2.3 Designing algorithms 27

determining computational efficiency for large inputs. Thus, we write that inser-
tion sort, for example, has a worst-case running time of © (n?) (pronounced “theta
of n-squared”). We shall use ®-notation informally in this chapter; it will be de-
fined precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, this evaluation may be in error for small inputs. But for large enough
inputs, a © (n?) algorithm, for example, will run more quickly in the worst case
than a © (n?) algorithm.

Exercises

2.2-1
Express the function n3/1000 — 100n* — 1007 + 3 in terms of ®-notation.

2.2-2

Consider sorting # numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of A, and exchange it with A[2]. Continue in this manner for the firstn —1
elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first 7 — 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in ®-notation.

2.2-3

Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in ®-notation? Justify your answers.

2.2-4
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms

There are many ways to design algorithms. Insertion sort uses an incremental ap-
proach: having sorted the subarray A[l .. j — 1], we insert the single element A[]
into its proper place, yielding the sorted subarray A[l.. j].

28

Chapter 2 Getting Started

In this section, we examine an alternative design approach, known as “divide-
and-conquer” We shall use divide-and-conquer to design a sorting algorithm
whose worst-case running time is much less than that of insertion sort. One advan-
tage of divide-and-conquer algorithms is that their running times are often easily
determined using techniques that will be introduced in Chapter 4.

2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems.

Conquer the subproblems by solving them recursively. If the subproblem sizes
are small enough, however, just solve the subproblems in a straightforward
manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of 7,/2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted se-
quences in the “combine” step. To perform the merging, we use an auxiliary pro-
cedure MERGE(A, p, g,r), where A is an array and p, ¢, and r are indices num-
bering elements of the array such that p < g < r. The procedure assumes that the
subarrays A[p ..q] and A[g + 1..r] are in sorted order. It merges them to form a
single sorted subarray that replaces the current subarray A[p ..r].

Our MERGE procedure takes time ® (n), where n = r — p + 1 is the number
of elements being merged, and it works as follows. Returning to our card-playing

2.3 Designing algorithms 29

motif, suppose we have two piles of cards face up on a table. Each pile is sorted,
with the smallest cards on top. We wish to merge the two piles into a single sorted
output pile, which is to be face down on the table. Our basic step consists of
choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto
the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are checking just
two top cards. Since we perform at most n basic steps, merging takes ® (n) time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
The idea is to put on the bottom of each pile a sentinel card, which contains a
special value that we use to simplify our code. Here, we use oo as the sentinel
value, so that whenever a card with oo is exposed, it cannot be the smaller card
unless both piles have their sentinel cards exposed. But once that happens, all the
nonsentinel cards have already been placed onto the output pile. Since we know in
advance that exactly »r — p + 1 cards will be placed onto the output pile, we can
stop once we have performed that many basic steps.

MERGE(A, p,q,71)

1 n <—q—p+1

2 np<«r—gq

3 create arrays L[1..n; 4+ 1] and R[1..ny + 1]
4 fori < 1ton

5 do L[i] < Alp +i—1]
6 for j < 1ton,

7 do R[j] < Alg + j]

8 L[n+1] < o0

9 R[ny+1] <« o0

10 i «1

11 j <1

12 fork < ptor

13 doif L[i] < R[J]

14 then A[k] < L[i]
15 I <—i+1

16 else A[k] < R[j]
17 j<—j+1

In detail, the MERGE procedure works as follows. Line 1 computes the length 7
of the subarray A[p..q], and line 2 computes the length n, of the subarray
Alg + 1..r]. We create arrays L and R (“left” and “right”), of lengths n; + 1
and n, + 1, respectively, in line 3. The for loop of lines 4-5 copies the subar-

30 Chapter 2 Getting Started

8 9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17
k k
1 2 3 4 5 1 2 3 4 5 1 4 5 1 2 3 4 5
L[2[4T57]=] R [AT2[3] 6] r @23]6]~]
i J i J
(a) (b)
8 9 10 11 12 13 14 15 16 17 8§ 9 10 11 12 13 14 15 16 17
k k
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
d DHuEEE] BEGCEEN DBuci CBos
i J i fi

© (@)

Figure 2.3 The operation of lines 10-17 in the call MERGE(A, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5, 7, 1, 2, 3, 6). After copying and inserting sentinels, the
array L contains (2, 4, 5, 7, 00), and the array R contains (1, 2, 3, 6, co). Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9..16], along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)-(h) The arrays A, L, and R, and their respective indices k, i, and j
prior to each iteration of the loop of lines 12—17. (i) The arrays and indices at termination. At this
point, the subarray in A[9..16] is sorted, and the two sentinels in L and R are the only two elements
in these arrays that have not been copied into A.

ray A[p..q] into L[1..n;], and the for loop of lines 6-7 copies the subarray
Alg +1..r]into R[1..n,]. Lines 89 put the sentinels at the ends of the arrays L
and R. Lines 10-17, illustrated in Figure 2.3, perform the » — p 4 1 basic steps by
maintaining the following loop invariant:

At the start of each iteration of the for loop of lines 12-17, the subarray
Alp ..k — 1] contains the £k — p smallest elements of L[1..n; + 1] and
R[1..ny + 1], in sorted order. Moreover, L[i] and R[] are the smallest
elements of their arrays that have not been copied back into A.

‘We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12—-17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, we have k = p, so that the
subarray A[p ..k — 1] is empty. This empty subarray contains the k — p = 0

» v N v v o Asrn 0

2.3 Designing algorithms 31

10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17

.. . A...|1|2|2|3[4k

5 1. 2 .3 4 5 1 2 3 4 5

L H R 1 HOEDE OB
i] l J

(e) ®

10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17

A T2 T3S TS I - l1|2|2l314|5l6I
1 2 3 4 5 1 2 3 4 5
c IS 7 [-] ~ R 6 [~] L R
i J l J

(& (h)

10 11 12 13 14 15 16 17
“T2[2T3[4]5T6 7.

k
4

®

smallest elements of L and R, and since i = j = 1, both L[i] and R[] are the
smallest elements of their arrays that have not been copied back into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] < R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p ..k — 1] contains the kK — p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p .. k] will contain the k — p + 1
smallest elements. Incrementing & (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[],
then lines 16—17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, kK = r + 1. By the loop invariant, the subarray
Alp..k — 1], which is A[p..r], contains the k — p = r — p + 1 smallest
elements of L[1..n; + 1] and R[1..n, + 1], in sorted order. The arrays L
and R together contain ny + ny + 2 = r — p + 3 elements. All but the two
largest have been copied back into A, and these two largest elements are the
sentinels.

To see that the MERGE procedure runs in ©®(n) time, where n =r — p + 1,
observe that each of lines 1-3 and 8-11 takes constant time, the for loops of

32

Chapter 2 Getting Started

lines 4-7 take ®(ny + n,) = O(n) time,® and there are n iterations of the for
loop of lines 12—-17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT (A, p,r) sorts the elements in the subar-
ray A[p..r]. If p > r, the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index g that par-
titions A[p..r] into two subarrays: A[p..q], containing [n/2] elements, and
Alg + 1..r], containing |n/2] elements.’

MERGE-SORT(A, p,r)

1 ifp<r

2 theng < [(p +71)/2]

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A,q + 1,7)
5 MERGE(A, p,q,r)

To sort the entire sequence A = (A[1], A[2], ..., A[n]), we make the initial call
MERGE-SORT(A, 1, length[A]), where once again length[A] = n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when »n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length n/2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, its running time can often
be described by a recurrence equation or recurrence, which describes the overall
running time on a problem of size » in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

A recurrence for the running time of a divide-and-conquer algorithm is based
on the three steps of the basic paradigm. As before, we let T (n) be the running
time on a problem of size n. If the problem size is small enough, say n < ¢

OWe shall see in Chapter 3 how to formally interpret equations containing ®-notation.

TThe expression [x] denotes the least integer greater than or equal to x, and |x] denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting ¢ to | (p +r)/2] yields subarrays A[p..q] and A[g + 1..r] of sizes [n/2] and |n/2],
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

2.3 Designing algorithms 33

sorted sequence

e

[2457] i

o
e AN

s EEE EERE 0 e

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5, 2,4, 7, 1, 3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

for some constant c, the straightforward solution takes constant time, which we
write as ®(1). Suppose that our division of the problem yields a subproblems,
each of which is 1/b the size of the original. (For merge sort, both a and b are 2,
but we shall see many divide-and-conquer algorithms in which a # b.) If we
take D (n) time to divide the problem into subproblems and C () time to combine
the solutions to the subproblems into the solution to the original problem, we get
the recurrence

(e ifn <c,
T(n)= {aT(ﬂ/b) + D(n) + C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that
the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n/2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

34

Chapter 2 Getting Started

We reason as follows to set up the recurrence for T (n), the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = ©(1).

Conquer: We recursively solve two subproblems, each of size n/2, which con-
tributes 27 (n/2) to the running time.

Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ® (n), so C (n) = ©(n).

When we add the functions D (n) and C (n) for the merge sort analysis, we are
adding a function that is ® (n) and a function that is ®(1). This sum is a linear
function of n, that is, ®(n). Adding it to the 27 (n/2) term from the “conquer”
step gives the recurrence for the worst-case running time 7' (n) of merge sort:

o) ifn=1,

T = {2T(n/2) +Om) ifn>1. &L

In Chapter 4, we shall see the “master theorem,” which we can use to show that
T (n) is ©(nlgn), where lgn stands for log, n. Because the logarithm function
grows more slowly than any linear function, for large enough inputs, merge sort,
with its ®(nlgn) running time, outperforms insertion sort, whose running time
is ®(n?), in the worst case.

We do not need the master theorem to intuitively understand why the solution to
the recurrence (2.1) is T (n) = ®(nlgn). Let us rewrite recurrence (2.1) as

ifn=1,

c
Thnl = {2T(n/2) +cn ifn>1, 2.2)

where the constant ¢ represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.®

Figure 2.5 shows how we can solve the recurrence (2.2). For convenience, we
assume that » is an exact power of 2. Part (a) of the figure shows T (n), which
in part (b) has been expanded into an equivalent tree representing the recurrence.
The cn term is the root (the cost at the top level of recursion), and the two subtrees

81t is unlikely that the same constant exactly represents both the time to solve problems of size 1
and the time per array element of the divide and combine steps. We can get around this problem by
letting ¢ be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting ¢ be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds will be on the order of nlgn and, taken
together, give a © (n1gn) running time.

2.3 Designing algorithms 35

T(n) cn cn
T(n/2) T(n/2) cn/2 cnf2
T(n/4) T(n/4) T(n/4) T(n/4)
(a) (b) (©)
cn il cn
A / \
cn/2 cnf2 e s i cn
lgn / \ / \
cnl4 cn/4 cn/4 cnf4d e i cn
Y ¢ ¢ ¢ ¢ ¢ e ¢ ¢ wim cn
R/___/
" I
) Total: cnlgn +cn
Figure 2.5 The construction of a recursion tree for the recurrence T'(n) = 2T (n/2) + cn.

Part (a) shows T (n), which is progressively expanded in (b)—(d) to form the recursion tree. The
fully expanded tree in part (d) has Ign + 1 levels (i.e., it has height Ig , as indicated), and each level
contributes a total cost of cn. The total cost, therefore, is cnlgn + cn, which is @ (nIgn).

36

Chapter 2 Gerting Started

of the root are the two smaller recurrences T (n/2). Part (c) shows this process car-
ried one step further by expanding T (n/2). The cost for each of the two subnodes
at the second level of recursion is c¢n/2. We continue expanding each node in the
tree by breaking it into its constituent parts as determined by the recurrence, until
the problem sizes get down to 1, each with a cost of c. Part (d) shows the resulting
tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost c(n/2) + c(n/2) = cn, the level after
that has total cost c(n/4) +c(n/4) + c(n/4) +c(n/4) = cn, and so on. In general,
the level i below the top has 2! nodes, each contributing a cost of c(n/2"), so that
the ith level below the top has total cost 2! c(n/2") = cn. At the bottom level, there
are n nodes, each contributing a cost of ¢, for a total cost of cn.

The total number of levels of the “recursion tree” in Figure 2.5 is Ign + 1. This
fact is easily seen by an informal inductive argument. The base case occurs when
n = 1, in which case there is only one level. Since Ig1 = 0, we have that Ign + 1
gives the correct number of levels. Now assume as an inductive hypothesis that the
number of levels of a recursion tree for 2 nodes is Ig 2/ +1 =i+ 1 (since for
any value of i, we have that Ig 2 = i). Because we are assuming that the original
input size is a power of 2, the next input size to consider is 21+ A tree with 211
nodes has one more level than a tree of 2i nodes, and so the total number of levels
isG+D+1=1g2 +1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. There are 1gn + 1 levels, each costing cn, for a total cost
of cn(lgn + 1) = cnlgn + cn. Ignoring the low-order term and the constant ¢
gives the desired result of ® (nlgn).

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A = (3,41,52,26,38,57,9,49).

2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.

2.3-3
Use mathematical induction to show that when 7 is an exact power of 2, the solution
of the recurrence

