns and n equations.
For this system of equations to have solutions other than v = 0, the determinant of A − λI

must equal 0; this defines a polynomial in λ of degree n, which means that there are n eigenvalues
(not neessarily distinct, and possibly complex numbers).

As an example, let

A =

[
3 4
1 6

]
Then we can define the matrix

A =

[
3− λ 4
1 6− λ

]
,

and we have
det(A− λI) = (3− λ)(6− λ)− 4,

which is a second-degree polynomial in λ, so the matrix A has two eigenvalues.
In general the eigenvalues of a matrix can be complex number and may not all be distinct.

However, we have the following important theorem from linear algebra, which we mention without
proof:

Theorem 2. If A is a symmetric matrix, then all its eigenvalues are real numbers.

1

https://towardsdatascience.com/spectral-clustering-aba2640c0d5b
https://juanitorduz.github.io/spectral_clustering/

For an (eigenvalue, eigenvector) pair (λ,v) of A, we have that

v⊺Av

v⊺v
=

v⊺λv

v⊺v
=

λv⊺v

v⊺v
= λ. (1)

If matrix A is symmetric, then we can choose n (not necessarily distinct) eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn eigenvalues, and n corresponding orthonormal eigenvectors v1, . . . ,vn.

Recall that we call the set of n vectors v1, . . . ,vn orthonormal if we have that

vi
⊺vj =

{
1, if i = j,

0, otherwise.

Note that this allows to define them as follows. For the first one, we can write

λ1 = min
x∈Rn\{0}

x⊺Ax

x⊺x
v1 = argmin

x∈Rn\{0}

x⊺Ax

x⊺x
(2)

for the second one,

λ2 = min
x∈Rn\{0}

x⊥v1

x⊺Ax

x⊺x
v2 = argmin

x∈Rn\{0}
x⊥v1

x⊺Ax

x⊺x

and for general k

λk = min
x∈Rn\{0}

x⊥v1, ...,x⊥vk−1

x⊺Ax

x⊺x
vk = argmin

x∈Rn\{0}
x⊥v1, ...,x⊥vk−1

x⊺Ax

x⊺x
.

Incidentally, assume that λ1 = λ2, meaning that there are two orthogonal eigenvectors, v1 and
v2 corresponding to the same eigenvalue. Then note that every linear combination of v1 and v2 is
also an eigenvector corresponding to λ1 = λ2:

A(c1v1 + c2v2) = c1Av1 + c2Av2 = c1λ1v1 + c2λ2v2 = c1λ1v1 + c2λ1v2 = λ1(c1v1 + c2v2).

But typically, we will choose v1 and v2 to be unit vectors, orthogonal to each other.

3 The Adjacency and the Laplacian Matrices

We are given a simple undirected graph G = (V,E). Many of the things of these notes hold also
for weighted graphs, but for simplicity we assume an unweighted one. Recall that its adjacency
matrix A ∈ {0, 1}n×n is the matrix that indicates the edges:

Aij =

{
1, if (i, j) ∈ E

0, otherwise.
.

The adjacency matrix of a graph is very important as it captures the entire graph information.
There exists a transformation of the adjacency matrix, the Laplacian matrix, which for some
problems is easier to work with. Let’s see it now.

2

First, we define [n] = {1, 2, . . . , n}, and we let the set of nodes be V = [n]. For each node
i ∈ [n], let di be the degree of node i.

Then we can define the diagonal matrix D, as:

Dij =

{
di, if i = j

0, otherwise.
.

The matrix D is invertible if and only if di > 0 for every i ∈ [n]. Then we have

D−1
ij =

{
1
di
, if i = j

0, otherwise.
.

We define D−1 even if there are nodes with degree 0, with the convention that D−1
ii = 0 if

di = 0.
We then define D−1/2 to be the matrix

D
−1/2
ij =

{
1√
di
, if i = j and di > 0

0, otherwise.
.

We define the Laplacian matrix of graph G to be the matrix

L = D −A.

Then note that we have that

Lij =


di, if i = j

−1, if (i, j) ∈ E

0, otherwise.

.

We will see that the Laplacian matrix provides us a lot of information about the connectivity of G,
and it can be used to discover communities!

It is often useful to define the normalized Laplacian matrix L. This is defined as the matrix:

Lij =


1, if i = j

− 1√
didj

, if (i, j) ∈ E

0, otherwise.

.

Then one can check that it can be written as

L = I−D−1/2AD−1/2.

Often in these notes we will work with d-regular graphs for simplicity. A graph is d-regular if
every node has degree d. Then we have that

D =
1

d
I,

and the normalized Laplacian can be written as

L = I− 1

d
A.

We will now prove a very useful property of the Laplacian matrix.

3

Theorem 3. Consider a graph G = (V,E) and let L be its Laplacian matrix. Let x = [x1, . . . , xn]
⊺

be any real-valued matrix. Then we have that

x⊺Lx =
∑

(i,j)∈E

(xi − xj)
2.

Proof. We have
x⊺Lx = x⊺(D −A)x = x⊺Dx− x⊺Ax.

We will look at each of these two terms separately.

x⊺Dx =
[
x1, . . . , xi, . . . , xn

]
·


d1

. . . 0
di

0
. . .

dn

 ·


x1
...
xi
...
xn



=
[
d1x1, . . . , dixi, . . . , dnxn

]
·


x1
...
xi
...
xn

 =
n∑

i=1

dix
2
i

(3)

Let A(i) be the ith row of A. Also define xi = [0, . . . , 0, xi, 0, . . . , xn]
⊺, such that x =

∑n
i=1 xi.

We then have:

xi
⊺Ax =

[
0, . . . , xi, . . . , 0

]
·


A(1)
...

A(i)
...

A(n)

 ·


x1
...
xi
...
xn



=
[

xiA(i)

]
·


x1
...
xi
...
xn

 =
∑

j∈N(i)

xixj ,

where N(i) is the neighborhood of i. This is because the jth element of vector xiA(i) equals xi if
j ∈ N(i) and 0 otherwise.

x⊺Ax =

(
n∑

i=1

xi
⊺

)
Ax =

n∑
i=1

(xi
⊺Ax) =

n∑
i=1

∑
j∈N(i)

xixj = 2
∑

(i,j)∈E

xixj , (4)

4

because in the second-to-last summation, each pair (i, j) is counted twice if (i, j) ∈ E and zero
times if (i, j) ̸∈ E.

Combining Equations (3) and (4), we obtain

x⊺Lx =

n∑
i=1

dix
2
i − 2

∑
(i,j)∈E

xixj . (5)

On the other hand, we have∑
(i,j)∈E

(xi − xj)
2 =

∑
(i,j)∈E

(
x2i + x2j − 2xixj

)
=

∑
(i,j)∈E

(
x2i + x2j

)
− 2

∑
(i,j)∈E

xixj .

Note that in the left summation, each edge is counted once. This means that for each edge (i, j) ∈ E
each endpoint appears once (either as i or as j). Therefore, the number of times that a node is
represented in the summation (either as xi or as xj) is equal to the set of adjacent edges, that is,
its degree. Therefore we obtain

∑
(i,j)∈E

(xi − xj)
2 =

n∑
i=1

dix
2
i − 2

∑
(i,j)∈E

xixj . (6)

Combining Equations (5) and (6), completes the proof of the theorem.

4 Graph Cuts

A graph cut (C1, C2) is simply a partitioning of the nodes in two sets C1, C2. That is: C1 ∩C2 = ∅
and C1 ∪ C2 = V .

We define the size of the cut (C1, C2) to be the number of edges between the two sets C1 and
C2. Let E(C1, C2) be the set of edges between C1 and C2:

E(C1, C2) = E ∩ (C1 × C2) = {(i, j) ∈ E : i ∈ C1, j ∈ C2}.

Then the size of the cut (C1, C2) is |E(C1, C2)|.
Intuitively, if we want to split a graph into communities, we want to partition it where the cut

size is small. Thus, it is very natural to define the problem of finding a minimum cut:

Definition 4 (MinCut). The mincut problem is the problem of finding a cut (C1, C2) that mini-
mizes |E(C1, C2)|.

Finding a minimum cut can be done in polynomial time. There exist algorithms that are based
on the concept of flow. There also exists a very elegant randomized algorithm (Karger’s algorithm).

Unfortuntately, this definition is not very useful for finding communities (why?). Therefore, we
next consider the problem of sparset cut.

5

4.1 The Sparsest-Cut Problem

The problem with MinCut is that it does not take into account the number of notdes in each
partition. Very often, C1 may be just one node! Therefore, there exist various other ways to find
cuts, which take into account the number of the nodes in C1 and C2, and try, not only to induce
cuts of small size, but also cuts that partition the edges into large groups. Here we will consider
one of them, the sparsest cut.

Definition 5 (SparsestCut). The sparset cut is a cut (C1, C2) that minimizes

min
C1⊂V

C2=V \C1

|E(C1, C2)|
min{|C1| , |C2|}

.

Note that the denominator in the objective function favors cuts in which both C1 and C2 are
as large as possible, so the sparsest-cut problem tries to partition the graph into two, in a way that
the edges between the two parts are as small as possible, and at the same time each of the two
parts is as large as possible.

Unfortunately, the problem of computing the sparsest cut is NP-hard. Furthermore, no constant
approximation is known. However, we will see how it is related to the graph structure, and how we
can come up with an approximation algorithm in which the approximation ratio depends on the
graph structure.

To do this we will provide an algebraic formulation of the problem, that is, we will express it
in terms of matrices. Let x ∈ {0, 1}n be an indicator vector for set C1, that is,

xi =

{
1, if i ∈ C1

0, otherwise
.

Also let C2 = V \ C1. Then first note that we have

x⊺x =
n∑

i=1

x2i = |C1| (7)

Also, by Equation (3) we have that

x⊺Dx =
∑
i∈C1

di = 2 |E ∩ (C1, C1)|+ |E ∩ (C1 × C2)| , (8)

and by Equation (4) we have that

x⊺Ax = 2 |E ∩ (C1 × C1)| (9)

Combining Equations (8) and (9), we obtain that

x⊺Lx = |E ∩ (C1 × C2)| = |E(C1, V \ C1)| , (10)

that is, the size of the cut (C1, C2).
Now, note that the smallest of the two sets C1 and C2 has size at most n/2 and the largest at

least n/2, so, using Equations (7) and (10), we can write

min
C1⊂V

C2=V \C1

|E(C1, C2)|
min{|C1| , |C2|}

= min
C1⊂V \∅
|C1|≤n

2

|E(C1, V \ C1)|
|C1|

= min
x∈{0,1}n\{0}

∥x∥≤n
2

x⊺Lx

x⊺x
.

Note the similarity between this formulation of the sparsest cut, and the expression in Equa-
tion (2). It turns out that this is very useful and we will take advantage of it.

6

4.2 Graph Conductance

A concept related to sparsity is the conductance.

Definition 6. Given a graph G = (V,E), and a partition (C1, V \ C1), we define the conductance
ϕ(C1) to be

ϕ(C1) =
|E(C1, C2)|

min
{∑

i∈C1
di,
∑

i∈C2
di
} .

The conductance of a graph ϕG is defined as the minimum conductance among all its partitions.

Definition 7. Given a graph G = (V,E), its conductance ϕG is

ϕG = min
C1⊂V

ϕ(C1) = min
C1⊂V

C2=V \C1

|E(C1, C2)|
min

{∑
i∈C1

di,
∑

i∈C2
di
} .

The conductance of a graph tells us a lot about its connectivity. For example, it quantifies how
much time it will require for a random walk on the graph to converge to a stationary distribution.

Note that if G is d-regular, we have that

ϕG = min
C1⊂V

C2=V \C1

|E(C1, C2)|
d ·min{|C1| , |C2|}

.

Therefore, in regular graphs, minimizing the conductance, is equivalent to minimizing the spars-
est cut!

4.3 Eigenvalues of the Laplacian

We now start by showing some of the properties of G that its eigenvalues reveal.

Theorem 8. Let G be an undirected d-regular graph, with normalized Laplacian L. Let λ1 ≤ λ2 ≤
· · · ≤ λn be the eigenvalues of L. Then the following are true:

1. λ1 = 0

2. λk = 0 if and only if G has at least k connected components.

Proof. We first prove part 1. By Equation (2) we have that

λ1 = min
x∈Rn\{0}

x⊺Lx
x⊺x

.

By Theorem 3, we obtain that

λ1 = min
x∈Rn\{0}

∑
(i,j)∈E(xi − xj)

2

x⊺x
.

This equation, immediately gives that λ1 ≥ 0. Next, notice that the ratio∑
(i,j)∈E(xi − xj)

2

x⊺x
.

7

is equal to 0 for x = 1. This proves that λ1 = 0.
For the second part, assume that G has exactly k components. Then we will prove that λk = 0

and that λk+1 > 0, which proves the claim.
Let C1, . . . , Ck be the k components of G, that is, V = C1 ∪ · · · ∪Ck. For ℓ ∈ [k], we define the

k vectors xℓ, defined as

xℓi =

{
1, if i ∈ Cℓ

0, otherwise
.

In other words, xℓ is the indicator vector of component Cℓ.
Note two things. First, the k vectors xℓ are orthogonal to each other. This is because for each

ℓ, r with ℓ ̸= r we have Cℓ ∩ Cr = ∅, so (xℓ)
⊺
xr = 0. Second, for each xℓ, we have that∑

(i,j)∈E(x
ℓ
i − xℓj)

2

(xℓ)
⊺
xℓ

=

∑k
r=1

∑
(i,j)∈E∩(Cr×Cr)

(xℓi − xℓj)
2

(xℓ)
⊺
xℓ

= 0.

The first equality, follows from the fact that C1, . . . , Ck are the connected component of G, and it
just expresses the fact that all the edges E are the edges inside each of the conneted components.
The second inequality follows from the definition of each xℓ: for two nodes i, j inside a particular
component Cr we have xℓi = xℓj(= 0 or 1, based on whether r = ℓ). Therefore we have k mutually

orthogonal vectors xℓ for which the ratio

(x)ℓ
⊺Lxℓ

(x)ℓ
⊺
xℓ

=

∑
(i,j)∈E(x

ℓ
i − xℓj)

2

(xℓ)
⊺
xℓ

= 0,

and, therefore, we have that λ1 = · · · = λk = 0.
Note: In the proof of the first part of this theorem, we set v1 = 1. Here, instead, we set v1

to be the indicator vector of component C1. Note that we can write 1 =
∑k

ℓ=1 x
ℓ. Therefore, the

vector 1 is in the span of the vectors v1, . . . ,vℓ. The eigenvectors are not unique, so we can choose
the ones that are more convenient for us. For the proof of the first part it was convenient to choose
v1 = 1, instead for the second part it was convenient to take another choice. But one part does
not contradict the other.

To show that λk+1 > 0 we will show that any vector x for which

x⊺Lx
x⊺x

=

∑
(i,j)∈E(xi − xj)

2

x⊺x
= 0

can be written as a linear combination of the k vectors xℓ. We have written the numerator as

k∑
r=1

∑
(i,j)∈E∩(Cr×Cr)

(xℓi − xℓj)
2.

Because each of the terms are nonnegative, for the summation to be zero, it is required to have
xi = xj for each i, j in the same connected component. To see this, assume that this is not the case,
that is, there exists a connected component Cm and two nodes s, t ∈ Cm with xs ̸= xt. Because s
and t are in the same connected component, there exists a path P between them. Then we have
that

k∑
r=1

∑
(i,j)∈E∩(Cr×Cr)

(xℓi − xℓj)
2 ≥

∑
(i,j)∈E∩(Cm×Cm)

(xℓi − xℓj)
2 ≥

∑
(i,j)∈P

(xℓi − xℓj)
2.

8

The first inequality is true because Cm is one of the k components Cr, and the second one is because
all the edges in P belong to Cm. But s and t are the two endpoints of the path P and, because we
have assumed that xs ̸= xt, it means that somewhere in the path there exists an edge (i, j) ∈ P
with xi ̸= xj . For this edge we have that (xi − xj)

2 > 0, which would imply that the entire ratio∑
(i,j)∈E(xi − xj)

2

x⊺x
> 0.

This is a contradiction. Therefore, we have that for each component Cr, and for each i ∈ Cj the
value xi is constant. This means that x can be written as a linear combination of the k vectors xℓ.

Another way to say this, is that if x is orthogonal to all the k vectors xℓ then∑
(i,j)∈E(xi − xj)

2

x⊺x
> 0,

which implies that we have 0 < λk+1 ≤ · · · ≤ λn.
This complete the proof of the theorem.

Let us see what this theorem tells us. It says, in particular, that λ2 = 0 if and only if the graph
is disconnected. Notice, also, that if the graph is disconnected, then we also have ϕG = 0. So, in
this case, we have that ϕG = λ2.

Note that computing the eigenvalues of a matrix is an easy problem (not NP-hard). On the
other hand, we said that computing the conductance ϕG is NP-hard. It would then be nice to be
able to relate more generally ϕG with λ2. Indeed the two quantities are related, and one is an
approximation of the other. This is formalized by Cheeger’s inequality :

Theorem 9 (Cheeger’s inequality). Let G = (V,E) be an undirected graph, with conductance ϕG,
and with normalized Laplacian matrix L, whose second smallest eigenvalue is λ2. Then we have
that:

λ2

2
≤ ϕG ≤

√
2λ2.

The proof of this theorem has two parts, one for each inequality. We will not prove it here.
However we note that the proof of the second inequality is constructive, that is, it provides an
algorithm that allows to find a cut that approximates the conductance ϕG.

1.Function Sweeping(G)
2. Input: G = (V,E): Simple undirected d-regular graph with normalized Laplacian matrix L
3.Output: A cut (C1, C2) of G
4. Compute the second smallest eigenvalue λ2 of L and the corresponding eigenvector

x = v2.
5. Sort the vertices of V in increasing order of xi. Assume that x1 ≤ x2 ≤ · · · ≤ xn.
6. For each i ∈ [n− 1] consider the cut (C1, C2) with C1 = [i] and C2 = V \ C1. Compute

the value

ϕ(C1) =
|E(C1, C2)|

d ·min{|C1| , |C2|}
.

7. From all the n− 1 cuts computed in step 6, return the one that minimizes ϕ(C1).

9

1

2

3

4 8

5 6

7

Figure 1: Example for sparsest cut and Cheeger’s inequality

The proof of Theorem 8 can give us some intuition about why the second eigenvalue allows
us to partition the graph into two. Assume, for simplicity, that G is formed by 5 nodes, and two
connected components: {1, 2, 3} and {4, 5}. By Theorem 8, λ1 = 0, and assume that we obtain
v1 = [1, 1, 1, 1, 1]⊺. Because the graph is disconnected, we also have that λ2 = 0. Furthermore,
by the proof of Theorem 8, we see that in v2, the values corresponding to each node of the same
component are the same. In other words, we will have that v2 = [α, α, α, β, β]⊺ for two distinct
constants α, β. Thus, v2 reveals the structure of the graph and the algorithm will discover the two
components.

This is an extreme case. More generally, if the graph is connected, if there are two dense clusters
connected by a small number of edges, then v2 will not separate the two clusters perfectly, but it
will still be able to assign to the coordinates of v2 nearby values for nodes that belong to the same
cluster and far for nodes that belong to different clusters. Furthermore, from Cheeger’s inequality
we obtrain that λ2 is positive but small. Thus, looking at the components of v2, we can identify
the two communities.

Assume that we want to partition the graph into more than two communities. Then we can
partition the graph into two, and thun recur. Another approach is what we discuss in the next
section.

5 Example

In Figure 1 you can see a 4-regular graph. Verify Cheeger’s inequality and find the sparsest cut
given by algorithm Sweeping.

A = [0, 1, 1, 1, 0, 1, 0, 0; 1, 0, 1, 0, 0, 0, 1, 1; 1, 1, 0, 1, 1, 0, 0, 0; 1,

0, 1, 0, 1, 0, 0, 1; 0, 0, 1, 1, 0, 1,1, 0; 1, 0, 0, 0, 1, 0, 1, 1; 0, 1, 0, 0, 1,

1, 0, 1; 0, 1, 0, 1, 0, 1, 1, 0]

sum(A)

sum(A’)

A-A’

D = eye(8)

L = eye(8) - A/4

sum(L)

eig(L)

[X, Y] = eig(L)

10

X(:,1)

r=X(:,1)

r’ * r

r=X(:,2)

sum(r)

6/16

sqrt(6.4645e-01 * 2)

6.4645e-01 /2

v2=X(:,2)

[out,idx] = sort(v2)

6 Spectral Clustering

Until now we have seen that:

• If the graph has two connected components, then we have that λ1 = λ2 = 0 and that v2 can
be used to discover the two components.

• We can generalize this intuition, and we can use v2 to discover two dense communities, even
if the graph is not disconnected. The smaller the value of λ2, the more distinct the two
communities will be.

But Theorem 8 takes this one step further:

• If the graph has k connected components, then we have that λ1 = · · · = λk = 0 and that
v1, . . .vk can be used to discover the k components.

Thus, one may ask whether in the common case where the graph is not disconnected, vectors
v3, . . . ,vk can provide additional information for finding k communities.

The answer is yes, and there have been various different approaches that use this idea. They
are similar but they differ in some details. Here we present one of this variants, which we call
SpectralClustering.

1.Function SpectralClustering(G, k)
2. Input: G = (V,E): Simple undirected d-regular graph with normalized Laplacian matrix L

and a positive integer k
3.Output: A k-partition (C1, C2, . . . , Ck) of G
4. Compute the k smallest eigenvalues λ1, λ2, . . . , λk of L and the corresponding eigenvectors

v1,v2, . . . ,vk.
5. Define the n× k matrix U whose columns are the vectors vi:

U =
[
v1 v2 . . . vk

]
6. For each i ∈ [n], define the row vector yi ∈ R1×n with yi = [(v1)i, (v2)i, . . . , (vk)i]. In

other words, associate each node i ∈ V with the ith row of U
7. Run k-means on the n points {yi}ni=1, and obtain k clusters Y1, Y2, . . . , Yk
8. for ℓ = 1 to k:
9. Cℓ = {i ∈ [n] : yi ∈ Yℓ}
10. return (C1, . . . , Ck)

11

We can think of the vector yi as the embedding of node i on Rk. We will discuss about node
and graph embeddings more in the future.

There are various variants of this algorithm. For example, because v1 is the constant vector,
we can omit it and instead consider the eigenvectors v2,v3, . . . ,vk+1. Another suggestion is to
normalize the points and thus, after step 6, replace each point yi with

yi

∥yi∥ .

12

	Some websites
	Eigenvalues and Eigenvectors
	The Adjacency and the Laplacian Matrices
	Graph Cuts
	The Sparsest-Cut Problem
	Graph Conductance
	Eigenvalues of the Laplacian

	Example
	Spectral Clustering

