
Chapter 15

Minimum Spanning Trees

This chapter applies the greedy algorithm design paradigm to a fa-
mous graph problem, the minimum spanning tree (MST) problem.
The MST problem is a uniquely great playground for the study of
greedy algorithms, in which almost any greedy algorithm that you
can think of turns out to be correct. After reviewing graphs and
defining the problem formally (Section 15.1), we’ll discuss the two
best-known MST algorithms—Prim’s algorithm (Section 15.2) and
Kruskal’s algorithm (Section 15.5). Both algorithms admit blazingly
fast implementations, using the heap and union-find data structures,
respectively. Section 15.8 outlines an application of Kruskal’s algo-
rithm in machine learning, to single-link clustering.

15.1 Problem Definition

The minimum spanning tree problem is about connecting a bunch
of objects as cheaply as possible. The objects and connections could
represent something physical, like computer servers and communica-
tion links between them. Or maybe each object is a representation of
a document (say, as a vector of word frequencies), with connections
corresponding to pairs of “similar” documents. The problem arises nat-
urally in several application domains, including computer networking
(try a Web search for “spanning tree protocol”) and machine learning
(see Section 15.8).

15.1.1 Graphs

Objects and connections between them are most naturally modeled
with graphs. A graph G = (V,E) has two ingredients: a set V of
vertices and a set E of edges (Figure 15.1). This chapter considers only
undirected graphs, in which each edge e is an unordered pair {v, w}

15.1 Problem Definition 53

of vertices (written as e = (v, w) or e = (w, v)), which are called the
endpoints of the edge.1 The numbers |V | and |E| of vertices and edges
are usually denoted by n and m, respectively.

Figure 15.1: An undirected graph with five vertices and eight edges.

Graphs can be encoded in different ways for use in an algorithm.
This chapter assumes that the input graph is represented using adja-
cency lists, with an array of vertices, an array of edges, pointers from
each edge to its two endpoints, and pointers from each vertex to its
incident edges.2

15.1.2 Spanning Trees

The input in the minimum spanning tree problem is an undirected
graph G = (V,E) in which each edge e has a real-valued cost ce.
(For example, ce could indicate the cost of connecting two computer
servers.) The goal is to compute a spanning tree of the graph with
the minimum-possible sum of edge costs. By a spanning tree of G, we
mean a subset T ✓ E of edges that satisfies two properties. First, T
should not contain a cycle (this is the “tree” part).3 Second, for every
pair v, w 2 V of vertices, T should include a path between v and w
(this is the “spanning” part).4

1There is an analog of the MST problem for directed graphs, which is known as
both the minimum-cost arborescence problem and the optimum branching problem.
There are also fast algorithms for this problem, but they lie a bit beyond the
scope of this book series.

2For more details on graphs and their representations, see Chapter 7 of Part 2.
3A cycle in a graph G = (V,E) is a path that loops back to where it began—an

edge sequence e1 = (v0, v1), e2 = (v1, v2), . . . , ek = (vk�1, vk) with vk = v0.
4For convenience, we typically allow a path (v0, v1), (v1, v2), . . . , (vk�1, vk) in

a graph to include repeated vertices or, equivalently, to contain one or more cycles.
Don’t let this bother you: You can always convert such a path into a cycle-free
path with the same endpoints v0 and vk by repeatedly splicing out subpaths
between different visits to the same vertex (see Figure 15.2 below).

54 Minimum Spanning Trees

5 4 1 2 3 2 2 6 7 3 6 7 8

splice out

1 2 7 3 6 7 8

splice out

1 2 7 8

Figure 15.2: A path with repeated vertices can be converted into a path
with no repeated vertices and the same endpoints.

Quiz 15.1

What is the minimum sum of edge costs of a spanning tree
of the following graph? (Each edge is labeled with its cost.)

1

2 3 4

5

a b

c d

a) 6

b) 7

c) 8

d) 9

(See Section 15.1.3 for the solution and discussion.)

It makes sense only to talk about spanning trees of connected

graphs G = (V,E), in which it’s possible to travel from any vertex
v 2 V to any other vertex w 2 V using a path of edges in E.5 (If there

5For example, the graph in Figure 15.1 is connected, while the graph in
Figure 15.3 is not.

15.1 Problem Definition 55

is no path in E between the vertices v and w, there certainly isn’t one
in any subset T ✓ E of edges, either.) For this reason, throughout
this chapter we assume that the input graph is a connected graph.

Figure 15.3: A graph that is not connected.

MST Assumption

The input graph G = (V,E) is connected, with at least one
path between each pair of vertices.

It’s easy enough to compute the minimum spanning tree of a
four-vertex graph like the one in Quiz 15.1; what about in general?

Problem: Minimum Spanning Tree (MST)

Input: A connected undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.

Output: A spanning tree T ✓ E of G with the minimum-
possible sum

P
e2T ce of edge costs.6

We can assume that the input graph has at most one edge between
each pair of vertices; all but the cheapest of a set of parallel edges can
be thrown out without changing the problem.

6For graphs that are not connected, we could instead consider the minimum
spanning forest problem, in which the goal is to find a maximal acyclic subgraph
with the minimum-possible sum of edge costs. This problem can be solved by
first computing the connected components of the input graph in linear time using
breadth- or depth-first search (see Chapter 8 of Part 2), and then applying an
algorithm for the MST problem to each component separately.

56 Minimum Spanning Trees

Like minimizing the sum of weighted completion times (Chapter 13)
or the optimal prefix-free code problem (Chapter 14), the number of
possible solutions can be exponential in the size of the problem.7 Could
there be an algorithm that magically homes in on the minimum-cost
needle in the haystack of spanning trees?

15.1.3 Solution to Quiz 15.1

Correct answer: (b). The minimum spanning tree comprises the
edges (a, b), (b, d), and (a, c):

1

2 4

a b

c d

The sum of the edges’ costs is 7. The edges do not include a cycle,
and they can be used to travel from any vertex to any other vertex.

Here are two spanning trees with an inferior total cost of 8:
1

3 4

a b

c d

1

2

5

a b

c d

The three edges (a, b), (b, d), and (a, d) have a smaller total cost of 6:
1

2 3

a b

c d

but these edges do not form a spanning tree. In fact, they fail on
both counts: They form a cycle and there is no way to use them to
travel from c to any other vertex.

7For example, Cayley’s formula is a famous result from combinatorics stating
that the n-vertex complete graph (in which all the

�
n
2

�
possible edges are present)

has exactly n
n�2 different spanning trees. This is bigger than the estimated

number of atoms in the known universe when n � 50.

15.2 Prim’s Algorithm 57

15.2 Prim’s Algorithm

Our first algorithm for the minimum spanning tree problem is Prim’s

algorithm, which is named after Robert C. Prim, who discovered the
algorithm in 1957. The algorithm closely resembles Dijkstra’s shortest-
path algorithm (covered in Chapter 9 of Part 2), so it shouldn’t
surprise you that Edsger W. Dijkstra independently arrived at the
same algorithm shortly thereafter, in 1959. Only later was it realized
that the algorithm had been discovered over 25 years earlier, by
Vojtěch Jarník in 1930. For this reason, the algorithm is also called
Jarník’s algorithm and the Prim-Jarník algorithm.8

15.2.1 Example

Next we’ll step through Prim’s algorithm on a concrete example, the
same one from Quiz 15.1:

1

2 3 4

5

a b

c d

It might seem weird to go through an example of an algorithm before
you’ve seen its code, but trust me: After you understand the example,
the pseudocode will practically write itself.9

Prim’s algorithm begins by choosing an arbitrary vertex—let’s
say vertex b in our example. (In the end, it won’t matter which
one we pick.) The plan is to construct a tree one edge at a time,
starting from b and growing like a mold until the tree spans the entire
vertex set. In each iteration, we’ll greedily add the cheapest edge that
extends the reach of the tree-so-far.

8History buffs should check out the paper “On the History of the Minimum
Spanning Tree Problem,” by Ronald L. Graham and Pavol Hell (Annals of the

History of Computing, 1985).
9Readers of Part 2 should recognize strong similarities to Dijkstra’s shortest-

path algorithm.

58 Minimum Spanning Trees

The algorithm’s initial (empty) tree spans only the starting ver-
tex b. There are two options for expanding its reach: the edge (a, b)
and the edge (b, d).

1

2 3 4

5

a b

c d

vertices
spanned

so far

The former is cheaper, so the algorithm chooses it. The tree-so-far
spans the vertices a and b.

In the second iteration, three edges would expand the tree’s reach:
(a, c), (a, d), and (b, d).

1

2 3 4

5

a b

c d

vertices
spanned

so far

The cheapest of these is (b, d). After its addition, the tree-so-far
spans a, b, and d. Both endpoints of the edge (a, d) have been sucked
into the set of vertices spanned so far; adding this edge in the future
would create a cycle, so the algorithm does not consider it further.

In the final iteration, there are two options for expanding the
tree’s reach to c, the edges (a, c) and (c, d):

1

2 3 4

5

a b

c d

vertices
spanned

so far

15.2 Prim’s Algorithm 59

Prim’s algorithm chooses the cheaper edge (a, c), resulting in the same
minimum spanning tree identified in Quiz 15.1:

1

2 3 4

5

a b

c d

15.2.2 Pseudocode

In general, Prim’s algorithm grows a spanning tree from a starting
vertex one edge at a time, with each iteration extending the reach of
the tree-so-far by one additional vertex. As a greedy algorithm, the
algorithm always chooses the cheapest edge that does the job.

Prim

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Initialization
X := {s} // s is an arbitrarily chosen vertex
T := ; // invariant: the edges in T span X

// Main loop
while there is an edge (v, w) with v 2 X,w 62 X do

(v⇤, w⇤) := a minimum-cost such edge
add vertex w⇤ to X
add edge (v⇤, w⇤) to T

return T

The sets T and X keep track of the edges chosen and the vertices
spanned so far. The algorithm seeds X with an arbitrarily chosen
starting vertex s; as we’ll see, the algorithm is correct no matter

60 Minimum Spanning Trees

which vertex it chooses.10 Each iteration is responsible for adding
one new edge to T . To avoid redundant edges and ensure that the
edge addition extends the reach of T , the algorithm considers only
the edges that “cross the frontier,” with one endpoint in each of X
and V �X (Figure 15.4). If there are many such edges, the algorithm
greedily chooses the cheapest one. After n� 1 iterations (where n is
the number of vertices), X contains all the vertices and the algorithm
halts. Under our assumption that the input graph G is connected,
there’s no way for the algorithm to get stuck; if there were ever an
iteration with no edges of G crossing between X and V �X, we could
conclude that G is not connected (because it contains no path from
any vertex in X to any vertex in V �X).

the frontier

s

processed not-yet-processed

X

V-X
candidates
for (v*,w*)

Figure 15.4: Every iteration of Prim’s algorithm chooses one new edge
that crosses from X to V �X.

10The MST problem definition makes no reference to a starting vertex, so
it might seem weird to artificially introduce one here. One big benefit is that
a starting vertex allows us to closely mimic Dijkstra’s shortest-path algorithm
(which is saddled with a starting vertex by the problem it solves, the single-source
shortest path problem). And it doesn’t really change the problem: Connecting
every pair of vertices is the same thing as connecting some vertex s to every other
vertex. (To get a v-w path, paste together paths from v to s and from s to w.)

15.2 Prim’s Algorithm 61

The algorithm Prim computes the minimum spanning tree in
the four-vertex five-edge graph of Quiz 15.1, which means approxi-
mately. . . nothing. The fact that an algorithm works correctly on a
specific example does not imply that it is correct in general!11 You
should be initially skeptical of the Prim algorithm and demand a proof
of correctness.

Theorem 15.1 (Correctness of Prim) For every connected graph

G = (V,E) and real-valued edge costs, the Prim algorithm returns a

minimum spanning tree of G.

See Section 15.4 for a proof of Theorem 15.1.

15.2.3 Straightforward Implementation

As is typical of greedy algorithms, the running time analysis of Prim’s
algorithm (assuming a straightforward implementation) is far easier
than its correctness proof.

Quiz 15.2

Which of the following running times best describes a
straightforward implementation of Prim’s minimum span-
ning tree algorithm for graphs in adjacency-list representa-
tion? As usual, n and m denote the number of vertices and
edges, respectively, of the input graph.

a) O(m+ n)

b) O(m log n)

c) O(n2)

d) O(mn)

(See below for the solution and discussion.)

Correct answer: (d). A straightforward implementation keeps track
of which vertices are in X by associating a Boolean variable with each
vertex. In each iteration, it performs an exhaustive search through

11Even a broken analog clock is correct two times a day. . .

62 Minimum Spanning Trees

all the edges to identify the cheapest one with one endpoint in each
of X and V �X. After n � 1 iterations, the algorithm runs out of
new vertices to add to its set X and halts. Because the number of
iterations is O(n) and each takes O(m) time, the overall running time
is O(mn).

Proposition 15.2 (Prim Running Time (Straightforward))
For every graph G = (V,E) and real-valued edge costs, the straight-

forward implementation of Prim runs in O(mn) time, where m = |E|
and n = |V |.

*15.3 Speeding Up Prim’s Algorithm via Heaps

15.3.1 The Quest for Near-Linear Running Time

The running time of the straightforward implementation of Prim’s
algorithm (Proposition 15.2) is nothing to sneeze at—it’s a polynomial
function of the problem size, while exhaustive search through all of a
graph’s spanning trees can take an exponential amount of time (see
footnote 7). This implementation is fast enough to process medium-
size graphs (with thousands of vertices and edges) in a reasonable
amount of time, but not big graphs (with millions of vertices and
edges). Remember the mantra of any algorithm designer worth their
salt: Can we do better? The holy grail in algorithm design is a
linear-time algorithm (or close to it), and this is what we want for
the MST problem.

We don’t need a better algorithm to achieve a near-linear-time solu-
tion to the problem, just a better implementation of Prim’s algorithm.
The key observation is that the straightforward implementation per-
forms minimum computations, over and over, using exhaustive search.
Any method for computing repeated minimum computations faster
than exhaustive search would translate to a faster implementation of
Prim’s algorithm.

We mentioned briefly in Section 14.3.6 that there is, in fact, a
data structure whose raison d’être is fast minimum computations: the
heap data structure. Thus, a light bulb should go off in your head:
Prim’s algorithm calls out for a heap!

*15.3 Speeding Up Prim’s Algorithm via Heaps 63

15.3.2 The Heap Data Structure

A heap maintains an evolving set of objects with keys and supports
several fast operations, of which we’ll need three.

Heaps: Three Supported Operations

Insert: given a heap H and a new object x, add x to H.

ExtractMin: given a heap H , remove and return from H
an object with the smallest key (or a pointer to it).

Delete: given a heap H and a pointer to an object x in H ,
delete x from H.

For example, if you invoke Insert four times to add objects with
keys 12, 7, 29, and 15 to an empty heap, the ExtractMin operation
will return the object with key 7.

Standard implementations of heaps provide the following guaran-
tee.

Theorem 15.3 (Running Time of Three Heap Operations)
In a heap with n objects, the Insert, ExtractMin, and Delete
operations run in O(log n) time.

As a bonus, in typical implementations, the constant hidden by
the big-O notation and the amount of space overhead are relatively
small.12

15.3.3 How to Use Heaps in Prim’s Algorithm

Heaps enable a blazingly fast, near-linear-time implementation of
Prim’s algorithm.13

12For the goals of this section, it’s not important to know how heaps are imple-
mented and what they look like under the hood. We’ll simply be educated clients
of them, taking advantage of their logarithmic-time operations. For additional
operations and implementation details, see Chapter 10 of Part 2.

13For readers of Part 2, all the ideas in this section will be familiar from the
corresponding heap-based implementation of Dijkstra’s shortest-path algorithm
(Section 10.4).

64 Minimum Spanning Trees

Theorem 15.4 (Prim Running Time (Heap-Based)) For every

graph G = (V,E) and real-valued edge costs, the heap-based imple-

mentation of Prim runs in O((m+ n) log n) time, where m = |E| and

n = |V |.14

The running time bound in Theorem 15.4 is only a logarithmic
factor more than the time required to read the input. The minimum
spanning tree problem thus qualifies as a “for-free primitive,” joining
the likes of sorting, computing the connected components of a graph,
and the single-source shortest path problem.

For-Free Primitives

We can think of an algorithm with linear or near-linear
running time as a primitive that we can use essentially
“for free” because the amount of computation used
is barely more than the amount required simply to
read the input. When you have a primitive relevant
to your problem that is so blazingly fast, why not use
it? For example, you can always compute a minimum
spanning tree of your undirected graph data in a
preprocessing step, even if you’re not quite sure how
it will help later. One of the goals of this book series
is to stock your algorithmic toolbox with as many
for-free primitives as possible, ready to be applied at
will.

In the heap-based implementation of Prim’s algorithm, the objects
in the heap correspond to the as-yet-unprocessed vertices (V �X in the
Prim pseudocode).15,16 The key of a vertex w 2 V �X is defined as the
minimum cost of an incident crossing edge (Figure 15.5).

14Under our standing assumption that the input graph is connected, m is at
least n� 1 and we can therefore simplify O((m+ n) log n) to O(m log n) in the
running time bound.

15We refer to vertices of the input graph and the corresponding objects in the
heap interchangeably.

16Your first thought might be to store the edges of the input graph in a heap,
with an eye toward replacing the minimum computations (over edges) in the
straightforward implementation with calls to ExtractMin. This idea can be
made to work, but the slicker and quicker implementation stores vertices in a
heap.

*15.3 Speeding Up Prim’s Algorithm via Heaps 65

Invariant

The key of a vertex w 2 V �X is the minimum cost of an
edge (v, w) with v 2 X, or +1 if no such edge exists.

s

processed not-yet-processed

X
V-X

7 x

y

z

3

5

key(x) = 3

key(y)
= 5

key(z) = +∞

2
1

Figure 15.5: The key of a vertex w 2 V �X is defined as the minimum
cost of an edge (v, w) with v 2 X (or +1, if no such edge exists).

To interpret these keys, imagine using a two-round knockout
tournament to identify the minimum-cost edge (v, w) with v 2 X and
w /2 X. The first round comprises a local tournament for each vertex
w 2 V �X, where the participants are the edges (v, w) with v 2 X
and the first-round winner is the cheapest participant (or +1, if there
are no such edges). The first-round winners (at most one per vertex
w 2 V �X) proceed to the second round, and the final champion is the
cheapest first-round winner. Thus, the key of a vertex w 2 V �X is
exactly the winning edge cost in the local tournament at w. Extracting
the vertex with the minimum key then implements the second round
of the tournament and returns on a silver platter the next addition
to the solution-so-far. As long as we pay the piper and maintain the
invariant, keeping objects’ keys up to date, we can implement each
iteration of Prim’s algorithm with a single heap operation.

66 Minimum Spanning Trees

15.3.4 Pseudocode

The pseudocode then looks like this:

Prim (Heap-Based)

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Initialization
1 X := {s}, T = ;, H := empty heap
2 for every v 6= s do
3 if there is an edge (s, v) 2 E then
4 key(v) := csv, winner(v) := (s, v)
5 else // v has no crossing incident edges
6 key(v) := +1, winner(v) := NULL
7 Insert v into H

// Main loop
8 while H is non-empty do
9 w⇤ := ExtractMin(H)

10 add w⇤ to X
11 add winner(w⇤) to T

// update keys to maintain invariant
12 for every edge (w⇤, y) with y 2 V �X do
13 if cw⇤y < key(y) then
14 Delete y from H
15 key(y) := cw⇤y, winner(y) := (w⇤, y)
16 Insert y into H

17 return T

Each not-yet-processed vertex w records in its winner and key
fields the identity and cost of the winner of its local tournament—the
cheapest edge incident to w that crosses the frontier (i.e., edges (v, w)
with v 2 X). Lines 2–7 initialize these values for all the vertices
other than s so that the invariant is satisfied and insert these vertices
into a heap. Lines 9–11 implement one iteration of the main loop
of Prim’s algorithm. The invariant ensures that the local winner of

*15.3 Speeding Up Prim’s Algorithm via Heaps 67

the extracted vertex is the cheapest edge crossing the frontier, which
is the correct edge to add next to the tree-so-far T . The next quiz
illustrates how an extraction can change the frontier, necessitating
updates to the keys of vertices still in V �X to maintain the invariant.

Quiz 15.3

In Figure 15.5, suppose the vertex x is extracted and moved
to the set X. What should be the new values of y and z’s
keys, respectively?

a) 1 and 2

b) 2 and 1

c) 5 and +1

d) +1 and +1

(See Section 15.3.6 for the solution and discussion.)

Lines 12–16 of the pseudocode pay the piper and perform the
necessary updates to the keys of the vertices remaining in V � X.
When w⇤ is moved from V �X to X, edges of the form (w⇤, y) with
y 2 V � X cross the frontier for the first time; these are the new
contestants in the local tournaments at the vertices of V �X. (We can
ignore the fact that edges of the form (u,w⇤) with u 2 X get sucked
into X and no longer cross the frontier, as we’re not responsible for
maintaining keys for vertices in X.) For a vertex y 2 V � X, the
new winner of its local tournament is either the old winner (stored in
winner(y)) or the new contestant (w⇤, y). Line 12 iterates through
the new contestants.17 Line 13 checks whether an edge (w⇤, y) is the
new winner in y’s local tournament; if it is, lines 14–16 update y’s
key and winner fields and the heap H accordingly.18

17This is the main step in which it’s so convenient to have the input graph
represented via adjacency lists—the edges of the form (w⇤

, y) can be accessed
directly via w

⇤’s array of incident edges.
18Some heap implementations export a DecreaseKey operation, in which

case lines 14–16 can be implemented with one heap operation rather than two.

68 Minimum Spanning Trees

15.3.5 Running Time Analysis

The initialization phase (lines 1–7) performs n� 1 heap operations
(one Insert per vertex other than s) and O(m) additional work,
where n and m denote the number of vertices and edges, respectively.
There are n � 1 iterations of the main while loop (lines 8–16), so
lines 9–11 contribute O(n) heap iterations and O(n) additional work
to the overall running time. Bounding the total time spent in lines 12–
16 is the tricky part; the key observation is that each edge of G is

examined in line 12 exactly once, in the iteration in which the first of
its endpoints gets sucked into X (i.e., plays the role of w⇤). When
an edge is examined, the algorithm performs two heap operations (in
lines 14 and 16) and O(1) additional work, so the total contribution
of lines 12–16 to the running time (over all while loop iterations) is
O(m) heap operations plus O(m) additional work. Tallying up, the
final scorecard reads

O(m+ n) heap operations +O(m+ n) additional work.

The heap never stores more than n�1 objects, so each heap operation
runs in O(log n) time (Theorem 15.3). The overall running time is
O((m+ n) log n), as promised by Theorem 15.4. QE D

15.3.6 Solution to Quiz 15.3

Correct answer: (b). After the vertex x is moved from V �X to X,
the new picture is:

x
7

s

processed not-yet-processed

X
V-X

y

z

3

5

2

1

Edges of the form (v, x) with v 2 X get sucked into X and no longer
cross the frontier (as with the edges with costs 3 and 7). The other

*15.4 Prim’s Algorithm: Proof of Correctness 69

edges incident to x, (x, y) and (x, z), get partially yanked out of V �X
and now cross the frontier. For both y and z, these new incident
crossing edges are cheaper than all their old ones. To maintain the
invariant, both of their keys must be updated accordingly: y’s key
from 5 to 2, and z’s key from +1 to 1.

*15.4 Prim’s Algorithm: Proof of Correctness

Proving the correctness of Prim’s algorithm (Theorem 15.1) is a bit
easier when all the edge costs are distinct. Among friends, let’s adopt
this assumption for this section. With a little more work, Theorem 15.1
can be proved in its full generality (see Problem 15.5).

The proof breaks down into two steps. The first step identifies a
property, called the “minimum bottleneck property,” possessed by the
output of Prim’s algorithm. The second step shows that, in a graph
with distinct edge costs, a spanning tree with this property must be a
minimum spanning tree.19

15.4.1 The Minimum Bottleneck Property

We can motivate the minimum bottleneck property by analogy with
Dijkstra’s shortest-path algorithm. The only major difference between
Prim’s and Dijkstra’s algorithms is the criterion used to choose a
crossing edge in each iteration. Dijkstra’s algorithm greedily chooses
the eligible edge that minimizes the distance (i.e., the sum of edge
lengths) from the starting vertex s and, for this reason, computes
shortest paths from s to every other vertex (provided edge lengths
are nonnegative). Prim’s algorithm, by always choosing the eligible
edge with minimum individual cost, is effectively striving to minimize
the maximum edge cost along every path.20

19A popular if more abstract approach to proving the correctness of Prim’s
(and Kruskal’s) algorithm is to use what’s known as the “Cut Property” of MSTs;
see Problem 15.7 for details.

20This observation is related to a mystery that might be troubling readers of
Part 2: Why is Dijkstra’s algorithm correct only with nonnegative edge lengths,
while Prim’s algorithm is correct with arbitrary (positive or negative) edge costs?
A key ingredient in the correctness proof for Dijkstra’s algorithm is “path mono-
tonicity,” meaning that tacking on additional edges at the end of a path can only
make it worse. Tacking a negative-length edge onto a path would decrease its
overall length, so nonnegative edge lengths are necessary for path monotonicity.

76 Minimum Spanning Trees

our assumption that edges’ costs are distinct, the cost of e2 must be
strictly larger: cxy > cvw.

Now derive T 0 from T ⇤ [{e1} by removing the edge e2:

v

w

x y

Because T ⇤ has n� 1 edges, so does T 0. Because T ⇤ is connected, so
is T 0. (Removing an edge from a cycle undoes a type-C edge addition,
which by Lemma 15.7(a) has no effect on the number of connected
components.) Corollary 15.9 then implies that T 0 is also acyclic and
hence a spanning tree. Because the cost of e2 is larger than that
of e1, T 0 has a lower total cost than T ⇤; this contradicts the supposed
optimality of T ⇤ and completes the proof. QE D

15.4.4 Putting It All Together

We now have the ingredients to immediately deduce the correctness
of Prim’s algorithm in graphs with distinct edge costs.

Proof of Theorem 15.1: Corollary 15.10 proves that the output of
Prim’s algorithm is a spanning tree. Lemma 15.5 implies that every
edge of this spanning tree satisfies the MBP. Theorem 15.6 guarantees
that this spanning tree is a minimum spanning tree. QE D

15.5 Kruskal’s Algorithm

This section describes a second algorithm for the minimum spanning
tree problem, Kruskal’s algorithm.25 With our blazingly fast heap-
based implementation of Prim’s algorithm, why should we care about

25Discovered by Joseph B. Kruskal in the mid-1950s—roughly the same time
that Prim and Dijkstra were rediscovering what is now called Prim’s algorithm.

15.5 Kruskal’s Algorithm 77

Kruskal’s algorithm? Three reasons. One, it’s a first-ballot hall-of-
fame algorithm, so every seasoned programmer and computer scientist
should know about it. Properly implemented, it is competitive with
Prim’s algorithm in both theory and practice. Two, it provides an
opportunity to study a new and useful data structure, the disjoint-

set or union-find data structure. Three, there are some very cool
connections between Kruskal’s algorithm and widely-used clustering
algorithms (see Section 15.8).

15.5.1 Example

As with Prim’s algorithm, it’s helpful to see an example of Kruskal’s
algorithm in action before proceeding to its pseudocode. Here’s the
input graph:

5

6

3

4

2

1

7

Kruskal’s algorithm, like Prim’s algorithm, greedily constructs a
spanning tree one edge at a time. But rather than growing a single
tree from a starting vertex, Kruskal’s algorithm can grow multiple
trees in parallel, content for them to coalesce into a single tree only at
the end of the algorithm. So, while Prim’s algorithm was constrained
to choose the cheapest edge crossing the current frontier, Kruskal’s
algorithm is free to choose the cheapest remaining edge in the entire
graph. Well, not quite: Cycles are a no-no, so it chooses the cheapest
edge that doesn’t create a cycle.

In our example, Kruskal’s algorithm starts with an empty edge
set T and, in its first iteration, greedily considers the cheapest edge
(the edge of cost 1) and adds it to T . The second iteration follows
suit with the next-cheapest edge (the edge of cost 2). At this point,
the solution-so-far T looks like:

78 Minimum Spanning Trees

5

6

3

4

2

1

7

The two edges chosen so far are disjoint, so the algorithm is effectively
growing two trees in parallel. The next iteration considers the edge
with cost 3. Its inclusion does not create a cycle and also happens to
fuse the two trees-so-far into one:

5

6

3

4

2

1

7

The algorithm next considers the edge of cost 4. Adding this edge
to T would create a cycle (with the edges of cost 2 and 3), so the
algorithm is forced to skip it. The next-best option is the edge of
cost 5; its inclusion does not create a cycle and, in fact, results in a
spanning tree:

5

6

3

4

2

1

7

The algorithm skips the edge of cost 6 (which would create a triangle
with the edges of cost 3 and 5) as well as the final edge, of cost 7
(which would create a triangle with the edges of cost 1 and 5). The
final output above is the minimum spanning tree of the graph (as you
should check).

15.5 Kruskal’s Algorithm 79

15.5.2 Pseudocode

With our intuition solidly in place, the following pseudocode won’t
surprise you.

Kruskal

Input: connected undirected graph G = (V,E) in
adjacency-list representation and a cost ce for each
edge e 2 E.

Output: the edges of a minimum spanning tree of G.

// Preprocessing
T := ;
sort edges of E by cost // e.g., using MergeSort26

// Main loop
for each e 2 E, in nondecreasing order of cost do

if T [{e} is acyclic then
T := T [{e}

return T

Kruskal’s algorithm considers the edges of the input graph one
by one, from cheapest to most expensive, so it makes sense to sort
them in nondecreasing order of cost in a preprocessing step (using
your favorite sorting algorithm; see footnote 3 in Chapter 13). Ties
between edges can be broken arbitrarily. The main loop zips through
the edges in this order, adding an edge to the solution-so-far provided
it doesn’t create a cycle.27

It’s not obvious that the Kruskal algorithm returns a spanning
tree, let alone a minimum one. But it does!

Theorem 15.11 (Correctness of Kruskal) For every connected

graph G = (V,E) and real-valued edge costs, the Kruskal algorithm

returns a minimum spanning tree of G.

26The abbreviation “e.g.” stands for exempli gratia and means “for example.”
27One easy optimization: You can stop the algorithm early once |V | � 1

edges have been added to T , as at this point T is already a spanning tree (by
Corollary 15.9).

80 Minimum Spanning Trees

We’ve already done most of the heavy lifting in our correctness
proof for Prim’s algorithm (Theorem 15.1). Section 15.7 supplies the
remaining details of the proof of Theorem 15.11.

15.5.3 Straightforward Implementation

How would you actually implement Kruskal’s algorithm and, in par-
ticular, the cycle-checking required in each iteration?

Quiz 15.4

Which of the following running times best describes a
straightforward implementation of Kruskal’s MST algorithm
for graphs in adjacency-list representation? As usual, n
and m denote the number of vertices and edges, respectively,
of the input graph.

a) O(m log n)

b) O(n2)

c) O(mn)

d) O(m2)

(See below for the solution and discussion.)

Correct answer: (c). In the preprocessing step, the algorithm sorts
the edge array of the input graph, which has m entries. With a good
sorting algorithm (like MergeSort), this step contributes O(m log n)
work to the overall running time.28 This work will be dominated by
that done by the main loop of the algorithm, which we analyze next.

The main loop has m iterations. Each iteration is responsible for
checking whether the edge e = (v, w) under examination can be added
to the solution-so-far T without creating a cycle. By Lemma 15.7,

28Why O(m log n) instead of O(m logm)? Because there’s no difference between
the two expressions. The number of edges of an n-vertex connected graph with
no parallel edges is at least n� 1 (achieved by a tree) and at most

�
n
2

�
= n(n�1)

2
(achieved by a complete graph). Thus logm lies between log(n� 1) and 2 log n
for every connected graph with no parallel edges, which justifies using logm and
log n interchangeably inside a big-O expression.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find 81

adding e to T creates a cycle if and only if T already contains a v-w
path. The latter condition can be checked in linear time using any
reasonable graph search algorithm, like breadth- or depth-first search
starting from v (see Chapter 8 of Part 2). And by “linear time,” we
mean linear in the size of the graph (V, T) which, as an acyclic graph
with n vertices, has at most n� 1 edges. The per-iteration running
time is therefore O(n), for an overall running time of O(mn).

Proposition 15.12 (Kruskal Run Time (Straightforward))
For every graph G = (V,E) and real-valued edge costs, the straightfor-

ward implementation of Kruskal runs in O(mn) time, where m = |E|
and n = |V |.

*15.6 Speeding Up Kruskal’s Algorithm via Union-Find

As with Prim’s algorithm, we can reduce the running time of Kruskal’s
algorithm from the reasonable polynomial bound of O(mn) (Propo-
sition 15.12) to the blazingly fast near-linear bound of O(m log n)
through the deft use of a data structure. None of the data structures
discussed previously in this book series are right for the job; we’ll
need a new one, called the union-find data structure.29

Theorem 15.13 (Kruskal Run Time (Union-Find-Based))
For every graph G = (V,E) and real-valued edge costs, the union-

find-based implementation of Kruskal runs in O((m+ n) log n) time,

where m = |E| and n = |V |.30

15.6.1 The Union-Find Data Structure

Whenever a program does a significant computation over and over
again, it’s a clarion call for a data structure to speed up those compu-
tations. Prim’s algorithm performs minimum computations in each
iteration of its main loop, so the heap data structure is an obvious
match. Each iteration of Kruskal’s algorithm performs a cycle check
or, equivalently, a path check. (Adding an edge (v, w) to the solution-
so-far T creates a cycle if and only if T already contains a v-w path.)

29Also known as the disjoint-set data structure.
30Again, under our standing assumption that the input graph is connected, we

can simplify the O((m+ n) log n) bound to O(m log n).

