Algorithms 35

1.5 Universal hashing

We end this chapter with an application of number theory to the design of hash
functions. Hashing is a very useful method of storing data items in a table so as to
support insertions, deletions, and lookups.

Suppose, for instance, that we need to maintain an ever-changing list of about
250 IP (Internet protocol) addresses, perhaps the addresses of the currently active
customers of a Web service. (Recall that an IP address consists of 32 bits encoding
the location of a computer on the Internet, usually shown broken down into four
8-bit fields, for example, 128.32.168.80.) We could obtain fast lookup times if we
maintained the records in an array indexed by IP address. But this would be very
wasteful of memory: the array would have 232 ~ 4 x 10° entries, the vast majority
of them blank. Or alternatively, we could use a linked list of just the 250 records.
But then accessing records would be very slow, taking time proportional to 250, the
total number of customers. Is there a way to get the best of both worlds, to use an
amount of memory that is proportional to the number of customers and yet also
achieve fast lookup times? This is exactly where hashing comes in.

1.5.1 Hash tables

Here’s a high-level view of hashing. We will give a short “nickname” to each of the
2%? possible IP addresses. You can think of this short name as just a number between
1 and 250 (we will later adjust this range very slightly). Thus many IP addresses
will inevitably have the same nickname; however, we hope that most of the 250 IP
addresses of our particular customers are assigned distinct names, and we will store
their records in an array of size 250 indexed by these names. What if there is more
than one record associated with the same name? Easy: each entry of the array points
to a linked list containing all records with that name. So the total amount of storage
is proportional to 250, the number of customers, and is independent of the total
number of possible IP addresses. Moreover, if not too many customer IP addresses
are assigned the same name, lookup is fast, because the average size of the linked
list we have to scan through is small.

But how do we assign a short name to each IP address? This is the role of a hash
function: in our example, a function h that maps IP addresses to positions in a table
of length about 250 (the expected number of data items). The name assigned to an

250 IPs L

/

. e

Hash table
of size ~ 250

Space of all 232 IP addresses

36

IP address x is thus h(x), and the record for x is stored in position h(x) of the table.
As described before, each position of the table is in fact a bucket, a linked list that
contains all current IP addresses that map to it. Hopefully, there will be very few
buckets that contain more than a handful of IP addresses.

1.5.2 Families of hash functions

Designing hash functions is tricky. A hash function must in some sense be “ran-
dom” (so that it scatters data items around), but it should also be a function and
therefore “consistent” (so that we get the same result every time we apply it).
And the statistics of the data items may work against us. In our example, one
possible hash function would map an IP address to the 8-bit number that is its last
segment: h(128.32.168.80) = 80. A table of n = 256 buckets would then be required.
But is this a good hash function? Not if, for example, the last segment of an IP ad-
dress tends to be a small (single- or double-digit) number; then low-numbered
buckets would be crowded. Taking the first segment of the IP address also invites
disaster—for example, if most of our customers come from Asia.

There is nothing inherently wrong with these two functions. If our 250 IP addresses
were uniformly drawn from among all N = 232 possibilities, then these functions
would behave well. The problem is we have no guarantee that the distribution of
IP addresses is uniform.

Conversely, there is no single hash function, no matter how sophisticated, that
behaves well on all sets of data. Since a hash function maps 23* IP addresses to
just 250 names, there must be a collection of at least 23%/250 ~ 2** ~ 16,000,000 IP
addresses that are assigned the same name (or, in hashing terminology, “collide”).
If many of these show up in our customer set, we’re in trouble.

Obviously, we need some kind of randomization. Here’s an idea: let us pick a
hash function at random from some class of functions. We will then show that, no
matter what set of 250 IP addresses we actually care about, most choices of the
hash function will give very few collisions among these addresses.

To this end, we need to define a class of hash functions from which we can pick
at random; and this is where we turn to number theory. Let us take the number
of buckets to be not 250. but n = 257—a prime number! And we consider every IP
address x as a quadruple x = (xi, ..., X4) of integers modulo n—recall that it is in
fact a quadruple of integers between 0 and 255, so there is no harm in this. We can
define a function h from IP addresses to a number mod n as follows: fix any four
numbers mod n = 257, say 87, 23, 125, and 4. Now map the IP address (x1,...,Xq)
to h(xy, ..., xs) = (87x; + 23x; + 125x3 + 4x4) mod 257. Indeed, any four numbers
mod n define a hash function.

For any four coefficients ay, ..., a3 € {0,1,...,n—1}, write a = (a1, @z, a3, ag) and
define h, to be the following hash function:

4
ho(xi, ..., X)) = Zai - x; mod n.
i=1

1.5 Universal hashing

Chapter 1

Tniversal hashing

Chapter 1

Algorithms 37

We will show that if we pick these coefficients a at random, then A, is very likely
to be good in the following sense.

Property Consider any pair of distinct IP addresses x = (xi,...,xs) and y
= (y1, ..., ya). If the coefficients a = (a,, az, as, as) are chosen uniformly at random
from {0,1,...,n— 1}, then

1
Prih,(xi,...., %) =ha(n, ..., y4)} = g

In other words, the chance that x and y collide under A, is the same as it would
be if each were assigned nicknames randomly and independently. This condition
guarantees that the expected lookup time for any item is small. Here’s why. If we
wish to look up x in our hash table, the time required is dominated by the size of
its bucket, that is, the number of items that are assigned the same name as x. But
there are only 250 items in the hash table, and the probability that any one item
gets the same name as x is 1/n = 1/257. Therefore the expected number of items
that are assigned the same name as x by a randomly chosen hash function A, is
250/257 ~ 1, which means the expected size of x’s bucket is less than 2.!

Let us now prove the preceding property.

Proof. Since x = (x1,...,%) and y = (y,, ..., y4) are distinct, these quadruples
must differ in some component; without loss of generality let us assume that x, # V4.
We wish to compute the probability Pr[h, (x;, ..., Xs) = ha(y1, ..., y4)], that is, the
probability that Zle a X = Zle a; - y; mod n. This last equation can be rewritten
as

3
Y oa-(i—y) = as- (v —x) mod n. (1)
i=1

Suppose that we draw a random hash function h, by picking a = (a, ay, az, ay) at
random. We start by drawing a;, a,, and a3, and then we pause and think: What
is the probability that the last drawn number q is such that equation (1) holds? So
far the left-hand side of equation (1) evaluates to some number, call it c. And since
nis prime and x4 # Y4, (V4 — X4) has a unique inverse modulo n. Thus for equation
(1) to hold, the last number a; must be precisely c - (y4 — x4)~! mod n, out of its n
possible values. The probability of this happening is 1/n, and the proof is complete. I

Let us step back and see what we just achieved. Since we have no control over
the set of data items, we decided instead to select a hash function h uniformly at

!When a hash function kg is chosen at random, let the random variable ¥; (fori =1,..., 250) be 1 if
item { gets the same name as x and 0 otherwise. So the expected value of Y; is 1/n. Now,

Y=Y +Y,+ -+ Y50 is the number of items which get the same name as x, and by linearity of
expectation, the expected value of Y is simply the sum of the expected values of Y, through Yss. It is
thus 250/n = 250/257.

38

random from among a family H of hash functions. In our example,
H={hg:ael0,...,n—1}%).

To draw a hash function uniformly at random from this family, we just draw four
numbers aj, ..., a; modulo n. (Incidentally, notice that the two simple hash func-
tions we considered earlier, namely, taking the last or the first 8-bit segment, belong
to this class. They are h.0.1) and (1,0,0,0), Tespectively.) And we insisted that the
family have the following property:

For any two distinct data items x and y, exactly |H|/n of all the hash functions
in ‘H map x and y to the same bucket, where n is the number of buckets.

A family of hash functions with this property is called universal. In other words, for
any two data items, the probability these items collide is 1/n if the hash function
is randomly drawn from a universal family. This is also the collision probability if
we map x and y to buckets uniformly at random—in some sense the gold standard
of hashing. We then showed that this property implies that hash table operations
have good performance in expectation.

This idea, motivated as it was by the hypothetical IP address application, can of
course be applied more generally. Start by choosing the table size n to be some
prime number that is a little larger than the number of items expected in the table
(there is usually a prime number close to any number we start with; actually, to
ensure that hash table operations have good performance, it is better to have the
size of the hash table be about twice as large as the number of items). Next assume
that the size of the domain of all data items is N = n*, a power of n (if we need to
overestimate the true number of data items, so be it). Then each data item can be
considered as a k-tuple of integers modulo n, and H = {hy : a € {0, ..., n— 1}¥} is
a universal family of hash functions.

Exercises

1.1. Show that in any base b > 2, the sum of any three single-digit numbers is at
most two digits long.

1.2. Show that any binary integer is at most four times as long as the corresponding
decimal integer. For very large numbers, what is the ratio of these two lengths,
approximately?

1.3. A d-ary tree is a rooted tree in which each node has at most d children. Show
that any d-ary tree with n nodes must have a depth of Q(logn/logd). Can you
give a precise formula for the minimum depth it could possibly have?

1.4. Show that

log(n!) = ©(nlogn).
(Hint: To show an upper bound, compare n! with n"*. To show a lower bound,
compare it with (11/2)%?.)

Exercises

Chapter 1

