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1 Introduction

In this chapter we start by giving some basic definitions from graph theory. This will serve as
a refresher and will establish notation for the rest of the text. We then give some definitions
that are important for the analysis of networks. Finally we describe the power-law distribution
as it appear in several occasions in network mining.

2 Basic Definitions in Graph Theory

In this section we first give some basic definitions of graph theory. We assume that the reader
knows basic graph theory and this section is only for reference of the terms and to define
notation. Then we define some of the terms that are often used in network analysis.

A graph G = (V,E) consists of a set of nodes V , and a set of edges E ⊂ V × V . Unless
specified otherwise, we assume that |V | = n and that |E| = m. Depending on the literature,
a node is also called vertex, site, actor, or agent. An edge is also called bond, link, connection,
or tie. A graph can be directed or undirected. For simplicity, for the rest of the section we deal
with undirected graphs, although the definitions can be extended to directed graphs as well.
If graph G is undirected then an edge (u, v) is considered an unordered pair, in other words
we assume that (u, v) and (v, u) are the same edge. If G is directed then (u, v) and (v, u) are
different edges.

If an edge e = (u, v) ∈ E we say that nodes u and v are adjacent or neighboring, and that
nodes u and v are incident with the edge e. Informally, we will often call two adjacent nodes
friends, or peers, or neighbors.

A loop is an edge from a node to itself: (v, v). Two or more edges that have the same
endpoints (u, v) are called multiple edges. The graph is called simple if it does not have any
loops or multiple edges. We will be dealing almost exclusively with simple graphs.

A path of length k is a sequence of nodes (v0, v1, . . . , vk), where we have (vi, vi+1) ∈ E. If
vi 6= vj for all 0 ≤ i < j ≤ k we call the path simple. If, vi 6= vj for all 0 ≤ i < j < k and
v0 = vk the path is a cycle. A path from node u to node v is a path (v0, v1, . . . , vk) such that
v0 = u and vk = v.

A subgraph G′ of a graph G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊂ V and E′ ⊂ E.
For an undirected graph, the degree of a node v (sometimes called connectivity in the soci-

ology literature) is the number of edges incident with v and is denoted by dv. For a directed
graph we have the indegree, d−v , which is the number of edges that go into node v, and the
outdegree, d+v , which is the number of edges that go out of node v.

A triangle or a triad in an undirected graph is a triplet (u, v, w), where u, v, w ∈ V such
that (u, v), (v,w), (w, u) ∈ E.

Two nodes u and v are connected if there is a path from u to v. A graph G is connected

if each pair of nodes is connected, otherwise we say that the graph is disconnected. Any graph
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can be decomposed into a set of one or more connected components, where each connected
component is a maximal connected subgraph of G.

A simple graph that does not contain any cycles is called a forest. A forest that is connected
is called a tree. A tree has n − 1 edges. Actually any two of the following three statements
imply that the graph is a tree (and thus they also imply the third one):

1. The graph has n− 1 edges.

2. The graph does not contain any cycles.

3. The graph is connected.

A shortest path (sometimes also called geodesic path, or degree of separation) between nodes
u and v is a path from u to v of minimum length. The distance d(u, v) between nodes u and v is
the length of a shortest path between u and v. If u and v are in different connected component
then d(u, v) = ∞.

The diameter D of a connected graph is the maximum (over all pairs of nodes in the graph)
distance. If a graph is disconnected then we define the diameter to be the maximum of the
diameters of the connected components. In other words we define

D = max
(u,v):u,v are connected

d(u, v).

The average diameter of graph G is the average distance between all the connected nodes
of G. Some authors use the term diameter to call this quantity but we avoid that here.

The effective diameter is the smallest distance that is larger than 90% of the distances
between connected nodes. In other words, it is computed according to the following process:
compute the distances between all connected nodes in G, ignore the 10% largest distances, and
look at the maximum distance left. This is a quantity often used instead of the diameter as it
is more robust with respect to outliers.

Another notion important in the analysis of networks is the correlation coefficient, which is
a measure of transitivity, that is, a measure of how much do friends of friends tend to be friends.
There are a few different variations of the correlation coefficient that capture this concept, but
the most commonly used is the following. We define the clustering coefficient of node v Cv to be
the ratio of all the edges that exist between the friends of v over all the edges that could possibly
exist between the friends of v (see Figure 1). Formally, let us define d̂v to be the number of
nodes different than v that are adjacent to node v; note that for a simple graph d̂v is just the
degree dv. Then the clustering coefficient (recall that we consider the graph to be undirected)
is defined as

Cv =
|{(u,w) ∈ E : u,w are adjacent to v}|

(

d̂v
2

)

.

Note that if the graph is simple then the denominator equals
(

dv
2

)

, and we have

Cv =
2 |{(u,w) ∈ E : u,w are adjacent to v}|

dv(dv − 1)
.

The clustering coefficient of graph G is denoted by C and is the average clustering coefficient
among all the nodes:

C =
1

n

∑

v∈V

Cv.
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Figure 1: Clustering coefficient of node v. Node v has 5 neighbors and there are 4 edges between
those neighbors (the bold edges). Therefore the clustering coefficient of node v is Cv = 4

(5
2
)
= 0.4.

3 Centrality

Another notion that is often used by sociologists at the study of networks is that of centrality.
As the name implies, centrality measures how central is the node in the graph. Depending on
what we mean by “central,” there are versions of centrality measure. The most common ones
are the degree centrality, the closeness centrality, and the betweeness centrality. We will not be
using them here but we describe them for completeness, as they are sometimes found in papers.

The degree centrality is the simplest one. The unnormalized one equals to the number of
neighboring nodes (the degree in the case of a simple graph). To be able to compare values
between different graphs, we define the normalized version, which is normalized by the maximum
possible value, n− 1. So we have

Degree centrality of node v =
dv

n− 1
.

The second notion of centrality, the closeness centrality, or just closeness, measures how
close is the node to the rest of the network. The total distance of node v to the rest of the
nodes equals

∑

u∈V

d(v, u),

and since we want the centrality to be large when the distance is small (intuitively a node is
central if its distance from the other nodes is small) we take the reciprocal of that. Furthermore,
we again normalize so that the value ranges between 0 and 1 by dividing by the maximum
possible value, (n − 1)−1 (which is the value when a single node is connected with n− 1 other
nodes). In other words we define

Closeness centrality of node v =

1∑
u∈V

d(v,u)

1
n−1

=
n− 1

∑

u∈V d(v, u)
.

The third notion of centrality that we define here is the betweenness centrality, or just
betweenness. Assume that two nodes, u and w need to communicate with each other. Then
they will ideally use a shortest path. Any node v that is in that path has the ability to affect
the communication by distorting it or slowing it down, for example. A node that belongs to a
lot of such paths therefore is central in the sense that it can be in the middle and can affect a
lot of such communications. That is what betweeness measures.
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To define it formally, assume that nodes u and w have guw shortest paths that connect
them (not necessarily disjoint). Then the probability that they use a particular one when they
need to communicate is 1/guw, assuming that they choose a shortest path uniformly at random
among all shortest paths. For a node v define gvuw to be the set of those shortest paths between
u and w that contain node v. Then the absolute centrality can be defined as

∑

u,w∈V \{v}

gvuw
guw

.

To make it a value between 0 and 1 we normalize it with the maximum value that it can take,
which is for the center of the star graph (the graph where a node is connected with the rest

n−1 nodes and there are no more connections), and in which case the value is
(

n−1
2

)

= n2−3n+2
2 .

(This is the number of pairs of vertices not including node v, and in the star graph there is a
unique shortest path between two nodes and it has to go through the center.) Thus we can
define the relative betweeness of a node v as

Betweeness centrality of node v =

∑

u,w∈V \{v}
gvuw
guw

(

n−1
2

) =
2
∑

u,w∈V \{v}
gvuw
guw

n2 − 3n + 2
.

This quantity can be computed in polynomial time, the fastest algorithm currently being by
Brandes [1] and having running time O(nm), for computing the betweeness of all nodes.

To compare the different version of centrality, degree centrality measures the ability of a
node to develop communication. The closeness centrality measures the proximity of a node to
the rest of the network, while the betweeness centrality measures in a sense the extent to which
a node can control communications in the network.
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